For Inverters Patents (Class 363/55)
  • Patent number: 8611113
    Abstract: A Voltage Source Converter has a series connection of switching assemblies, in which each switching assembly has an electrically conducting plate member carrying a plurality of semiconductor chips each having at least a semiconductor device of turn-off and a free-wheeling diode connected in parallel therewith. Said chips are connected in parallel with each other by each being connected by at least one individual conductor member to a said plate member of an adjacent switching assembly of said series connection. Each switching assembly has a mechanical switch configured to be open under normal operation of the switching assembly and configured to enable connection of said plate member of the switching assembly to the plate member of an adjacent switching assembly for bypassing said semiconductor chips of the switching assembly to which the mechanical switch belongs in the case of occurrence of a short circuit current through a semiconductor chip of the switching assembly.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 17, 2013
    Assignee: ABB Technology AG
    Inventor: Gunnar Asplund
  • Patent number: 8611114
    Abstract: A method for controlling an inverter having at least two phase modules having respective upper and lower valve branches with at least three two-pole subsystems connected in series, includes in the event of failure of at least one subsystem in a faulty valve branch of a defective phase module the following method steps: a) identifying the faulty a defective upper or lower valve branch in the identified defective phase module in which one or more subsystems have failed; b) controlling a terminal voltage of the one or more failed subsystems in the faulty valve branch so as to be permanently zero; and c) controlling in each of the upper and lower fault-free valve branches having fault-free subsystems a number of fault-free subsystems corresponding to the one or more failed subsystems such that their terminal voltages of the controlled fault-free subsystems terminal voltages are permanently zero.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marc Hiller, Dietmar Krug
  • Publication number: 20130329474
    Abstract: A redundant path power subsystem comprises a plurality of phase regulators in a multi-phase power converter. The plurality of phase regulators comprises at least N+2 phase regulators. N phases are sufficient to serve an electrical load coupled with the redundant path power subsystem. The redundant path power subsystem also comprises a plurality of power supplies, and a plurality of input and control paths between the plurality of power supplies and the plurality of phase regulators. The plurality of input and control paths comprises a plurality of multiplexing logic devices and a plurality of phase controllers. The plurality of phase controllers is operable to control the plurality of phase regulators. The plurality of multiplexing logic devices is operable to multiplex control signals from the plurality of power supplies and a microprocessor for the plurality of phase controllers.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Barus, Kevin R. Covi, William P. Kostenko, Jack P. Lee, Peter A. Wendling
  • Patent number: 8587248
    Abstract: The invention relates to a method for controlling a multi-phase power converter having at least two phase modules (100) comprising valve branches (T1, . . . , T6) having bipolar subsystems (10, 11) connected in series, at low output frequencies (f). According to the invention, a target value (u1 (t), . . . , u6 (t)) of a valve branch voltage overlaps a common-mode voltage (uCM(t)) such that a sum of two valve branch voltages (u1 (t), U2 (t) or U3 (t), U4 (t) or U5 (t), U6 (t)) of each phase module (100) equals an intermediate circuit voltage (Ud) of said multi-phase power converter. In this manner a known converter having a triphase power converter comprising distributed energy accumulators on the grid and load side, or merely on the load side, may be utilized as a drive converter, which may start up from the idle state.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: November 19, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Marc Hiller
  • Patent number: 8575885
    Abstract: To make it possible to avoid an unstable state with a simple configuration even one of the phases of the motor fails. A motor drive system in accordance with the present invention includes a motor to which a plurality of phase coils of five phases or more are connected in a star connection, an inverter connected to one end of each of the phase coils, the inverter being configured to convert a DC power into an AC power and supply the AC power to each phase of the motor, a power relay disposed at another end of each of the phase coils, the power relay being configured so as to be able to cut off a supply power to at least one phase coil among the plurality of phase coils of the motor by using a plurality of contact points interposed between the star-connected coils, and a control unit that generates a control signal for the inverter and thereby controls driving of the motor.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihiro Okumatsu
  • Publication number: 20130286696
    Abstract: A power converter control system having a phase tracker that is designed and configured to estimate the phase of the voltage on the power network that will be on the network when network recovers from a fault on the network. Such a power converter control system allows a power-network-connected power source to ride-through a fault event and continue supplying power thereto at the designed phase and frequency. In one embodiment, the phase tracker provides this estimate by having a response time slow enough that the voltage drop or sag caused by the fault substantially does not affect the control system. In another embodiment, the phase detector is designed and configured to freeze the frequency of its output upon detection of a fault event on the power network.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 31, 2013
    Inventor: Jeffrey K. Petter
