Semiconductor Patents (Class 372/43.01)
  • Patent number: 8731012
    Abstract: A surface emitting semiconductor laser includes a substrate; a first semiconductor distributed bragg reflector of a first conductive type; an active region; a second semiconductor distributed bragg reflector of a second conductive type; a current confinement layer that confines current in the active region; an optical confinement layer that confines light in the active region; and an optical loss unit including center and periphery portions in a predetermined direction, and gives a larger optical loss to the periphery portion than that of the center portion. Also, Do1<Do2 and Dn<Do2 are satisfied, where Do1 is a width of an optical confinement region of the optical confinement layer in the predetermined direction, Do2 is a width of a current confinement region of the current confinement layer in the predetermined direction, and Dn is a width of the center portion of the optical loss unit in the predetermined direction.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: May 20, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Takashi Kondo, Kazutaka Takeda
  • Patent number: 8731016
    Abstract: A nitride semiconductor light-emitting device has a semiconductor ridge, and includes a first inner-layer between an active layer and an n-type cladding and a second inner-semiconductor layer between the active layer and a p-type cladding. The first inner-layer, active layer and second inner-layer constitute a core-region. The n-type cladding, core-region and p-type cladding constitute a waveguide-structure. The active layer and the first inner-layer constitute a first heterojunction inclined at an angle greater than zero with respect to a reference plane of the c-plane of the nitride semiconductor of the n-type cladding. Piezoelectric polarization of the well layer is oriented in a direction from the p-type cladding toward the n-type cladding. The second inner-layer and InGaN well layer constitute a second heterojunction. A distance between the ridge bottom and the second heterojunction is 200 nm or less. The ridge includes a third heterojunction between the second inner-layer and the p-type cladding.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 20, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Takashi Kyono, Yohei Enya, Masaki Ueno, Katsunori Yanashima, Kunihiko Tasai, Hiroshi Nakajima, Noriyuki Futagawa
  • Patent number: 8723145
    Abstract: A radiation-emitting device (e.g., a laser) includes an active region configured to generate a radiation emission linearly polarized along a first polarization direction and a device facet covered by an insulating layer and a metal layer on the insulating layer. The metal layer defines an aperture through which the radiation emission from the active region can be transmitted and coupled into surface plasmons on the outer side of the metal layer. The long axis of the aperture is non-orthogonal to the first polarization direction, and a sequential series of features are defined in or on the device facet or in the metal layer and spaced apart from the aperture, wherein the series of features are configured to manipulate the surface plasmons and to scatter surface plasmons into the far field with a second polarization direction distinct from the first polarization direction.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 13, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Federico Capasso, Nanfang Yu, Romain Blanchard
  • Patent number: 8718111
    Abstract: A diode laser includes a p-contact layer, a n-contact layer, and a wafer body disposed between the p-contact layer and the n-contact layer, the wafer body having a front end and a back end. The diode laser further includes a first grating comprising a plurality of grooves defined in the wafer body and extending between the front end and the back end at a first tilt angle, and a second grating comprising a plurality of grooves defined in the wafer body and extending between the front end and the back end at a second tilt angle, the second tilt angle opposite to the first tilt angle. A coupling region is defined in the wafer body by interleaving portions of the first grating and the second grating. The interleaving portions provide coherent coupling of laser beams flowing through the first grating and the second grating.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: May 6, 2014
    Assignee: Clemson University
    Inventors: Lin Zhu, Yunsong Zhao
  • Patent number: 8718110
    Abstract: A nitride semiconductor laser includes an electrically conductive support substrate with a primary surface of a gallium nitride based semiconductor, an active layer provided above the primary surface, and a p-type cladding region provided above the primary surface. The primary surface is inclined relative to a reference plane perpendicular to a reference axis extending in a direction of the c-axis of the gallium nitride based semiconductor. The p-type cladding region includes first and second p-type Group III nitride semiconductor layers. The first p-type semiconductor layer comprises an InAlGaN layer including built-in anisotropic strain. The second p-type semiconductor layer comprises semiconductor different from material of the InAlGaN layer. The first nitride semiconductor layer is provided between the second p-type semiconductor layer and the active layer. The second p-type semiconductor layer has a resistivity lower than that of the first p-type semiconductor layer.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: May 6, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Takashi Kyono, Yohei Enya, Takamichi Sumitomo, Yusuke Yoshizumi, Masaki Ueno, Katsunori Yanashima, Kunihiko Tasai, Hiroshi Nakajima
  • Patent number: 8711895
