Having One Film Pinned (e.g., Spin Valve) Patents (Class 360/324.1)
  • Patent number: 9859490
    Abstract: This technology provides an electronic device. An electronic device in accordance with an implementation of this document includes semiconductor memory, and the semiconductor memory includes a free layer having a variable magnetization direction; a pinned layer having a pinned magnetization direction; and a tunnel barrier layer interposed between the pinned layer and the free layer, wherein the free layer includes: a first ferromagnetic material; a second ferromagnetic material having a coercive force smaller than that of the first ferromagnetic material; and an amorphous spacer interposed between the first ferromagnetic material and the second ferromagnetic material.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 2, 2018
    Assignee: SK hynix Inc.
    Inventor: Jeong-Myeong Kim
  • Patent number: 9842615
    Abstract: A method and system provide a magnetic read apparatus. The magnetic read apparatus includes a read sensor. The read sensor includes a pinning layer, a nonmagnetic insertion layer and a pinned layer. The nonmagnetic insertion layer has a location selected from a first location and a second location. The first location is between the pinned layer and the pinning layer. The second location is within the pinning layer.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 12, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Joshua Jones, Christian Kaiser, Yuankai Zheng, Qunwen Leng
  • Patent number: 9799386
    Abstract: Improved STT MRAM midpoint reference cell configurations are provided. In one aspect, a STT MRAM midpoint reference cell includes: a plurality of word lines having at least one write reference word line and at least one read reference word line; a plurality of bit lines perpendicular to the word lines; at least one source line perpendicular to the bit lines; at least one first magnetic tunnel junction in series with i) a first field effect transistor gated by the write reference word line and ii) a second field effect transistor gated by the read reference word line; and at least one second magnetic tunnel junction in series with iii) a third field effect transistor gated by the write reference word line and iv) a fourth field effect transistor gated by the read reference word line. A method of operating a STT MRAM midpoint reference cell is also provided.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: John K. DeBrosse, Matthew R. Wordeman
  • Patent number: 9664572
    Abstract: An apparatus comprises a head transducer and a resistive temperature sensor provided on the head transducer. The resistive temperature sensor comprises a first layer comprising a conductive material and having a temperature coefficient of resistance (TCR) and a second layer comprising at least one of a specular layer and a seed layer. A method is disclosed to fabricate such sensor with a laminated thin film structure to achieve a large TCR. The thicknesses of various layers in the laminated thin film are in the range of few to a few tens of nanometers. The combinations of the deliberately optimized multilayer thin film structures and the fabrication of such films at the elevated temperatures are disclosed to obtain the large TCR.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 30, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Wei Tian, Declan Macken, Huaqing Yin, Venkateswara Rao Inturi, Eric Walter Singleton
  • Patent number: 9659585
    Abstract: A magnetic sensor has a bottom shield layer, an upper shield layer, and a sensor stack adjacent the upper shield layer. The sensor includes a seed layer between the bottom shield layer and an antiferromagnetic layer of the sensor stack. The seed layer has a magnetic layer adjacent the sensor stack and a nonmagnetic layer adjacent the bottom shield layer.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 23, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Eric Walter Singleton, Antonia Tsoukatos, Liwen Tan, Jae-Young Yi
  • Patent number: 9653102
    Abstract: A data reader may have a magnetoresistive stack consisting of at least magnetically free and magnetically fixed structures. The magnetically fixed structure can be set to a first magnetization direction by a first pinning structure separated from an air bearing surface by a front shield portion of a magnetic shield. The front shield portion may be set to a different second magnetization direction by a second pinning structure.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 16, 2017
    Assignee: Seagate Technology LLC
    Inventors: Mark T. Kief, Kevin A. McNeill
  • Patent number: 9643385
    Abstract: Disclosed herein are layered Heusler alloys. The layered Heusler alloys can comprise a first layer comprising a first Heusler alloy with a face-centered cubic (fcc) crystal structure and a second layer comprising a second Heusler alloy with a fcc crystal structure, the second Heusler alloy being different than the first Heusler alloy, wherein the first layer and the second layer are layered along a layering direction, the layering direction being the [110] or [111] direction of the fcc crystal structure, thereby forming the layered Heusler alloy.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: May 9, 2017
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: William H. Butler, Kamaram Munira, Javad G. Azadani
  • Patent number: 9633678