  • Publication number: 20130279220
    Abstract: A switching control circuit of a power converter according to the present invention comprises an input circuit and a clock generator. The input circuit is coupled to receive a feedback signal for generating a switching signal. The clock generator generates a clock signal to determine a switching frequency of the switching signal. The feedback signal is correlated to an output of the power converter. The switching signal is coupled to switch a transformer of the power converter for regulating the output of the power converter. The pulse width of the switching signal is reduced before the switching frequency of the switching signal is changed from a low frequency to a high frequency.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 24, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventor: TA-YUNG YANG
  • Publication number: 20130272039
    Abstract: A method for operating an electrical circuit is described herein. The circuit includes a power converter having a plurality of switches and two capacitors that are parallel to the switches. The plurality of switches and the two capacitors are connected in series. The power converter has two AC voltage-sided connections and a measuring resistor is connected to the ground. A ground fault is detected by measuring a voltage drop in a measuring resistor.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 17, 2013
    Inventors: Christoph Saniter, Marco Boni, Sebastian Hildebrandt, Jörg Janning, Roland Jakob
  • Patent number: 8559201
    Abstract: A grid-connected inverter includes first and second power conversion circuits, a contactor and a control circuit. The first conversion circuit converts a first DC voltage to a second DC voltage. The second conversion circuit converts the second DC voltage to an AC voltage. The contactor connects an output side of the second conversion circuit to a power system. The control circuit includes a decision circuit and controls start and stop operations of the conversion circuits, and opening and closing of the contactor. The decision circuit decides whether a condition of the contactor is abnormal by detecting, after the control circuit controls the contactor to be open, whether or not a value of the second DC voltage is less than a threshold value, and if the value of the second DC voltage is detected to be not less than the threshold value, decides that the condition of the contactor is abnormal.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 15, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kansuke Fujii, Toshiya Yamada, Masaki Katoh
  • Publication number: 20130249460
    Abstract: In a power conversion apparatus that is configured to cool switching elements by using a boiling-refrigerant-type cooling device that uses a boiling phenomenon of a refrigerant included therein, an inverter control unit that controls the switching elements (Su to Sz) by generating a gate command capable of stabilizing boiling of the refrigerant includes a modulation-mode selection unit that determines stability of the cooling device based on an element-temperature estimation value that is an estimated temperature of the switching elements (Su to Sz), and that decides and selects a modulation mode PM for controlling the switching elements (Su to Sz) based on a determination result, and a gate-command generation unit that generates a gate command G based on the modulation mode PM selected by the modulation-mode selection unit.
    Type: Application
    Filed: December 2, 2010
    Publication date: September 26, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Tetsuo Sugahara
  • Patent number: 8542506
    Abstract: A power isolation system and method is disclosed. The system includes a transformer suitable for use in the power isolation system, and a semiconductor device electrically connected to the transformer to provide a reduction of the inrush current associated with powering the transformer, wherein the semiconductor device is activated upon power up based upon the previous shutdown state of the power isolation system to provide a soft start to the transformer, and after activation of the transformer, the semiconductor device is shorted in the system.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: September 24, 2013
    Assignee: Middle Atlantic Products, Inc.
    Inventors: Robert Schluter, Bernard P. O'Kane, Brendan K. Walsh, Steve Kaufer
  • Patent number: 8537578
    Abstract: An inverter having three phase modules with an upper valve arm and a lower valve arm having each at least three two-pole subsystems connected in series, which each subsystem having a storage capacitor, is controlled in the event of failure of one or more subsystems by setting the terminal voltage of the failed subsystems permanently to zero, setting the terminal voltage of a corresponding number of fault-free subsystems in corresponding fault-free valve branches likewise to zero, and increasing the capacitor voltages of the fault-free subsystems of the failed valve branches such that their sum is equal to the sum of the capacitor voltages of the subsystems of a corresponding fault-free valve branch, while leaving the control of the fault-free phase modules unchanged. In this way, a symmetrical voltage system with maximum amplitude is obtained at the inverter outputs.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 17, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marc Hiller, Dietmar Krug
  • Publication number: 20130223113
    Abstract: An electrical power converter for converting power from a bipolar DC source to supply an AC load is disclosed. For one such embodiment the bipolar DC source is a photovoltaic array and the AC power is sourced into an electric power grid. The bipolar photovoltaic array has positive and negative voltage potentials with respect to earth ground. The converter is a utility interactive inverter which does not require an isolation transformer at the electric power grid interface. Embodiments of the invention include methods of detecting and interrupting DC ground faults in the photovoltaic array.
