Stationary Mixing Chamber Patents (Class 366/341)
  • Patent number: 8430558
    Abstract: A micromixing apparatus includes a mixing microchannel formed in a top surface of a substrate having a channel length and a variable channel width defined by a first sidewall surface and an opposing second sidewall surface. The channel width varies from a minimum channel width h to a maximum channel width H in a ratio of H:h?1.1:1.0. A first inlet is for injecting a first fluid into the mixing microchannel and a second inlet for injecting a second fluid into the mixing microchannel. The first and second fluid flow in a flow direction in the mixing microchannel along the channel length. The first sidewall surface includes first curved surface portions and the second sidewall surface includes a second curved surface portions. The plurality of first curved surface portions and plurality of second curved surface portions are non-overlapping to provide the variable channel width.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 30, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Ehsan Yakhshi Tafti, Hyoung Jin Cho, Ranganathan Kumar
  • Patent number: 8414182
    Abstract: A micromixer device has at least one fluid inlet channel and at least one fluid outlet channel. A plurality of pathways extend between the fluid inlet channel and the fluid outlet channel. The width of at least some of the plurality of pathways varies in a substantially parabolic manner along at least one dimension of the micromixer device.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 9, 2013
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Brian Kevin Paul, Anna Evelyn Garrison
  • Publication number: 20130077434
    Abstract: Embodiments of the subject invention are directed to methods and apparatus for inducing mixing in a fluid using one or more plasma actuators. In an embodiment, a pair of electrodes is positioned near a fluid and a voltage potential is applied across the pair of electrodes such that a plasma discharge is produced in the fluid. In an embodiment, the plasma discharge creates turbulence in the fluid thereby mixing the fluid. In an embodiment, flow structures, such as vortices are generated in the fluid. In an embodiment, the fluid is mixed in three dimensions. In an embodiment, a plurality of fluids are mixed. In an embodiment, solids are dispersed in at least one fluid. In an embodiment, heat or other properties are dispersed within at least one fluid. In an embodiment, at least one of the pair of electrodes has a serpentine shape.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 28, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Subrata Roy
  • Publication number: 20130077433
    Abstract: A blender includes a container having a plurality of substantially triangular shaped ribs projecting into a processing zone of the container. The plurality of spaced ribs each include a width and a depth that taper from a top end section adjacent a teardrop shaped opening of the container to a more narrow bottom end section adjacent a bottom wall of the container. A side wall of the container continuously tapers from the teardrop shaped opening to a substantially square shaped bottom end portion including first, second, third and fourth side wall sections connected to one another at respective rounded corners. A blade assembly is coupled to the container and includes a plurality of blades angled at different planes with respect to a horizontal plane. Each of the blades includes a beveled leading edge, resulting in a downward suction force that draws ingredients down into the blade for processing.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: WHIRLPOOL CORPORATION
    Inventor: MICHAEL P. CONTI
  • Patent number: 8404189
    Abstract: A gas mixer is disclosed which includes a vessel (10) (e.g., pipe) containing a stream (12) of a first hydrocarbon-containing gas. The mixer includes a hollow pipe (14) located internal to the vessel containing a stream of a second gas, e.g., an oxygen-containing gas stream such as a stream of pure oxygen gas or air enriched with oxygen. The internal pipe further includes a mixer tip (30) at the peripheral end thereof. The mixer tip includes a body having an internal passage for conducting the second gas out of the pipe and an opening introducing the second gas stream into the first gas stream in a radial plane at an acute angle relative to the longitudinal axis of the pipe. The pipe further includes a deflector (20) on its external surface in longitudinal alignment with the opening of the mixer tip. The deflector serves to deflect any entrained particles within the first gas stream away from the mixing zone where the two streams mix, minimizing the risk of ignition of the hydrocarbon-containing gas.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 26, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20130033959
    Abstract: A blender includes a container having a plurality of substantially triangular shaped ribs projecting into a processing zone of the container. The plurality of spaced ribs each include a width and a depth that taper from a top end section adjacent a teardrop shaped opening of the container to a more narrow bottom end section adjacent a bottom wall of the container. A side wall of the container continuously tapers from the teardrop shaped opening to a substantially square shaped bottom end portion including first, second, third and fourth side wall sections connected to one another at respective rounded corners. A blade assembly is coupled to the container and includes a plurality of blades angled at different planes with respect to a horizontal plane. Each of the blades includes a beveled leading edge, resulting in a downward suction force that draws ingredients down into the blade for processing.