    Abstract: A data reader may be configured with at least a detector stack positioned on an air bearing surface and consisting of a spin accumulation channel continuously extending from the air bearing surface to an injector stack. The injector stack can have at least one cladding layer contacting the spin accumulation channel. The at least one cladding layer may have a length as measured perpendicular to the ABS that filters minority spins from the detector stack.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: April 25, 2017
    Assignee: Seagate Technology LLC
    Inventors: David A. Deen, Taras G. Pokhil
  • Patent number: 9634240
    Abstract: Magnetic memory devices include a plurality of first magnetic patterns on a substrate so as to be spaced apart from each other, a first insulating pattern between the first magnetic patterns to define the first magnetic patterns, and a tunnel barrier layer covering the first magnetic patterns and the first insulating pattern. The first insulating pattern includes a first magnetic element, and the first magnetic element is the same as a second magnetic element constituting the first magnetic patterns.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 25, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongchul Park, Byoungjae Bae, Shin-Jae Kang, Eunsun Noh, Kyung Rae Byun
  • Patent number: 9634244
    Abstract: The present invention is directed to an MRAM element comprising a magnetic free layer structure and a magnetic reference layer structure with an insulating tunnel junction layer interposed therebetween. The magnetic free layer structure has a variable magnetization direction substantially perpendicular to the layer plane thereof. The magnetic reference layer structure includes a first magnetic reference layer formed adjacent to the insulating tunnel junction layer and a second magnetic reference layer separated from the first magnetic reference layer by a first non-magnetic perpendicular enhancement layer. The first and second magnetic reference layers have a first fixed magnetization direction substantially perpendicular to the layer plane thereof.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: April 25, 2017
    Assignee: Avalanche Technology, Inc.
    Inventors: Huadong Gan, Yiming Huai, Zihui Wang, Yuchen Zhou
  • Patent number: 9570100
    Abstract: A two-dimensional magnetic recording (TDMR) read head with an antiferromagnetic (AFM) layer recessed behind a center shield. The TDMR read head comprises a first read sensor and a center shield over the first read sensor, wherein the center shield has a first thickness at an air-bearing surface (ABS) and a second thickness at a back surface, the first thickness being greater than the second thickness. A ferromagnetic layer is disposed over a portion of the center shield, wherein the ferromagnetic layer is recessed from the ABS. The TDMR read head also includes an antiferromagnetic layer over the ferromagnetic layer and a second read sensor over the antiferromagnetic layer. By recessing the AFM layer away from the ABS, the down-track spacing between read sensors is reduced, thereby improving TDMR read head performance.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: February 14, 2017
    Assignee: Western Digital Technologies, Inc.
    Inventors: James Freitag, Zheng Gao, Stefan Maat
  • Patent number: 9568564
    Abstract: The invention discloses a magnetic nano-multilayers structure and the method for making it. The multilayer film includes—sequentially from one end to the other end—a substrate, a bottom layer, a magnetic reference layer, a space layer, a magnetic detecting layer and a cap layer. The, up-stated structure is for convert the information of the rotation of the magnetic moment of the magnetic detecting layer into electrical signals. The magnetic detecting layer is of a pinning structure to react to the magnetic field under detection. On the other hand, the invention sandwiches an intervening layer between the AFM and the FM to mitigate the pinning effect from the exchange bias. Moreover, the thickness of the intervening layer is adjustable to control the pinning effect from the exchange bias. The controllability ensures that the magnetic moments of the magnetic reference layer and the magnetic detecting layer remain at right angles to each other when the external field is zero.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 14, 2017
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qinli Ma, Houfang Liu, Xiufeng Han
  • Patent number: 9558767
    Abstract: The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: January 31, 2017
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ye Du, Takao Furubayashi, Yukiko Takahashi, Kazuhiro Hono
  • Patent number: 9536548
    Abstract: Disclosed herein is a magnetic write head comprising a main pole, a write gap over the main pole, a first hot seed layer over the main pole, wherein the first hot seed layer comprises a first hot seed material having a first anisotropy value, and a second hot seed layer comprising a second hot seed material having a second anisotropy value, the second anisotropy value being greater than the first anisotropy value, wherein at least a portion of the second hot seed layer is adjacent to the first hot seed layer to mitigate adjacent track interference. Also disclosed are methods to fabricate magnetic write heads having first and second hot seed layers.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: January 3, 2017
    Assignee: Western Digital Technologies, Inc.