    Type: Application
    Filed: April 11, 2013
    Publication date: August 29, 2013
    Applicant: Xantrex Technology, Inc.
    Inventor: Xantrex Technology, Inc.
  • Publication number: 20130223112
    Abstract: An exemplary converter circuit has a converter unit with plural actuatable power semiconductor switches, and the DC voltage side of which is connected to a capacitive energy storage circuit. The capacitive energy storage circuit has at least one capacitive energy store and at least one snubber network for limiting the rate of current or voltage rise on the actuatable power semiconductor switches of the converter unit. In order to reduce undesirable oscillations in an overcurrent in the capacitive energy storage circuit, the capacitive energy storage circuit has at least one passive nonactuatable damping unit having a unidirectional current-flow direction, where the passive nonactuatable damping unit has a diode and a damping resistor.
    Type: Application
    Filed: April 5, 2013
    Publication date: August 29, 2013
    Applicant: ABB TECHNOLOGY AG
    Inventor: ABB TECHNOLOGY AG
  • Publication number: 20130223114
    Abstract: When an overcurrent detection section detects an overcurrent, a control circuit performs ON-OFF control for switching devices each switchable between a forward direction and a reverse direction, in a mode in which a current having flowed is reduced, such that when the mode is a mode in which a current is passed through any of diodes, a switching device connected in parallel with the current-passed diode is turned ON. Thus, even when an overcurrent occurs, the current flowing in the diode connected in parallel with the switching device is reduced, and the diode is protected from being deteriorated or broken by the overcurrent.
    Type: Application
    Filed: June 28, 2011
    Publication date: August 29, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yasushi Nakayama, Satoshi Azuma
  • Patent number: 8508957
    Abstract: A power conversion device includes an inverter for converting DC power to AC power to supply the AC power to a load, a converter for converting AC power from an AC power supply to DC power to supply the DC power to the inverter, a DC voltage converter for converting a voltage value of power stored in a storage battery to supply DC power from the storage battery to the inverter when power supply by the AC power supply is abnormal, and a filter which includes a reactor and a capacitor and removes harmonics generated by the inverter. The inverter includes a three-level circuit constituted of an arm and an AC switch.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Kazuhide Eduardo Sato, Masahiro Kinoshita, Yushin Yamamoto, Tatsuaki Amboh
  • Patent number: 8497687
    Abstract: A method for monitoring operation of a vehicle including a high voltage electrical system including an electrical energy storage device electrically connected to switching circuits of an inverter device via a high voltage bus, the inverter device configured to transfer electric power to an electric machine via activation of a plurality of switch devices, includes monitoring electrical ground isolation of the high voltage electrical system during ongoing operation of the vehicle, detecting an electrical ground isolation fault in the high voltage electrical system, and detecting a location of the electrical ground isolation fault associated with at least one of the electrical energy storage device, the high voltage bus, the inverter device, and the electric machine subsequent to a vehicle key-off event.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Harry J. Bauer, Wei D. Wang, James E. Tarchinski
  • Patent number: 8482245
    Abstract: A power conversion device in which an inverter for controlling a load is connected to an alternating current power system, and arranged to perform an electric power assist by connecting a direct-current power assist device having a chopper and a charge device to a direct-current circuit of the inverter. The device including a setting section to set charge and discharge target values in accordance with a sensed value of the direct-current voltage of the inverter; a charge control section to perform a charge control based on the charge target value; a discharge control section to perform a discharge control based on the discharge target value; and an instantaneous-low high-speed-compensation section to estimate an electric power corresponding to a direct-current sensed voltage of the inverter, and to output a value to the discharge control section which is obtained by dividing the estimated value by the direct-current sensed voltage.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 9, 2013
    Assignee: Meidensha Corporation
    Inventors: Takeshi Kondo, Katsutoshi Miyazaki
  • Patent number: 8476862
    Abstract: In a system comprising a fuel and a rotating electrical machine, damage of a switching element is prevented when the rotating electrical machine becomes a locked state. In a power controller, it is monitored whether the rotating electrical machine is in the locked state or not. When the rotating electrical machines is judged to be in the locked state, a command for dropping output voltage is given to the fuel cell. Thus, inverter input voltage can be dropped, loss power of the switching element in the rotating electrical machine is dropped and damage can be suppressed. The rotating electrical machine is monitored to cancel the locked state or not while dropping of inverter input voltage is controlled. When the locked state is judged to be canceled, control of the fuel cell is returned to a state of regular operation control.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tadaichi Matsumoto
  • Publication number: 20130155734