    Type: Application
    Filed: September 20, 2012
    Publication date: February 7, 2013
    Applicant: WHIRLPOOL CORPORATION
    Inventor: Whirlpool Corporation
  • Patent number: 8362388
    Abstract: A multi-gas mixer for supplying a gas mixture that can uniformly mix a plurality of gases according to the proportional percentages determined by the mass flow rate of each gas is disclosed. The multi-gas mixer comprises a mixer chamber, a plurality of gas inlets, a gas mixture outlet, and at least one gas rotating and mixing unit. The present invention also provides a method for controlling the percentage of each gas to be mixed by use of a plurality of mass flow rate controllers to control the gas flow to produce a gas mixture according to a predetermined proportionality. When the multi-gas mixer delivers a gas mixture to a high-speed plasma torch, the torch can be stably operated under a high voltage (>85V) and a medium current (<650 A) so that a long-arc, high-temperature and high-speed plasma flame can be generated.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Nian-Tzu Suen, Jen-Feng Yu
  • Patent number: 8323591
    Abstract: One exemplary embodiment can be a method of fabricating a mixing chamber in a hydroprocessing reactor. The method can include providing a first section forming an opening and coupling a second section including a sidewall to the first section. The second section forms a flange for coupling the mixing chamber and facilitating the mixing of one or more fluids.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Sailesh B. Kumar, Robert L. Bunting
  • Patent number: 8308340
    Abstract: Devices and methods for mixing a clotting agent with other inputs such as blood, blood derived product, bone marrow, and/or bone marrow derived product to form a congealed mixture.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: November 13, 2012
    Assignee: Smith & Nephew, Inc.
    Inventors: Joseph M. Ferrante, Si Janna, Thomas Mayr, Jeremy Odegard, Wayne Phillips, David Schuelke
  • Patent number: 8292492
    Abstract: An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 23, 2012
    Assignee: Sandia Corporation
    Inventors: Clifford K. Ho, Susan J. Altman, Paul G. Clem, Michael Hibbs, Adam W. Cook
  • Patent number: 8281809
    Abstract: A flow modulator to control the flow of an aerosol to an aerosol detection and/or monitoring system and other aerosol flow systems includes a chamber having an inlet and an outlet, a diverging section of the chamber beneath the inlet that has a flow divider at the center to divide the aerosol into fractions, a recirculation section in which the divided aerosol fractions are recombined, and a converging section that channels the recombined aerosol fractions to the outlet of the chamber.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: October 9, 2012
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Daniel G. Wise, Lawrence J. Hyttinen
  • Patent number: 8277113
    Abstract: A dispenser apparatus for dispensing an adhesive containing at least two components includes a mixing device and a header. The mixing device comprises a conveying plate having first and second grooved surfaces each overlaid by a respective cover plate. The conveying plate and opposed cover plates cooperate to define a plurality of separated channels extending through the mixing device. The discharge ends of the channels are interdigitated. First and a second distribution manifolds are defined within the mixing device. A supply port adapted to receive one adhesive component extends through a respective cover plate into fluid communication with one of the distribution manifolds.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 2, 2012
    Assignee: Actamax Surgical Materials, LLC
    Inventors: James William Ashmead, William Gerald Dimaio, Jr.
  • Patent number: 8252167
    Abstract: A plating apparatus for use in forming a plated film in trenches, via holes, or resist openings that are defined in a surface of a semiconductor wafer, and forming bumps to be electrically connected to electrodes of a package, on a surface of a semiconductor wafer. The plating apparatus has a plating tank for holding a plating solution, a holder for holding a workpiece and bringing a surface to be plated of the workpiece into contact with the plating solution in the plating tank, and a ring-shaped nozzle pipe disposed in the plating tank and having a plurality of plating solution injection nozzles for injecting the plating solution to the surface to be plated of the workpiece held by the holder to supply the plating solution into the plating tank.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 28, 2012
    Assignee: Ebara Corporation
    Inventors: Fumio Kuriyama, Takashi Takemura, Nobutoshi Saito, Masaaki Kimura, Rei Kiumi
  • Patent number: 8246241
    Abstract: A mixing device for mixing adhesives containing at least two components comprises a conveying plate having first and second grooved surfaces each overlaid by a respective cover plate. The conveying plate and the opposed cover plates cooperate to define a plurality of separated channels extending through the mixing device. The discharge ends of the channels are interdigitated. First and a second distribution manifolds are defined within the mixing device. A supply port adapted to receive one adhesive component extends through a respective cover plate into fluid communication with one of the distribution manifolds.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 21, 2012
    Assignee: Actamax Surgical Materials, LLC
    Inventors: James William Ashmead, William Gerald Dimaio, Jr.