    Inventor: Supradeep Narayana
  • Patent number: 9515123
    Abstract: A magnetic memory device according to an embodiment includes a first magnetic section, a read section, and a write section. The first magnetic section includes an extending portion. The extending portion extends in a first direction. The extending portion has a first interface and a second interface. The extending portion includes magnetic domains arranged along the first direction. Magnetization easy axis of the extending portion is directed along a second direction. The extending portion includes a first region and a second region. The first region contains at least one first element selected from a first group consisting of gadolinium, terbium, dysprosium, neodymium, and holmium. The second region contains at least one second element selected from a second group consisting of iron, cobalt, nickel, boron, silicon, and phosphorus. Concentration of the first element in the second region is lower than concentration of the first element in the first region.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: December 6, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Michael Arnaud Quinsat, Tsuyoshi Kondo
  • Patent number: 9478238
    Abstract: A magneto-resistive effect element (MR element) has a first shield layer; a second shield layer; an inner shield layer that is positioned between the first shield layer and the second shield layer, and that makes contact with the first shield layer and faces the air bearing surface (ABS); and a multilayer film that is positioned between the first shield layer and the second shield layer. The multilayer film has a free layer; a first pinned layer; a nonmagnetic spacer layer; a second pinned layer that fixes the magnetization direction of the first pinned layer; and an antiferromagnetic layer that is exchange-coupled with the second pinned layer. The antiferromagnetic layer faces the back surface of the inner shield layer viewed from the ABS. The MR element has an insulating layer positioned between the antiferromagnetic layer and the inner shield layer.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: October 25, 2016
    Assignee: TDK Corporation
    Inventors: Naomichi Degawa, Kenzo Makino, Satoshi Miura, Takayasu Kanaya
  • Patent number: 9460397
    Abstract: A quantum computing device magnetic memory is described. The quantum computing device magnetic memory is coupled with a quantum processor including at least one quantum device corresponding to at least one qubit. The quantum computing device magnetic memory includes magnetic storage cells coupled with the quantum device(s) and bit lines coupled to the magnetic storage cells. Each of the magnetic storage cells includes at least one magnetic junction. The magnetic junction(s) include a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The magnetic junction(s) are configured to allow the free layer to be switched between stable magnetic states. The magnetic junction(s) are configured such that the free layer has a nonzero initial writing spin transfer torque in an absence of thermal fluctuations.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: October 4, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dmytro Apalkov, Matthew J. Carey, Mohamad Towfik Krounbi, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9437812
    Abstract: A method of fabricating a TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, CoBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is <100 Angstroms. The TMR sensor may be annealed with a one step or two step process. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 6, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Patent number: 9437809
    Abstract: A magnetic cell structure including a nonmagnetic filament contact, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, an insulative layer between the free and pinned layers, and a nonmagnetic filament contact in the insulative layer which electrically connects the free and pinned layers. The nonmagnetic filament contact is formed from a nonmagnetic source layer, also between the free and pinned layers. The filament contact directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: September 6, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Patent number: 9437223