    Abstract: A method and system for detecting an islanding condition in a grid is provided. The method comprises detecting a potential islanding condition in a grid; and, in response to the detected potential islanding condition, ramping up an amount of reactive power, active power, or a combination of active and reactive power that is generated from a power conversion system until the earlier of the power conversion system shutting down or a threshold condition being reached.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Said Farouk Said El-Barbari, Simon Herbert Schramm, Ara Panosyan
  • Patent number: 8467205
    Abstract: A power converter control system having a phase tracker that is designed and configured to estimate the phase of the voltage on the power network that will be on the network when network recovers from a fault on the network. Such a power converter control system allows a power-network-connected power source to ride-through a fault event and continue supplying power thereto at the designed phase and frequency. In one embodiment, the phase tracker provides this estimate by having a response time slow enough that the voltage drop or sag caused by the fault substantially does not affect the control system. In another embodiment, the phase detector is designed and configured to freeze the frequency of its output upon detection of a fault event on the power network.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 18, 2013
    Assignee: Northern Power Systems Utility Scale, Inc.
    Inventor: Jeffrey K. Petter
  • Publication number: 20130134917
    Abstract: An improper wiring detecting system of a parallel inverter system can include two polyphase inverters connected in parallel, and voltage detectors to detect an output voltage of each of the phases of each of the inverters. Control units can control turning-on and -off of semiconductor switching devices of the inverters, and a wiring condition deciding means can operate at least one control unit to turn-on specified switching devices in at least one inverter to form a closed circuit between arbitrary two phases of the at least one inverter. The system can carry out comparisons among values of output voltages of the two inverters corresponding to respective phases and detected by the voltage detectors, and make a decision as to whether wiring is correct or not on the basis of the results of the comparisons.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 30, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: FUJI ELECTRIC CO., LTD.
  • Patent number: 8446744
    Abstract: A method and a control device control a switching device for providing a resonant circuit with a switching voltage for generating a resonant current in order to provide a required output power at an output of a resonant power converter.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: May 21, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Scheel, Christian Hattrup, Peter Luerkens
  • Patent number: 8422260
    Abstract: An arrangement for converting direct voltage into alternating voltage and conversely has a Voltage Source Converter with at least one phase leg connected to opposite poles (5, 6) of a direct voltage side of the converter and a series connection of switching cells arranged between said poles. Each half (8, 9) of this series connection is connected to a mid point forming a phase output by a phase reactor. The phase reactors of a said phase leg are built in a transformer (30) configured to connect said phase output to an alternating voltage phase line (28) by forming a primary winding each of the transformer arranged to interact with a secondary winding thereof connected to the alternating voltage phase line.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 16, 2013
    Assignee: ABB Technology AG
    Inventor: Gunnar Asplund
  • Publication number: 20130063990
    Abstract: A protection circuit of a power converter without an input capacitor is disclosed. The protection circuit comprises a high voltage switch, a detection circuit and a control circuit. The switch senses an input voltage of the power converter via a resistor for generating a first signal. The detection circuit coupled to a transformer senses the input voltage of the power converter for generating a second signal. The control circuit controls a switching signal in response to the first signal and the second signal. The switching signal is utilized to switching the transformer for regulating the power converter; and the level of the first signal and the second signal is correlated a level of the input voltage of the power converter.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 14, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventor: Ta-Yung Yang
  • Publication number: 20130058139
    Abstract: A new and renewable energy generation system includes: an inverter for converting a DC voltage into an AC voltage; a three-phase/two-phase transformer for transforming an output of the inverter into a three-phase/two-phase stationary coordinate system; a phase locked loop for calculating the phase and frequency of an output voltage of the inverter; a phase shifter for generating a current phase reference value; a current reference coordinate transformer for transforming the current phase reference value and the current amplitude reference value into a two-phase stationary coordinate system; a current phase calculator for outputting a current phase calculation value; a current phase calculator for outputting a current amplitude calculation value; a current adjuster for generating a current adjustment signal; an output three-phase transformer for transforming the current adjustment signal into a current adjustment signal in a three-phase stationary coordinate system; and a PWM controller for outputting a PWM co