  • Patent number: 8227527
    Abstract: A method comprising preparing a solution of clay particles solution, submitting the solution of clay particles first to a high pressure and high velocity flow for shearing the particles in the solution of clay particles, and to a sudden lower pressure, whereby the particles explode into the mist of the solution of clay particles, and mixing the finely dispersed clay solution, whereby epoxy is introduced in the solution of clay particles during on of the above steps of preparing the solution of clay particles or dispersing the solution of clay particles or to the resulting dispersed solution of clay particles, yielding an extremely fine and homogeneous distribution of the particles of nanodimensions in the epoxy, yielding a high-performance nanocomposite epoxy.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 24, 2012
    Assignees: Valorbec S.E.C., Conseil National de Recherches Canada
    Inventors: Van Suong Hoa, Weiping Liu, Martin Pugh, Minh-Tan Ton-That
  • Publication number: 20120156783
    Abstract: A method for continuously preparing a medium formulation mixes a diluent with a plurality of chemically incompatible concentrate solutions in such a manner that none of the ingredients of the concentrate solutions chemically react in an adverse manner. The method utilizes a static mixing chamber to add the concentrate solutions to the diluent stream sufficiently in advance of one another so that adverse chemical reactions do not occur. The method also adjusts a pH level of the diluent prior to adding any of the concentrate solutions to the diluent.
    Type: Application
    Filed: October 26, 2011
    Publication date: June 21, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: James Kubiak, Todd A. Battistoni, David W. Jayme
  • Publication number: 20120127824
    Abstract: A reusable and versatile device/system for mixing liquid drugs or solutions, before their administration into the human body. Mixing is carried out inside an entirely closed circuit, avoiding any contacts between the phases to be mixed and the external atmosphere. Closure of the circuit is realized partly by integral and indissoluble (permanent) connections and partly by reversible connections, such as vascular accesses, unidirectional or bidirectional check valves (NRV), or any other device which allows the creation of a closed circuit even after use, both to the system and the connected accessories, thus minimizing the risks of possible contaminations and/or infections to the patients.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 24, 2012
    Applicant: LIFE MEDICAL DIVISION SRL
    Inventor: Dario Petrone
  • Patent number: 8177197
    Abstract: The present invention provides a method and compact apparatus for providing a continuous flow of carbonated water. The apparatus atomizes the water into microscopic particles allowing for significantly increased interaction between the water and the carbon dioxide. The water and the carbon dioxide then travel into a mixing chamber where further mixing takes place. The invention does not require the use of a pump or the use of a large carbonator vessel.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 15, 2012
    Assignee: Natura Water, Inc.
    Inventor: Erdogan Ergican
  • Patent number: 8177537
    Abstract: The present invention relates to a method and apparatus for forming agarose or cored agarose beads. The process involves dissolving/gelation the agarose in a suitable liquid, mixing it with a hydrophobic liquid to form an emulsion and maintaining that emulsion at a temperature equal to or greater than the gelation point of the agarose, passing it through a static mixer to create agarose droplets and solidifying the agarose droplets in a second bath of hydrophobic liquid. The beads can then be washed and used or further processed to crosslink the agarose and/or add various functionalities on to the agarose. Another method for solidifying the agarose droplets is by using a heat exchanger to cool the stream continuously after it exits the static mixer. A similar process is used for the “cored” beads except cores, preferably in bead form, are introduced to the agarose before it enters the first hydrophobic liquid so that the agarose forms a coating on the cores.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 15, 2012
    Assignee: EMD Millipore Corporation
    Inventors: Kwok-Shun Cheng, Senthilkumar Ramaswamy, Nanying Bian, Brian Gagnon, Umana Joaquin, Neil Soice
  • Patent number: 8172455
    Abstract: A liquid feeding method for feeding liquid in a minute flow path is provided. The minute flow path includes flow paths 43a, 43c, 43d connected to each other directly at respective first ends. The liquid feeding direction of blood S in the minute flow path is controlled by creating a high-pressure state at a second end of the flow path 43a located across the blood S, while creating a low-pressure state or a closed state at a second end of the flow paths 43d, 43c.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 8, 2012
    Assignee: ARKRAY, Inc.