    Abstract: The present invention intends to provide a surface-emitting laser light source using a two-dimensional photonic crystal in which the efficiency of extracting light in a direction perpendicular to the surface is high. In a laser light source provided with a two-dimensional photonic crystal layer created from a plate-shaped matrix body in which a large number of holes are periodically arranged and an active layer arranged on one side of the two-dimensional photonic crystal layer, the holes are created to be columnar with a predetermined cross-sectional shape such as a circular shape, and the main axis of each of the columnar holes is tilted to a surface of the matrix body. When provided with this two-dimensional photonic crystal layer, the surface-emitting laser source using a two-dimensional photonic crystal has a Q? value (i.e.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 29, 2014
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Susumu Noda, Eiji Miyai, Dai Ohnishi
  • Publication number: 20140112363
    Abstract: A first contact surface of a semiconductor laser chip can be formed to a first target surface roughness and a second contact surface of a carrier mounting can be formed to a second target surface roughness. A first bond preparation layer comprising a first metal can optionally be applied to the formed first contact surface, and a second bond preparation layer comprising a second metal can optionally be applied to the formed second contact surface. The first contact surface can be contacted with the second contact surface, and a solderless securing process can secure the semiconductor laser chip to the carrier mounting. Related systems, methods, articles of manufacture, and the like are also described.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Inventors: Alfred Feitisch, Gabi Neubauer, Mathias Schrempel
  • Patent number: 8705586
    Abstract: To suppress the amplification of spontaneous emission light in a principal plane width direction to thereby suppress a gain in directions other than a beam axis direction and output a high-power laser, in a solid-state laser element of a plane waveguide type that causes a fundamental wave laser beam to oscillate in a beam axis direction in a laser medium of a flat shape and forms a waveguide structure in a thickness direction as a direction perpendicular to a principal plane of the flat shape in the laser medium, inclined sections 12 are provided on both sides of the laser medium, the inclined sections 12 inclining a predetermined angle to reflect spontaneous emission light in the laser medium to a principal plane side of the flat shape, the spontaneous emission light traveling in the beam axis direction and a principal plane width direction as a direction perpendicular to the thickness direction.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shuhei Yamamoto, Takayuki Yanagisawa, Yasuharu Koyata, Yoshihito Hirano
  • Patent number: 8705582
    Abstract: In one example embodiment, a DFB laser includes a substrate; an active region positioned above the substrate; a grating layer positioned above the active region, the grating layer including a portion that serves as a primary etch stop layer; a secondary etch stop layer positioned above the grating layer; and a spacer layer interposed between the grating layer and the secondary etch stop layer.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: April 22, 2014
    Assignee: Finisar Corporation
    Inventors: Ashish K. Verma, Tsurugi Sudo, Sumesh Mani K. Thiyagarajan, David Bruce Young
  • Patent number: 8699537
    Abstract: The present invention provides an applications-oriented nitride compound semiconductor substrate, and devices based on it, whose lattice constant can be tuned to closely match that of any nitride thin film or films deposited on it for specific electronic or optoelectronic device applications. Such application-oriented nitride substrates, which can be composed of ternary InxGa1-xN, AlyIn1-yN, AlzGa1-zN, or quaternary AlaInbGa1-a-bN alloy compounds, minimize lattice-mismatch-induced dislocations and defects between the epitaxial films and the substrate on which the device layers are grown, leading to substantially improved device performance.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 15, 2014
    Inventors: Tarun Kumar Sharma, Elias Towe
  • Patent number: 8699538
    Abstract: A quantum cascade laser is configured to include a semiconductor substrate, and an active layer that is provided on the substrate and has a cascade structure formed by alternately laminating emission layers and injection layers by multistage-laminating unit laminate structures each consisting of the quantum well emission layer and the injection layer, and generates light by intersubband transition in a quantum well structure. In a laser cavity structure for light with a predetermined wavelength generated in the active layer, a front reflection film with a reflectance of not less than 40% and not more than 99% for laser oscillation light is formed on the front end face that becomes a laser beam output surface, and a back reflection film with a reflectance higher than that of the front reflection film for the laser oscillation light is formed on the back end face.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 15, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tadataka Edamura, Kazuue Fujita, Tatsuo Dougakiuchi, Masamichi Yamanishi
  • Patent number: 8699540
    Abstract: A surface-emitting laser device is disclosed that includes a substrate connected to a heat sink; a first reflective layer formed of a semiconductor distributed Bragg reflector on the substrate; a first cavity spacer layer formed in contact with the first reflective layer; an active layer formed in contact with the first cavity spacer layer; a second cavity spacer layer formed in contact with the active layer; and a second reflective layer formed of a semiconductor distributed Bragg reflector in contact with the second cavity spacer layer. The first cavity spacer layer includes a semiconductor material having a thermal conductivity greater than the thermal conductivity of a semiconductor material forming the second cavity spacer layer.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Ricoh Company, Ltd.