    Type: Application
    Filed: October 21, 2011
    Publication date: March 7, 2013
    Inventors: Young Sang BAE, Seong Jin OH, Kyoung Hwan KIM
  • Patent number: 8391034
    Abstract: A power supply module includes an AC/DC converter, a voltage transforming circuit, a feedback circuit, and a filtering circuit. The AC/DC converter is used for converting the AC voltage to a primary DC voltage. The voltage transforming circuit is configured for transforming the primary DC voltage to the first DC voltage. The voltage transforming circuit includes a transformer, the transformer includes a primary winding. The feedback circuit is coupled to the primary winding of the transformer and is configured for sampling a current flowing through the primary winding to generate a feedback signal; and the filtering circuit is structured and arranged for filtering any surge voltage transmitted from the feedback circuit to the voltage transforming circuit. Wherein the voltage transforming circuit maintains the first DC voltage at a predetermined value according to the feedback signal. A related power supply module assembly is also provided.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Jian-Hui Lu
  • Publication number: 20130033908
    Abstract: An inverter for an electric machine as well as a method for operating an inverter for an electric machine. In this context, the inverter has at least one output stage unit for producing a connection between the electric machine and a power supply network, a control unit for controlling the at least one output stage unit, a supply unit independent of the power supply network for the power supply of the output stage unit(s), at least one emergency operation control assigned to the output stage unit(s) for controlling the output stage unit(s) in the fault case, as well as at least one emergency operation supply assigned to the output stage unit(s) for generating a power supply for the output stage unit(s) from the power supply network in the fault case.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 7, 2013
    Inventors: Albrecht Schwarz, Matthias Heil, Axel Haas
  • Patent number: 8354807
    Abstract: An anti-noise method for the Direct Current Brushless motor System, which includes a startup circuit, phase detective circuit, motor phase commutation circuit, driving circuit, BEMF detective circuit, and frequency detector, utilizes the BEMF detective circuit to detect the BEMF induced from the coils of the outer motor, and utilizes the sampled voltage phase to determine rotation speed and phase of the external motor by the phase detection circuit and frequency detector. Further, the sampling voltage of the BEMF detection circuit is feedback controlled by the frequency detector, utilized to keep good BEMF to noise ratio, and avoids the BEMF sampling error from the system.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 15, 2013
    Assignee: Amtek Semiconductor Co., Ltd.
    Inventors: Teng-Hui Lee, Chan-Chih Liu
  • Publication number: 20120294428
    Abstract: In order to prevent breakage of a power converter, a current which flows into an inverter (3) in the power converter is detected. The inverter (3) is equipped with two or more primary windings in parallel with each other. The current flowing through each of the primary windings is detected by current sensors (17, 6). A control unit (22) determines from the outputs of the current sensors that an abnormality occurs, when current does not flow through any of the primary windings.
    Type: Application
    Filed: February 8, 2011
    Publication date: November 22, 2012
    Applicant: HITACHI MEDICAL CORPORATION
    Inventors: Takatsugu Oketa, Hirokazu Iijima, Takuya Domoto
  • Publication number: 20120281443
    Abstract: An inverter device for feeding electrical energy from a DC-power source into a power grid includes a pair of bus lines to be connected to the DC-power source; a plurality of capacitors connected in series between the bus lines; a surveying topology surveying an integrity of the plurality of capacitors, and to provide a signal indicating a loss of integrity of one capacitor of the plurality of capacitors; a voltmeter measuring a voltage drop over the plurality of capacitors; a DC/AC-inverter; and a controller. In case of the signal indicating a loss of integrity of one capacitor of the plurality of capacitors, the controller compares the voltage drop over the plurality of capacitors to a lost integrity threshold voltage value, and reduces a current load to the plurality of capacitors by reducing the power uptake of the DC/AC-inverter, when the voltage drop exceeds the lost integrity threshold voltage value.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicant: SMA Solar Technology AG
    Inventors: Henrik Wolf, Thomas Wegener, Daniel Clemens, Harald Drangmeister
  • Patent number: 8289736
    Abstract: An electric power transmission system includes at each end of a high voltage direct current transmission line including three conductors, a converter station for conversion of an alternating voltage into a direct voltage for transmitting direct current between the stations in all three conductors. Each station has a voltage source converter and an extra phase leg connected between the two pole conductors of the direct voltage side of the converter. A third of the conductors is connected to a midpoint between current valves of the extra phase leg. An arrangement is adapted to control the current valves of the extra phase leg to switch for connecting the third conductor either to the first pole conductor or the second pole conductor for utilizing the third conductor for conducting current between the stations.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 16, 2012
    Assignee: ABB Technology Ltd.