    Abstract: A magnetoresistive element according to an embodiment includes: a multilayer element including a first magnetic layer, a magnetization direction of the first magnetic layer being pinned, a nonmagnetic layer disposed on the first magnetic layer, a second magnetic layer disposed in a first region on the nonmagnetic layer, a magnetization direction of the second magnetic layer being pinned and antiparallel to the magnetization direction of the first magnetic layer, and a third magnetic layer disposed in a second region that is different from the first region on the nonmagnetic layer near one of two opposite end faces of the nonmagnetic layer, a magnetization direction of the third magnetic layer being changeable by an external magnetic field, a lower face of the nonmagnetic layer being in contact with an upper face of the first magnetic layer.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 6, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Shirotori, Yuuzo Kamiguchi, Masayuki Takagishi, Hitoshi Iwasaki
  • Patent number: 9362486
    Abstract: Provided are a magnetic memory device and a method of forming the same. The magnetic memory device includes a pinned pattern including a coupling enhancement pattern, a polarization enhancement pattern, and a texture blocking pattern located between the coupling enhancement pattern and the polarization enhancement pattern, a free pattern located on the polarization enhancement pattern of the pinned pattern, and a tunnel barrier located between the pinned pattern and the free pattern. The coupling enhancement pattern includes a first enhancement magnetic pattern, a second enhancement magnetic pattern, and a first enhancement non-magnetic pattern located between the first enhancement magnetic pattern and the second enhancement magnetic pattern.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: June 7, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: KeeWon Kim, SangHwan Park, JaeHoon Kim
  • Patent number: 9349397
    Abstract: In one embodiment, a method for forming a magnetoresistive read head includes forming a fixed layer having a first ferromagnetic material that has a fixed direction of magnetization above a lower shield layer, forming a free layer having a second ferromagnetic material positioned above the fixed layer, the free layer having a non-fixed direction of magnetization, forming a first mask above the free layer, the first mask having a predetermined width based on a track width of a magnetic medium, etching the free layer down to the fixed layer using the first mask as a guide, wherein substantially none of the fixed layer is etched, and wherein the fixed layer extends beyond both sides of the free layer in a cross-track direction, and forming magnetic domain control films on both sides of the free layer in the cross-track direction, the magnetic domain control films including a soft magnetic material.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 24, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Masashi Hattori, Norihiro Okawa, Kouichi Nishioka, Kouji Okazaki
  • Patent number: 9318179
    Abstract: A spin-transfer torque magnetic random access memory (STTMRAM) element includes a composite fixed layer formed on top of a substrate and a tunnel layer formed upon the fixed layer and a composite free layer formed upon the tunnel barrier layer. The magnetization direction of each of the composite free layer and fixed layer being substantially perpendicular to the plane of the substrate. The composite layers are made of multiple repeats of a bilayer unit which consists of a non-magnetic insulating layer and magnetic layer with thicknesses adjusted in a range that makes the magnetization having a preferred direction perpendicular to film plane.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 19, 2016
    Assignee: Avalanche Technology, Inc.