    Inventor: Shunichi Sato
  • Patent number: 8693515
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Patent number: 8693509
    Abstract: Loss modulated silicon evanescent lasers are disclosed. A loss-modulated semiconductor laser device in accordance with one or more embodiments of the present invention comprises a semiconductor-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a waveguide in a semiconductor layer of the SOI structure, and a semiconductor structure bonded to the semiconductor layer of the SOI structure, wherein at least one region in the semiconductor layer of the SOI structure controls a photon lifetime in the semiconductor laser device.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 8, 2014
    Assignee: The Regents of the University of California
    Inventors: John E. Bowers, Daoxin Dai
  • Patent number: 8679876
    Abstract: A laser diode and method for fabricating same, wherein the laser diode generally comprises an InGaN compliance layer on a GaN n-type contact layer and an AlGaN/GaN n-type strained super lattice (SLS) on the compliance layer. An n-type GaN separate confinement heterostructure (SCH) is on said n-type SLS and an InGaN multiple quantum well (MQW) active region is on the n-type SCH. A GaN p-type SCH on the MQW active region, an AlGaN/GaN p-type SLS is on the p-type SCH, and a p-type GaN contact layer is on the p-type SLS. The compliance layer has an In percentage that reduces strain between the n-type contact layer and the n-type SLS compared to a laser diode without the compliance layer. Accordingly, the n-type SLS can be grown with an increased Al percentage to increase the index of refraction. This along with other features allows for reduced threshold current and voltage operation.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 25, 2014
    Assignee: Cree, Inc.
    Inventors: Arpan Chakraborty, Monica Hansen, Steven Denbaars, Shuji Nakamura, George Brandes
  • Patent number: 8679873
    Abstract: The present invention discloses a method for fabricating a heat-resistant, humidity-resistant oxide-confined vertical-cavity surface-emitting laser (VCSEL) by slowing down the oxidizing rate during a VCSEL oxidation process to thereby reduce stress concentration of an oxidation layer and by preventing moisture invasion using a passivation layer disposed on a laser window. The VCSEL device thus fabricated is heat-resistant, humidity-resistant, and highly reliable. In a preferred embodiment, the oxidation process takes place at an oxidizing rate of less than 0.4 ?m/min, and the passivation layer is a SiON passivation layer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 25, 2014
    Assignee: TrueLight Corp.
    Inventors: Jin Shan Pan, Cheng Ju Wu, I Han Wu, Kuo Fong Tseng
  • Patent number: 8675705
    Abstract: A diode laser and a laser resonator for a diode laser are provided, which has high lateral beam quality at high power output, requires little adjustment effort and is inexpensive to produce. The laser resonator according to the invention comprises a gain section (GS), a first planar Bragg reflector (DBR1) and a second planar Bragg reflector (DBR2), wherein the gain section (GS) has a trapezoidal design and the first planar Bragg reflector (DBR1) is arranged on a first base side of the trapezoidal gain section (GS) and the second planar Bragg reflector (DBR2) is arranged on the opposing base side of the trapezoidal gain section (GS), wherein the width (D1) of the first planar Bragg reflector (DBR1) differs from the width (D2) of the second planar Bragg reflector (DBR2).
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: March 18, 2014
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Goetz Erbert, Martin Spreemann, Hans Wenzel, Joerg Fricke
  • Patent number: 8675702
    Abstract: A laser module LM is provided with a quantum cascade laser 1, a tubular member 5, and an infrared detector 7. The tubular member 5 has a pair of opening ends 5a, 5b and is arranged so that one opening end 5a is opposed to a face 1b opposed to an emitting end face 1a of the quantum cascade laser 1. The infrared detector 7 is arranged so as to be opposed to the other opening end 5b of the tubular member 5. Light emitted from the face (rear end face) 1b opposed to the emitting end face (front end face) 1a of the quantum cascade laser 1 is guided inside the tubular member 5 to enter the infrared detector 7, and then is detected.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 18, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takahide Ochiai, Naota Akikusa, Tadataka Edamura, Hirofumi Kan
  • Publication number: 20140072007
    Abstract: To achieve stable multimode output even when driven by a drive current near a threshold value, provided is a laser apparatus comprising a semiconductor laser element; a wavelength selecting element that performs laser oscillation by forming a resonator between itself and a reflective surface of the semiconductor laser element to output oscillated laser light; and an optical system that is optically coupled to an emission surface of the semiconductor laser element with a coupling efficiency ? and inputs to the wavelength selecting element light output from the emission surface. The optical system causes a value that is correlated with a minimum light output within a linear light output region in which light output is linear with respect to an injection current injected to the semiconductor laser element to be less than this value occurring when the coupling efficiency ? is at a maximum.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hidehiro TANIGUCHI, Yutaka OHKI
  • Publication number: 20140056323
    Abstract: Provided is an optical device capable of bonding each optical part to a substrate with the same applied load by surface activated bonding even if the planar shape sizes of a plurality of optical parts to be mounted on the substrate are different from one another. The optical device includes a substrate, a plurality of optical parts different in planar shape size, bonded to the substrate by surface activated bonding adjacent to one another, and optically coupled with one another, and a plurality of bonding parts provided on the substrate in correspondence to the plurality of optical parts and including metallic micro bumps for bonding each optical part. The total area of the top surfaces of the micro bumps to be bonded to the corresponding optical part of each of the plurality of bonding parts is substantially the same.