    Inventor: Yuichiro Noda
  • Publication number: 20120092949
    Abstract: A system for mixing a fluid in a tank includes a set of mixers and a controller. The set of mixers is disposed proximal to a perimeter of the tank. The set of mixers are operable to pivot. The controller is configured to control the set of mixers to pivot from a first orientation to a second orientation. The controller is configured to control each mixer of the set of mixers to stop pivoting in a first direction in response to each respective mixer achieving a predetermined intermediate orientation and the controller is configured to control the set of mixers to continue pivoting in the first direction in response to all mixers of the set of mixers achieving the predetermined intermediate orientation.
    Type: Application
    Filed: May 4, 2011
    Publication date: April 19, 2012
    Applicant: SPX Corporation
    Inventors: Michael Joseph Preston, Thomas A. Dziekonski
  • Publication number: 20120091004
    Abstract: This invention relates to microfluidic systems and more particularly to methods and apparatus for accessing the contents of micro droplets (114) in an emulsion stream. A method of accessing the contents of a droplet (114) of an emulsion in a microfluidic system, the method comprising: flowing the emulsion alongside a continuous, non-emulsive stream of second fluid (118) to provide an interface (120) between said emulsion and said stream of second fluid (118); and in embodiments applying one or both of an electric (112a, 112b) and magnetic field across said interface (120) to alter a trajectory of a said droplet (114) of said emulsion to cause said droplet to coalesce with said stream of second fluid (118); and accessing said contents of said droplet (114) in said second stream (118).
    Type: Application
    Filed: October 16, 2008
    Publication date: April 19, 2012
    Inventors: Chris Abell, Wilhelm T.S. Huck, Daniel Bratton, Graeme Whyte, Luis M. Fidalgo
  • Patent number: 8147775
    Abstract: Apparatus and methods are disclosed for mixing and self-cleaning elements in microfluidic systems based on electrothermally induced fluid flow. The apparatus and methods provide for the control of fluid flow in and between components in a microfluidic system to cause the removal of unwanted liquids and particulates or mixing of liquids. The geometry and position of electrodes is adjusted to generate a temperature gradient in the liquid, thereby causing a non-uniform distribution of dielectric properties within the liquid. The dielectric non-uniformity produces a body force and flow in the solution, which is controlled by element and electrode geometries, electrode placement, and the frequency and waveform of the applied voltage.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: April 3, 2012
    Assignee: CFD Research Corporation
    Inventors: Sivaramakrishnan Krishnamoorthy, Jianiun Feng
  • Patent number: 8119083
    Abstract: This invention relates to a multiphase reactor which is especially suitable for desulfurization of flue gas. A rotary build-in member comprising a axisymmetric body and an annular axisymmetric body is fixed on the shell of the reactor. The shell is cylindrical, and its surface is smooth or waved. The maximum diameter of the axisymmetric body is no less than the inner diameter of the annular axisymmetric body. The axisymmetric body is installed on the annular axisymmetric body coaxially. One rotary build-in member and its corresponding shell constitute an unit, and the reactor may have one or more such units. The multiphase reactor can effectively improve the flow pattern of the fluid and the contact of gas-liquid-solid three-phase of the reactants, speed up the mass transfer, and prevent deposition of the solid phase. The reactor is simple in structure and convenient for use. It can be used in the fields such as environmental protection, chemical engineering, metallurgy, and architectural industries.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: February 21, 2012
    Inventor: Hanxiang Shi
  • Patent number: 8088215
    Abstract: A diffusion reaction method includes: joining a plurality of reaction liquids relating to a reaction to form a multilayer flow; sandwiching from both sides of the multilayer flow in the depthwise direction using sandwiching liquid so that the multilayer flow is contracted and thinned; and flowing the multilayer flow through a reaction channel to cause a diffusive mixing between laminar flows so as to cause the reaction. The method enables to allow reacting diffusive mixing a plurality of reaction liquids instantly in a reaction channel, is suitable for any kinds of reaction product. Further, for example, when forming fine particles in a diffusion reaction, the method can prevent logging of the reaction channel by the fine particles and an adhesion of the fine particles to the wall of the reaction channel.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Fujifilm Corporation
    Inventor: Kazunori Takahashi
  • Patent number: 8062518
    Abstract: A water reaction tank for reacting water containing suspended solids with a flocculant includes a housing having an input, an output, and a water flow path between the input and the output. The flow path has a mixing section and a reaction section. Sealable flocculant ports are provided for inserting a flocculant into the mixing section of the housing. Each of the mixing section and the reaction section contains baffles. The mixing section baffles encourage turbulent flow to increase contact with the flocculant, and the reaction section baffles encourage turbulent flow and increase the length of the water flow path.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 22, 2011
    Assignee: Clearflow Enviro Systems Group Inc.