    Inventor: Gunnar Asplund
  • Patent number: 8284575
    Abstract: A drive system has a low voltage system, a high voltage system, and a transformer. The high voltage system has drive units which correspond to power switching elements. A capacitance in the high voltage system serves as a flouting power source which supplies electric power to each of the drive units. An output voltage of a secondary side coil of the transformer is supplied to the capacitance. A comparator compares the output voltage at the secondary side coil of the transformer with a threshold value. A switching speed change part changes the switching speed of each of the power switching element based on the comparison result of the comparator.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 9, 2012
    Assignee: Denso Corporation
    Inventors: Hiroshi Inamura, Tsuneo Maebara, Junichi Fukuta
  • Patent number: 8279644
    Abstract: A method for providing a maximum power point tracking (MPPT) process for an energy generating device is provided. The method includes coupling a local converter to the energy generating device. A determination is made regarding whether the local converter is operating at or below a maximum acceptable temperature. A determination is made regarding whether at least one current associated with the local converter is acceptable. When the local converter is determined to be operating at or below the maximum acceptable temperature and when the at least one current associated with the local converter is determined to be acceptable, the MPPT process is enabled within the local converter.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 2, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jianhui Zhang, Ali Djabbari, Gianpaolo Lisi
  • Patent number: 8269451
    Abstract: A power conversion device includes: an inverter that drives an alternating-current motor by converting a direct-current voltage into an alternating-current voltage of an arbitrary frequency; an alternating current disconnecting switching unit connected between the inverter and the alternating-current motor; a current detector that detects an output current of the inverter; and a controller that performs on/off-control of the plural switching elements in the inverter and switching control with respect to the switching unit, based on at least a current detected by the current detector. The controller has a configuration to be able to interrupt a fault current by setting the fault current to a state of generating a current zero point, when the fault current containing a direct-current component is generated between the inverter and the alternating-current motor.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: September 18, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hidetoshi Kitanaka
  • Publication number: 20120195079
    Abstract: An apparatus includes an inverter including a high-side switch coupled to a low-side switch, the inverter generating a time-varying drive current from a plurality of drive control signals, a positive rail voltage, and a negative rail voltage wherein controlling the switches to generate the time-varying drive current produces a potential transitory overshoot condition for one of the switches of the inverter; a drive control, coupled to the inverter, to generate the drive control signals and to set a level of each of the rail voltages responsive to a plurality of controller signals; and a controller monitoring one or more parameters indicative of the potential transitory voltage overshoot condition, the controller dynamically adjusting, responsive to the monitored parameters, the controller signals to reduce a risk of occurrence of the potential transitory voltage overshoot condition.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Ryan Kroeze, Colin Campbell, Nicholas R. Kalayjian
  • Publication number: 20120194119
    Abstract: An apparatus includes an inverter including a high-side switch coupled to a low-side switch, the inverter generating a time-varying drive current from a plurality of drive control signals, a positive rail voltage, and a negative rail voltage wherein controlling the switches to generate the time-varying drive current produces a potential transitory overshoot condition for one of the switches of the inverter; a drive control, coupled to the inverter, to generate the drive control signals and to set a level of each of the rail voltages responsive to a plurality of controller signals; and a controller monitoring one or more parameters indicative of the potential transitory voltage overshoot condition, the controller dynamically adjusting, responsive to the monitored parameters, the controller signals to reduce a risk of occurrence of the potential transitory voltage overshoot condition.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Ryan Kroeze, Colin Campbell, Nicholas R. Kalayjian
  • Patent number: 8223465
    Abstract: An embodiment of the invention provides a surge current protection circuit. The surge current protection circuit comprises a peak current detector and a current sensing device. When the peak current detector detects when a surge current has occurred, by monitoring a change in duty cycle on a node of a HS (high side) switch, a LS (low side) switch is activated. The current sensing device senses the current drawn through the LS switch. When the current sensing device senses a current that exceeds a current limit, the HS switch is turned off for a period of time such that the surge current is reduced.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: July 17, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Tom C. Truong
  • Publication number: 20120163048
    Abstract: The invention relates an inverter that may be set up as part of a power generation system for the connection of a number of substrings, which, using DC switches, can be connected to each other in series into a string and with the inverter. The inverter includes a bridge circuit to transform the power generated by the string comprising series-connected substrings into a grid-compatible AC voltage and to feed the power into a grid. The inverter also includes a ground fault detector arranged on the AC side of the bridge circuit for ground fault monitoring of the string. A controller connected to the ground fault detector controls the DC switches so that in case of a ground fault, a complete decoupling of the connection of the string from the bridge circuit and a separation of the string into potential-free substrings is performed. A method of operating such a power generation system is also described.