    Inventors: Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Yuchen Zhou, Roger Klas Malmhall
  • Patent number: 9299923
    Abstract: Provided are magnetic memory devices with a perpendicular magnetic tunnel junction. The device includes a magnetic tunnel junction including a free layer structure, a pinned layer structure, and a tunnel barrier therebetween. The pinned layer structure may include a first magnetic layer having an intrinsic perpendicular magnetization property, a second magnetic layer having an intrinsic in-plane magnetization property, and an exchange coupling layer interposed between the first and second magnetic layers. The exchange coupling layer may have a thickness maximizing an antiferromagnetic exchange coupling between the first and second magnetic layers, and the second magnetic layer may exhibit a perpendicular magnetization direction, due at least in part to the antiferromagnetic exchange coupling with the first magnetic layer.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: March 29, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SeChung Oh, Ki Woong Kim, Younghyun Kim, Whankyun Kim, Sang Hwan Park
  • Patent number: 9293693
    Abstract: There is disclosed an information storage element including a first layer including a ferromagnetic layer with a magnetization direction perpendicular to a film face; an insulation layer coupled to the first layer; and a second layer coupled to the insulation layer opposite the first layer, the second layer including a fixed magnetization so as to be capable of serving as a reference of the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material, and the magnetization state is configured to be changed by a spin injection. A magnitude of an effective diamagnetic field which the first layer receives is smaller than a saturated magnetization amount of the first layer.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: March 22, 2016
    Assignee: Sony Corporation
    Inventors: Kazutaka Yamane, Masanori Hosomi, Hiroyuki Ohmori, Kazuhiro Bessho, Yutaka Higo, Hiroyuki Uchida, Tetsuya Asayama
  • Patent number: 9275661
    Abstract: A magnetic head including a CPP read head sensor. The CPP sensor includes a tunnel barrier layer. At least one portion of ELG material is coplanar with the tunnel barrier layer.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: March 1, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Ying Hong, David J. Seagle
  • Patent number: 9269382
    Abstract: A method and system provide a magnetic read transducer having an air-bearing surface (ABS). The magnetic read transducer includes a read sensor stack and a pinning structure. The read sensor stack includes a pinned layer, a spacer layer, and a free layer. The spacer layer is nonmagnetic and between the pinned layer and the free layer. A portion of the read sensor stack is at the ABS. The pinning structure includes a hard magnetic layer recessed from the ABS, recessed from the free layer and adjacent to a portion of the pinned layer.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: February 23, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Gerardo A. Bertero, Kuok San Ho
  • Patent number: 9269902
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. The ReRAM cells may include a first layer operable as a bottom electrode and a second layer operable to switch between a first resistive state and a second resistive state. The ReRAM cells may include a third layer that includes a material having a lower breakdown voltage than the second layer and further includes a conductive path created by electrical breakdown. The third layer may include any of tantalum oxide, titanium oxide, and zirconium oxide. Moreover, the third layer may include a binary nitride or a ternary nitride. The binary nitrides may include any of tantalum, titanium, tungsten, and molybdenum. The ternary nitrides may include silicon or aluminum and any of tantalum, titanium, tungsten, and molybdenum. The ReRAM cells may further include a fourth layer operable as a top electrode.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: February 23, 2016
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventor: Yun Wang
  • Patent number: 9263068
    Abstract: An apparatus having a transducer structure with: a lower shield; an upper shield above the lower shield, the shields providing magnetic shielding; a current-perpendicular-to-plane sensor between the upper and lower shields; at least one of an upper electrical lead between the sensor and the upper shield and a lower electrical lead between the sensor and the lower shield, the at least one lead being in electrical communication with the sensor; and an insulating layer between the at least one of the leads and the shield closest thereto. Another embodiment includes a transducer structure having: a lower shield; an upper shield above the lower shield; a current-perpendicular-to-plane sensor between the upper and lower shields; an upper electrical lead between the sensor and the upper shield, the upper electrical lead being in electrical communication with the sensor; and an insulating layer between at upper electrical lead and the upper shield.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Robert E. Fontana, Jr., Jason Liang, Calvin S. Lo
  • Patent number: 9252710
    Abstract: Synthetic antiferromagnetic (SAF) and synthetic ferrimagnetic (SyF) free layer structures are disclosed that reduce Ho (for a SAF free layer), increase perpendicular magnetic anisotropy (PMA), and provide higher thermal stability up to at least 400° C. The SAF and SyF structures have a FL1/DL1/spacer/DL2/FL2 configuration wherein FL1 and FL2 are free layers with PMA, the coupling layer induces antiferromagnetic or ferrimagnetic coupling between FL1 and FL2 depending on thickness, and DL1 and DL2 are dusting layers that enhance the coupling between FL1 and FL2. The SAF free layer may be used with a SAF reference layer in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Furthermore, a dual SAF structure is described that may provide further advantages in terms of Ho, PMA, and thermal stability.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: February 2, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yu-Jen Wang, Guenole Jan, Ru-Ying Tong
  • Patent number: 9223519
    Abstract: A semiconductor device includes a resistance variable element including a free magnetic layer, a tunnel barrier layer and a pinned magnetic layer; and a magnetic correction layer disposed over the resistance variable element to be separated from the resistance variable element, and having a magnetization direction which is opposite to a magnetization direction of the pinned magnetic layer.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 29, 2015
    Assignee: SK hynix Inc.