    Inventor: Jerry Hanna
  • Patent number: 8057677
    Abstract: A process is described for the extraction of one or more substances from a fluid starting material with an appropriate extraction agent by use of a static micromixer for mixing the starting material with the extraction agent. The static micromixer is provided with disk-shaped components, the disk (1) being provided with at least one inlet opening (2) for introducing at least one fluid stream into a linking channel (3) disposed in the plane of the disk and at least one outlet opening (4) for removing the fluid stream into a mixing zone (5) disposed in the plane of the disk, the inlet opening (2) being connected with the outlet opening (4) in a communicating manner through a linking channel (3) disposed in the plane of the disk, and the linking channel (3) before opening into the mixing zone (5) being divided by microstructure units (6) into two or more part channels (7), and the widths of the part channels being in the millimeter to submillimeter range and being smaller than the width of the mixing zone (5).
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: November 15, 2011
    Assignee: Wella GmbH
    Inventors: Gerhard Schanz, Gerhard Sendelbach
  • Patent number: 8038962
    Abstract: A device for the impregnation of a porous bone replacement material with an impregnation agent includes a container with a central axis and a cavity with a lid. The container has two sealable openings and elastic means. The elastic means are arranged in the cavity allowing a clamping force to be exerted on a bone replacement material inserted in the cavity. A single size container is sufficient for housing variously sized implants, where the implant placed in the cavity of the container is held, centered and protected against damage or breakage, for example, by shaking back and forth or during transportation of the container.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: October 18, 2011
    Assignee: Synthes USA, LLC
    Inventors: Flavio Hoerger, Thierry Stoll
  • Publication number: 20110228631
    Abstract: The static mixer has a coupling section and a mixer housing in which mixer elements are arranged consecutively in the flow direction so as to be offset relative to one another by an angle, and are designed so as to apply an alternatingly directed rotation to the mixed material during the mixing operation. A mixer element has two transversal walls that are divided into sectors, the first transversal wall comprising sectors that are separated by an inflow separating wall directed to the inlet, and a separating wall directed to the outlet, the transitions between the sectors and the separating wall forming respective breakaway edges, the separating wall being arranged at an angle relative to the inflow separating wall, and the second transversal wall, which is divided into sectors, having an outflow separating wall directed to the outlet. Such a mixer allows a more efficient mixture particularly of very quickly reacting components and is also suitable for small dimensions as used in medicine.
    Type: Application
    Filed: November 19, 2009
    Publication date: September 22, 2011
    Inventors: Rochus Stoeckli, Wilhelm A. Keller
  • Patent number: 8002457
    Abstract: Disclosed are methods and systems for forming multi-component refrigerant compositions comprising: (a) introducing a first refrigerant component into a vessel at a first flow rate; (b) introducing at least a second refrigerant component into said vessel at a second flow rate, which may be the same as or different than the first flow rate, during at least a portion of said first refrigerant introducing step; and (c) controlling at least one of said first and second flow rates to obtain the desired relative proportions of said first and second refrigerants in the refrigerant composition.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: August 23, 2011
    Assignee: Honeywell International Inc.
    Inventors: Stephen Cottrell, Stephen Delo, Clifford Riegel, Jarrad Garrison
  • Publication number: 20110186435
    Abstract: A liquid mixing apparatus includes a flow channel configured to supply a liquid therethrough; a vortex-flow generating unit including a conductive member and an electrode, and configured to generate a vortex flow in the liquid in the flow channel by an electric field, the conductive member being provided in the flow channel, the electrode applying the electric field to the conductive member; a directional-flow generating unit connected to an end portion of the flow channel and configured to generate a flow of the liquid in a direction along the flow channel; and a switching unit configured to switch between the vortex flow and the directional flow.