    Type: Application
    Filed: May 11, 2011
    Publication date: June 28, 2012
    Applicant: SMA Solar Technology AG
    Inventors: Matthias Victor, Frank Greizer
  • Patent number: 8208276
    Abstract: A three-level PWM converter includes first to third fuses having one terminals connected to a DC positive bus, a DC negative bus and a DC neutral point bus, respectively, first and second IGBT elements connected between respective ones of the other terminals of the first and second fuses and an AC line, an AC switch connected between the AC line and the other terminal of the third fuse, first and second diodes connected in anti-parallel to the first and second IGBT elements respectively, a first capacitor connected between the other terminals of the first and third fuses, and a second capacitor connected between the other terminals of the second and third fuses.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 26, 2012
    Assignee: Toshiba Mitsubishi-Electric Indsutrial Systems Corporation
    Inventors: Eduardo Kazuhide Sato, Masahiro Kinoshita, Yushin Yamamoto, Tatsuaki Amboh
  • Publication number: 20120147636
    Abstract: A method for inhibiting a converter having at least two phase modules is disclosed. Each phase module has an upper and a lower valve branch, with each upper and lower valve branch having a plurality of two-pole submodules which are electrically connected in series and each have a unipolar energy storage capacitor, with a series connection of two turn-off semiconductor switches each being connected in parallel with an antiparallel connected diode. With the method, the submodules in an upper and a lower valve branch in each phase module in the converter are controlled to a switching state III, staggered in time. This considerably reduces the voltage load for the converter and a connected polyphase motor, or a connected power supply system.
    Type: Application
    Filed: June 14, 2011
    Publication date: June 14, 2012
    Applicant: Siemens Aktiengesellschaft
    Inventors: MARC HILLER, DIETMAR KRUG, RAINER SOMMER
  • Publication number: 20120120690
    Abstract: A power supply circuit enabling provision of good energy efficiency and downsizing is provided. A power supply circuit 1 according to the present invention includes: input terminals 2, 2 connected to a commercial power supply 10; a winding 4 serially connected between the input terminals 2, 2 via input conductors 3; and a plurality of output terminals 6A, 6B connected to opposite ends of respective windings 4A and 4B resulting from dividing the entire winding 4 into a plurality of parts via output conductors, the respective output terminals 6A and 6B being independently connected to respective loads 20A and 20B.
    Type: Application
    Filed: March 8, 2011
    Publication date: May 17, 2012
    Applicant: NIHONMAKISEN KOGYO CO., LTD.
    Inventor: YUZO MURAI
  • Patent number: 8179066
    Abstract: Method for controlling a load with a predominantly inductive character, whereby in order to feed a phase of the above-mentioned load (3), use is made of at least two connected output voltages, derived from one or several power electronic inverters (11,12;34,35,36), with a given period for switching, modulation or sampling, characterized in that the waveforms of the output voltages concerned are different or have been shifted in time, and in that they are supplied to the load (3) via a differential-mode device (6), whereby during every complete above-mentioned period, at least one of the above-mentioned output voltages is maintained constant and thus is not connected.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 15, 2012
    Assignee: Atlas Copco Airpower, Naamloze Vennootschap
    Inventor: Gerd Terörde
  • Patent number: 8120306
    Abstract: Methods and apparatus are provided for operation of a voltage source inverter. A method of operating a voltage source inverter having an output with multiple voltage phases having a DC voltage level, the method comprising sensing a low output frequency condition; determining a DC voltage offset responsive to the low output frequency condition; and applying the DC voltage offset when operating the voltage source inverter resulting in a change to the DC voltage level of the multiple voltage phases.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: February 21, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Sibaprasad Chakrabarti, Rajkumar Copparapu
  • Publication number: 20110310644
    Abstract: A power conversion device includes: an inverter that converts a DC current supplied from a DC power source to an AC current by engaging a plurality of switching elements, which constitute an upper arm, and a plurality of switching elements, which constitute a lower arm, in switching operation; a control unit that includes a signal generation unit that generates a switching signal carrying a command for execution of the switching operation in correspondence to each of the plurality of switching elements constituting the upper arm and the plurality of switching elements constituting the lower arm, and outputs the switching signal thus generated as a control signal; and a drive unit that individually drives each of the switching elements based upon the corresponding control signals.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 22, 2011