    Inventors: Seok-Pyo Song, Se-Dong Kim, Hong-Ju Suh
  • Patent number: 9218828
    Abstract: According to one embodiment, a magnetic head includes a spin-torque oscillator which further includes a non-magnetic separation seed layer formed directly on a main magnetic pole and containing an element selected from W, Re, Os and Ir, an SIL, an IL and FGL formed one on another in this order.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: December 22, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsuhiko Koui, Shuichi Murakami
  • Patent number: 9177574
    Abstract: According to one embodiment, a magneto-resistance effect device includes: a multilayer structure having a cap layer; a magnetization pinned layer; a magnetization free layer provided between the cap layer and the magnetization pinned layer; a spacer layer provided between the magnetization pinned layer and the magnetization free layer; a function layer which is provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer, the function layer having oxide containing at least one element selected from Zn, In, Sn and Cd, and at least one element selected from Fe, Co and Ni; and a pair of electrodes for applying a current perpendicularly to a film plane of the multilayer structure.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 3, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Michiko Hara, Shuichi Murakami
  • Patent number: 9178136
    Abstract: The present disclosure provides a semiconductor memory device. The device includes a pinning layer having an anti-ferromagnetic material and disposed over a first electrode; a pinned layer disposed over the pinning layer; a tunneling layer disposed over the pinned layer, a free layer disposed over the tunneling layer and a capping layer disposed over the free layer. The capping layer includes metal-oxide and metal-nitride materials.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: November 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ming Wu, Kai-Wen Cheng, Cheng-Yuan Tsai, Chia-Shiung Tsai
  • Patent number: 9166144
    Abstract: Provided are magnetic memory devices with a perpendicular magnetic tunnel junction. The device includes a magnetic tunnel junction including a free layer structure, a pinned layer structure, and a tunnel barrier therebetween. The pinned layer structure may include a first magnetic layer having an intrinsic perpendicular magnetization property, a second magnetic layer having an intrinsic in-plane magnetization property, and an exchange coupling layer interposed between the first and second magnetic layers. The exchange coupling layer may have a thickness maximizing an antiferromagnetic exchange coupling between the first and second magnetic layers, and the second magnetic layer may exhibit a perpendicular magnetization direction, due at least in part to the antiferromagnetic exchange coupling with the first magnetic layer.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: October 20, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SeChung Oh, Ki Woong Kim, Younghyun Kim, Whankyun Kim, Sang Hwan Park
  • Patent number: 9147834
    Abstract: The performance of an MR device has been improved by inserting one or more Magneto-Resistance Enhancing Layers (MRELs) into approximately the center of one or more of the magnetic layers such as an inner pinned (AP1) layer, spin injection layer (SIL), field generation layer (FGL), and a free layer. An MREL is a layer of a low band gap, high electron mobility semiconductor such as ZnO or a semimetal such as Bi. The MREL may further comprise a first conductive layer that contacts a bottom surface of the semiconductor or semimetal layer, and a second conductive layer that contacts a top surface of the semiconductor or semimetal layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 29, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 9129679
    Abstract: A shift register type magnetic memory according to an embodiment includes: a magnetic nanowire; a magnetic material chain provided in close vicinity to the magnetic nanowire, the magnetic material chain including a plurality of disk-shaped ferromagnetic films arranged along a direction in which the magnetic nanowire extends; a magnetization rotation drive unit configured to rotate and drive magnetization of the plurality of ferromagnetic films; a writing unit configured to write magnetic information into the magnetic nanowire; and a reading unit configured to read magnetic information from the magnetic nanowire.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 8, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 9070462