    Type: Application
    Filed: January 25, 2011
    Publication date: August 4, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Hideyuki Sugioka
  • Patent number: 7964059
    Abstract: The large volume reactor or a thin film evaporator including a housing enclosing a reactor chamber . A reactor rotor driven about an axis of rotation is located in the reactor chamber. The housing comprises a reactor chamber inlet opening and a product outlet. A premixing unit is located adjacent the reactor chamber inlet opening, which is configured to mix a starting material fed through one or more product inlet openings to form a prepared substance which is fed directly to the reactor chamber.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: June 21, 2011
    Assignee: Buss-SMS-Canzler GmbH
    Inventors: Hans Peters, Rainer Naef
  • Publication number: 20110132492
    Abstract: A device for preparing an aqueous solution of calcium chloride, particularly for use as a surface deicer, comprising a containment tank which defines a body for containing the water in which the calcium chloride in solid form is to be dissolved and at least one fill opening for the calcium chloride in solid form, elements for mixing the water with the calcium chloride in solid form in order to obtain a solution of water and calcium chloride; the mixing elements comprise means for the forced circulation of the fluid contained in the containment body within the containment tank. It is also disclosed a device for distributing an aqueous solution for use as a surface deicer comprising a plurality of straight jet nozzles designed to direct, toward the surface onto which said aqueous solution is to be spread, a respective jet designed to strike a substantially point-like region of the ground.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 9, 2011
    Inventors: Silvano Marin, Andrea Marin
  • Patent number: 7939033
    Abstract: A microfluidic device [10] includes at least one reactant passage [26] and one or more thermal control passages defined therein, the one or more thermal control passages being positioned and arranged within two volumes [12,14] each bordered by a wall [18,20], the walls being generally planar and parallel to one another, the reactant passage positioned between said generally planar walls and defined by said generally planar walls and walls [28] extending between said generally planar walls, wherein the reactant passage comprises multiple successive chambers [34], each such chamber including a split of the reactant passage into at least two sub-passages [36], and a joining [38] of the split passages, and a change of passage direction, of at least one of the sub-passages, of at least 90 degrees.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Elena Daniela Lavric, Pierre Woehl
  • Patent number: 7931397
    Abstract: Auxiliary fluid tanks associated with transit concrete mixing and dispensing systems are disclosed which include a hydraulic reservoir tank which is adapted to be stowed inside a mixing drum support pedestal. The hydraulic fluid reservoir tank further includes a shaped outer wall defining an enclosed inner space and includes one or more fluid discharge and return connections in the outer wall. The tank is also provided with an internal baffle shape in line with the fluid return connections such that it is addressed by returning hydraulic fluid and deflects and defuses the returning hydraulic fluid so that it thoroughly mixes with cooler reservoir fluid. An auxiliary water tank can also be nested beneath the hydraulic fluid reservoir tank under the hollow support pedestal.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: April 26, 2011
    Assignee: McNeilus Truck and Manufacturing, Inc.
    Inventors: Thomas G. Lindblom, Bryan S. Datema
  • Patent number: 7927552
    Abstract: Provided are a method of and an apparatus for rapidly and effectively mixing fluids even in a laminar flow regime with a very low Reynold's number by applying AC power with a resonant frequency to more effectively induce electrokinetic instability. Also provided are a method of and an apparatus for mixing fluids in which the degree of mixing of the fluids can be varied with time by applying AC power with a lower frequency than a resonant frequency to synchronize a pattern of mixing fluids with the AC power.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-kyoung Cho, Sang-min Shin, In-seok Kang, Jae-wan Park
  • Patent number: 7897121
    Abstract: A fluid reactor for facilitating mixing and/or chemical reaction and including an elongated cylindrical flow chamber having a first for receiving a flow of a first fluid, a second flow inlet through which a relatively low mass flow of a second fluid may be admitted to the chamber; and a cone-pi element disposed downstream of the second flow inlet and having an upstream conical portion with a leading apex generally facing the first flow inlet, an intervening cylindrical portion, and a downstream conical portion with a trailing apex generally facing the flow outlet, the cone-pi element being operable to produce cavitation and/or vortical flow within the flow stream to effectuate mixing and/or chemical interaction of the first fluid and the second fluid, and to deliver a mixed and/or reacted fluid from the flow outlet.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 1, 2011
    Assignee: Fluid Energy Conversion, Inc.