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Takashi OGURA, Satoru Shigeta, Hiroaki Igarashi, Koichi Ono, Yasuo Noto
  • Patent number: 8069000
    Abstract: An aging status diagnostic apparatus for a power conversion system and diagnosing method thereof are provided. The apparatus includes an output current sensing means detecting output current of an inverter switching module; and a measurement and diagnosis means receiving the output current, calculating one or more average values of the output current over one period, and magnitude or effective value of each harmonic of the output current, and determining whether aging of the inverter switching module has occurred. Furthermore, the measurement and diagnosis means determines that the aging of the inverter switching module has occurred if the average value of the output current over one period increases by a value equal to or greater than a predetermined range and/or an even order harmonic or a specific order harmonic based on FFT (Fast Fourier Transform) of the output current increases by a value equal to or greater than a predetermined range.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: November 29, 2011
    Assignee: Powertron Engineering Co., Ltd.
    Inventors: Deuk Soo Kim, Rae Young Kim
  • Publication number: 20110267852
    Abstract: A Voltage Source Converter has a series connection of switching assemblies, in which each switching assembly has an electrically conducting plate member carrying a plurality of semiconductor chips each having at least a semiconductor device of turn-off and a free-wheeling diode connected in parallel therewith. Said chips are connected in parallel with each other by each being connected by at least one individual conductor member to a said plate member of an adjacent switching assembly of said series connection. Each switching assembly has a mechanical switch configured to be open under normal operation of the switching assembly and configured to enable connection of said plate member of the switching assembly to the plate member of an adjacent switching assembly for bypassing said semiconductor chips of the switching assembly to which the mechanical switch belongs in the case of occurrence of a short circuit current through a semiconductor chip of the switching assembly.
    Type: Application
    Filed: January 16, 2009
    Publication date: November 3, 2011
    Inventor: Gunnar Asplund
  • Patent number: 8045301
    Abstract: When an upper arm of U-phase has failed because of short-circuit, lower arms of V-phase and W-phase as the opposite arms are switching-operated. When only the lower arm of V-phase is turned on, a route of motor current passing through an IGBT element from a V-phase coil is formed, and therefore, the motor current returning to the short-circuited phase decreases. Further, by the switching operation of the arm opposite to the short-circuited arm, an AC current is induced in a motor generator. Therefore, it is possible to continuously drive the motor generator while preventing increase in the current passing through the short-circuited phase, without adding a new device structure. This ensures running of the vehicle in the limp mode.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: October 25, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenjiro Shiba, Takashi Tanaka, Nobutaka Tanaka
  • Patent number: 8036004
    Abstract: An uninterruptible power supply includes an isolation transformer having dual primary windings. The secondary winding generates an output voltage based on the magnetic field generated in one of the dual primary windings. A first primary winding is coupled to an inverter circuit that receives an alternating current input voltage and applies a clean and filter alternating current to the first primary winding. A second primary winding is coupled to a bypass circuit that applies a bypass voltage when the inverter circuit is in a failure state. The power supply also includes a compensation circuit to maintain the output voltage at a desired level.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 11, 2011
    Assignee: Toshiba International Corporation
    Inventors: Yoichi Morishima, Jeff Ristow
  • Patent number: 8036005
    Abstract: A switching apparatus for grounding an inverter (3) that converts a direct current voltage into an alternative current voltage at mains frequency, with an inverter housing (7) and with a safety fuse (8) that connects a positive or a negative direct current voltage to a grounding terminal, is intended to be provided such that a technician has the possibility of grounding an inverter appliance optionally positively or negatively at little expense, with the possibility for an IP-65 region of the appliance to remain closed. This is achieved in that a safety fuse (8), which is accessible and can be plugged from the outside, is arranged on said inverter housing (7) and can be contacted optionally to a positive or a negative direct current voltage in such a manner that either a positive or a negative direct current voltage is grounded through said safety fuse (8).
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: October 11, 2011
    Assignee: SMA Solar Technology AG
    Inventor: Bernd Gebert