    Abstract: A memory element has a layered structure, including a memory layer that has magnetization perpendicular to a film face in which a magnetization direction is changed depending on information, and includes a Co—Fe—B magnetic layer, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, a first oxide layer and a second oxide layer.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: June 30, 2015
    Assignee: Sony Corporation
    Inventors: Kazutaka Yamane, Masanori Hosomi, Hiroyuki Ohmori, Kazuhiro Bessho, Yutaka Higo, Tetsuya Asayama, Hiroyuki Uchida
  • Patent number: 9042061
    Abstract: A data reader may be configured at least with a magnetic stack positioned on an air bearing surface (ABS) and contacting a spin depolarizing layer that is a minority spin current carrier. The spin depolarizing layer can have a thickness and spin diffusion length corresponding to a net zero spin polarization at an interface of the magnetic stack and spin depolarizing layer.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 26, 2015
    Assignee: Seagate Technology LLC
    Inventors: Dimitar Velikov Dimitrov, Dian Song, Mark Thomas Kief, Amit Sharma
  • Patent number: 9030784
    Abstract: A magnetic head including a magnetoresistive junction and an oxide layer. The magnetoresistive junction includes a pinned layer, a free layer, and a barrier layer residing between the pinned and free layer. The magnetoresistive junction includes at least one side having a smooth profile. The oxide layer is on the at least one side. The oxide layer is less than one nanometer thick at the free layer.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanxiong Li, Xiaozhong Dang, Mahendra Pakala, Yong Shen
  • Patent number: 9013837
    Abstract: A magnetoresistive element according to an embodiment includes: a magnetoresistance effect film including: a first magnetic film; a second magnetic film; and an intermediate film of a nonmagnetic material disposed between the first magnetic film and the second magnetic film, at least one of the first magnetic film and the second magnetic film being formed of a material expressed as AxB1?x(65 at %?x?85 at %) where A is an alloy containing Co and at least one element selected from Fe and Mn, and B is an alloy containing Si or Ge, a Si concentration in the at least one of the first magnetic film and the second magnetic film decreasing and a Ge concentration increasing as a distance from the intermediate film increases.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Hase, Masayuki Takagishi, Susumu Hashimoto, Shuichi Murakami, Yousuke Isowaki, Masaki Kado, Hitoshi Iwasaki
  • Patent number: 9007729
    Abstract: In one embodiment, a read sensor includes an antiferromagnetic (AFM) pinning layer, the AFM pinning layer being recessed from a media-facing surface in an element height direction to a first height, a first antiparallel pinned multilayer (AP1) positioned above the AFM pinning layer and extending beyond the first height to the media-facing surface, a second antiparallel pinned layer (AP2) positioned above the AP1 and extending beyond the first height to the media-facing surface, and a free layer positioned at the media-facing surface above the AP2 and extending from the media-facing surface in the element height direction to a second height, wherein the element height direction is perpendicular to the media-facing surface, wherein the AP1 and the AP2 are not recessed from the media-facing surface, and wherein the AFM, the AP1, and the AP2 extend beyond the free layer in the element height direction beyond the second height.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: April 14, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Kuok S. Ho, Suping Song
  • Patent number: 9001474
    Abstract: An apparatus can be generally directed to a magnetic stack having a magnetically free layer positioned on an air bearing surface (ABS). The magnetically free layer can be biased to a predetermined magnetization in various embodiments by a biasing structure that is coupled with the magnetically free layer and positioned distal the ABS.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 7, 2015
    Assignee: Seagate Technology LLC
    Inventors: Mark William Covington, Dimitar Velikov Dimitrov, Dian Song
  • Patent number: 8988833
    Abstract: A current-perpendicular-to-the plane magnetoresistive sensor has top and bottom electrodes narrower than the sensor trackwidth. The electrodes are formed of one of Cu, Au, Ag and AgSn, which have an ion milling etch rate much higher than the etch rates for the sensor's ferromagnetic materials. Ion milling is performed at a high angle relative to a line orthogonal to the plane of the electrode layers and the layers in the sensor stack. Because of the much higher etch rate of the material of the top and bottom electrode layers, the electrode layers will have side edges that are recessed from the side edges of the free layer. This reduces the surface areas for the top and bottom electrodes, which causes the sense current passing through the sensor's free layer to be confined in a narrower channel, which is equivalent to having a sensor with narrower physical trackwidth.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 24, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Patrick Mesquita Braganca, Jeffrey R. Childress, Jordan Asher Katine, Yang Li, Neil Leslie Robertson, Neil Smith, Petrus Antonius VanDerHeijden, Douglas Johnson Werner