    Inventors: Nathaniel Hughes, Leon Shaw
  • Patent number: 7862322
    Abstract: A resin infusion system uses a housing that has an upper flexible diaphragm and a lower flexible diaphragm such that the two diaphragms form a cavity. A fiber reinforcement mat is positioned within the cavity. A mold is positioned below the lower diaphragm. A flow plate has a series of V-shaped grooves and is positioned either underneath the lower diaphragm or overtop the upper diaphragm so that the grooves press into the respective diaphragm. A vacuum is created within the housing causing resin to be drawn into the cavity with the resin interacting with the grooves increasing the turbulence of the resin flow. Once the reinforcement mat is properly wetted, the mold is pressed into the lower diaphragm.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 4, 2011
    Assignee: Florida State University Research Foundation
    Inventors: Okenwa O.I Okoli, Alvin Paul Lim
  • Patent number: 7837379
    Abstract: The invention generally relates to combining a plurality of flow streams. In various embodiments, a first channel transports a first laminar fluid flow, a second channel transports a second laminar fluid flow, and the first and second channels enter a merging region at an acute angle to one another along separate substantially parallel planes.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: November 23, 2010
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jason O. Fiering, Mathew Varghese
  • Patent number: 7815384
    Abstract: A device for applying a coating comprises at least two cylindrical cartridges, a static mixing nozzle in fluid communication with the cartridges, a spray tip, in fluid communication with the nozzle, a first flexible hose disposed between and in fluid communication with the nozzle and the spray tip, and a second hose, in fluid communication with the spray tip, for supplying atomization air to the spray tip. Methods of applying coatings with the device are also provided.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: October 19, 2010
    Assignee: Richard Parks Corrosion Technologies, Inc.
    Inventors: Richard Parks, Heather Parks
  • Patent number: 7780929
    Abstract: The present invention provides a fluid mixing apparatus having a numbering-up mechanism that distributes plural kinds of fluids and concurrently performs multiple mixing or reactions, comprising: a rectifying section having a plurality of annular channels that rectify the plural kinds of fluids into respective concentric annular flows; a distribution section having a plurality of distribution channels that distribute the plural kinds of fluids rectified by the rectifying section into a plurality of flows; a converging section having a plurality of converging channels that converge different kinds of fluids among the plural kinds of fluids distributed by the distribution section; and a mixing/reaction section having a plurality of mixing/reaction channels that cause mixing or reaction of the plural kinds of fluids converged by the converging section, wherein a plurality of pressure loss increasing devices are provided in the distribution channels.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: August 24, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Takayuki Fujiwara, Kazuo Okutsu
  • Publication number: 20100203145
    Abstract: The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an “expanded liquid” for the production of micro- and/or nano-particles or micro- and/or nano-spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO2. The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds. The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage.
    Type: Application
    Filed: July 25, 2008
    Publication date: August 12, 2010
    Applicant: UNIVERSITA' DEGLI STUDI DI SALERNO
    Inventors: Ernesto Reverchon, Giovanna Della Porta
  • Patent number: 7753580
    Abstract: A class of designs is provided for a mixer in micro reactors where the design principle includes at least one injection zone in a continuous flow path where at least two fluids achieve initial upstream contact and an effective mixing zone (i.e. adequate flow of fluids and optimal pressure drop) containing a series of mixer elements in the path. Each mixer element is preferably designed with a chamber at each end in which an obstacle is placed (thereby reducing the typical inner dimension of the chamber) and with optional restrictions in the channel segments. The obstacles are preferably cylindrical pillars but can have any geometry within a range of dimensions and may be in series or parallel along the flow path to provide the desired flow-rate, mixing and pressure-drop. The injection zone may have two or more interfaces and may include one or more cores to control fluids before mixing.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: July 13, 2010
    Assignee: Corning, Incorporated
    Inventors: Pierre Woehl, Jean-Pierre Themont, Yann P M Nedelec
  • Patent number: 7717615