  • Patent number: 8988834
    Abstract: A magnetoresistive sensor having employing a Mn containing Huesler alloy for improved magnetoresistive performance in a structure that minimizes corrosion and Mn migration. The sensor can be constructed with a pinned layer structure that includes a lamination of layers of Co2MnX and CoFe, where X is Al, Ge or Si. The Co2MnX can be sandwiched between the layers of CoFe to prevent Mn migration into the spacer/barrier layer. The free layer can also be constructed as a lamination of Co2MnX and CoFe layers, and may also be constructed so that the Co2MnX layer is sandwiched between CoFe layers to prevent Mn migration.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: March 24, 2015
    Assignee: HGST Netherlands B.V.
    Inventor: Hardayal S. Gill
  • Patent number: 8984741
    Abstract: A method for manufacturing a magnetic read sensor allows for the construction of a very narrow trackwidth sensor while avoiding problems related to mask liftoff and shadowing related process variations across a wafer. The process involves depositing a plurality of sensor layers and forming a first mask structure. The first mask structure has a relatively large opening that encompasses a sensor area and an area adjacent to the sensor area where a hard bias structure can be deposited. A second mask structure is formed over the first mask structure and includes a first portion that is configured to define a sensor dimension and a second portion that is over the first mask structure in the field area.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 24, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Yi Zheng, Guomin Mao, Hicham M. Sougrati, Xiaozhong Dang
  • Patent number: 8978240
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Patent number: 8929035
    Abstract: A magnetoresistance effect element having a magnetoresistance effect film and a pair of electrode, the magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction, a second magnetization layer whose direction of magnetization changes in response to an external magnetic field, a nonmagnetic intermediate layer located between the first and second magnetic layers, and a film provided in the first magnetic layer, in the second magnetic layer, at an interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at an interface between the second magnetic layer and the nonmagnetic intermediate layer.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hiromi Fuke, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 8922955
    Abstract: A magnetic sensor including a first layer that is a pinned layer, the first layer having a first edge. The magnetic sensor includes a second layer that is a non-magnetic metal layer, the second layer having a second edge corresponding to the first edge. The second layer is adjacent the first layer. The magnetic sensor includes a third layer that is a free layer, the third layer having a third edge corresponding to the first edge and the second edge. The third layer is adjacent the second layer. The magnetic sensor also includes a fourth layer that is a flux guide layer. The fourth layer is adjacent the third layer. The fourth layer extends outwardly from the third layer relative to the first layer and the second layer.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: December 30, 2014
    Assignee: Oracle America, Inc.
    Inventors: John P. Nibarger, Ricky L. Ewasko
  • Patent number: 8917485
    Abstract: A magnetoresistive effect element includes a magnetization fixed layer including a first crystal grain, having a magnetization direction which is fixed substantially in one direction, a spacer layer arranged on the magnetization fixed layer and having an insulating layer and a metal conductor penetrating the insulating layer, and a magnetization free layer including a second crystal grain, arranged on the spacer layer to oppose the metal conductor and having a magnetization direction which changes corresponding to an external magnetic field.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: December 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Yoshinari Kurosaki, Hiromi Yuasa, Yoshihiko Fuji, Hitoshi Iwasaki