    Abstract: In a process and apparatus for rapidly producing an emulsion and microcapsules in a simple manner, a dispersion phase is ejected from a dispersion phase-feeding port toward a continuous phase flowing in a microchannel in such a manner that flows of the dispersion phase and the continuous phase cross each other, thereby obtaining microdroplets, formed by a shear force of the continuous phase, having a size smaller than the width of the channel for feeding the dispersion phase.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: May 18, 2010
    Assignee: Japan Science & Technology Agency
    Inventors: Toshiro Higuchi, Toru Torii, Takashi Nishisako, Tomohiro Taniguchi
  • Publication number: 20100110826
    Abstract: A multiple-stage static mixer utilizing fractally progressive stages wherein the flow of materials is divided and rotated through an angle about the flow axis at each stage. Each stage is mathematically derived in a power progression from the previous stage to have an increased number of mixing modules, for example, 1, 4, 16, 64, or 1, 3, 9, 27, in accordance with the series L/n0, L/n1, L/n2 . . . L/nj wherein L is the transverse length of a stage and n is the number of elements in each mixing module and sub-module. Mixing thus proceeds from relatively coarse to very fine in just a few stages which is a far more efficient methodology than is found in prior art non-progressive multiple-stage static mixers. The mixer may be adapted to both round and rectangular flow tubes and is especially suited to mixing multiple streams of gases.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventor: Eric J. D'herde
  • Publication number: 20100034049
    Abstract: An adjustable, diffusing coal valve for use in controlling flow of air and pulverized fuel to a burner is disclosed. An exemplary embodiment comprises a conduit section having an inner cross-sectional area and a diffusing damper plate mounted to said conduit section and rotatable within the conduit section between an open position and a closed position. The diffusing damper plate has a periphery dimensioned to occupy a majority, but less than all, of said inner cross-sectional area when in the closed position, and includes a plurality of perforations distributed within an outer region of the plate, thus allowing coal particles to flow through the damper plate when it is in a closed or partly-closed position.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventors: Nicholas William Ferri, David J. Earley
  • Patent number: 7658536
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 9, 2010
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Publication number: 20100027372
    Abstract: A microchip for forming an emulsion has a first glass substrate, a second glass substrate and a silicon substrate. The silicon substrate has formed therein a first fluid flow path through which a first fluid flows and a second fluid flow path through which a second fluid that is not mixed with the first fluid flows. The first fluid flow path has a plurality of branched flow paths that join at a joint portion. The second fluid flow path communicates with the joint portion. The silicon substrate has formed therein an emulsion formation flow path that faces an edge portion of the second fluid flow path at the joint portion. An emulsion composed of the first fluid and the second fluid that is surrounded by the first fluid is formed in the emulsion formation flow path.
    Type: Application
    Filed: July 22, 2009
    Publication date: February 4, 2010
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventors: Yutaka OZAWA, Ryoichi Ohigashi, Koji Fujimoto, Shoji Takeuchi
  • Publication number: 20090323466
    Abstract: A mixing apparatus including a kinetic energy source, a mixing tank, a pivot guide, and transfer shaft is used to drive a mixing paddle through a circular path within a tank without substantial shaft rotation. Sleeved and sleeveless mixing paddles are provided in combination with sealable mixing tanks. A volumetric compensation system responsive to tank wall deflection is used to maintain the internal volume of a mixing tank within predetermined limits. One mixing apparatus includes multiple mixing shafts and paddles coupled to at least one kinetic energy source. Methods for fabricating sleeved paddle-containing mixing apparatuses are further provided.
    Type: Application
    Filed: April 21, 2007
    Publication date: December 31, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Steven Vanhamel, Jean-Pascal Zambaux, Tom Claes
  • Patent number: 7604394
    Abstract: Apparatus and methods are disclosed for mixing and self-cleaning elements in microfluidic systems based on electrothermally induced fluid flow. The apparatus and methods provide for the control of fluid flow in and between components in a microfluidic system to cause the removal of unwanted liquids and particulates or mixing of liquids. The geometry and position of electrodes is adjusted to generate a temperature gradient in the liquid, thereby causing a non-uniform distribution of dielectric properties within the liquid. The dielectric non-uniformity produces a body force and flow in the solution, which is controlled by element and electrode geometries, electrode placement, and the frequency and waveform of the applied voltage.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: October 20, 2009
    Assignee: CFD Research Corporation
    Inventors: Sivaramakrishnan Krishnamoorthy, Jianjun Feng