    Type: Application
    Filed: August 24, 2013
    Publication date: February 27, 2014
    Applicant: CITIZEN HOLDINGS CO., LTD.
    Inventor: Kaoru YODA
  • Patent number: 8660159
    Abstract: A laser diode capable of reducing a radiating angle ?? in the vertical direction, an optical pickup device, an optical disk apparatus, and optical communications equipment, all equipped with the laser diode which increases optical coupling efficiency. It has a first cladding layer of the first conductive type formed on a substrate, with an active layer on top of the first cladding layer and a second cladding layer of the second conductive type on top of the active layer. In at least the first or second cladding layer, it is formed of at least one optical guide layer having a higher refractive index than the first or second cladding layer and operating to expand a beam waist in the waveguide. This operation contributes to widening a region in which to shut up light, enabling a radiating angle ?? in the vertical direction to be reduced.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 25, 2014
    Assignee: Sony Corporation
    Inventors: Kanji Takeuchi, Kenji Sahara
  • Patent number: 8659038
    Abstract: Embodiments of the present invention provided a method of fabricating a semiconductor light source structure. The method comprises providing a GaAs substrate; forming a lower cladding layer above the substrate, the lower cladding layer comprising an AIxGa1-xAs alloy; forming an active region above the lower cladding layer, the active region comprising a GaAs separate confinement heterostructure; and forming an upper cladding layer comprising an AIxGa1-xAs alloy above the active region in the form of an elongate stripe bounded on either side by an InGaP current-blocking layer, the elongate stripe defining an index-guided optical waveguide.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 25, 2014
    Assignee: The University of Sheffield
    Inventors: Kristian Groom, Richard Hogg
  • Patent number: 8654811
    Abstract: Vertical Cavity Surface Emitting Laser (VCSEL) arrays with vias for electrical connection are disclosed. A Vertical Cavity Surface Emitting Laser (VCSEL) array in accordance with one or more embodiments of the present invention comprises a plurality of first mirrors, a plurality of second mirrors, a plurality of active regions, coupled between the plurality of first mirrors and the plurality of second mirrors, and a heatsink, thermally and mechanically coupled to the second mirror opposite the plurality of active regions, wherein an electrical path to at least one of the plurality of second mirrors is made through a via formed through a depth of the plurality of second mirrors, and a plurality of VCSELs in the VCSEL array are connected in series.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 18, 2014
    Assignee: Flir Systems, Inc.
    Inventors: Jonathan C. Geske, Chad Shin-deh Wang, Michael MacDougal
  • Patent number: 8654808
    Abstract: A nitride semiconductor laser element has: a nitride semiconductor layer having cavity planes at the ends of a waveguide region, an insulating film formed on an upper face of the nitride semiconductor layer so that the ends on the cavity plane side are isolated from cavity planes, and a first film formed from the cavity plane to the upper face of the nitride semiconductor layer, and covered part of the insulating film surface, the first film has a first region that is in contact with the nitride semiconductor and a second region that is in contact with the insulating film, and is formed from AlxGa1-xN (0<x?1) and a different material from that of the insulating film.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 18, 2014
    Assignee: Nichia Corporation
    Inventor: Tomonori Morizumi
  • Patent number: 8649407
    Abstract: A surface-emitting laser device configured to emit laser light in a direction perpendicular to a substrate includes a p-side electrode surrounding an emitting area on an emitting surface to emit the laser light; and a transparent dielectric film formed on an outside area outside a center part of the emitting area and within the emitting area to lower a reflectance to be less than that of the center part. The outside area within the emitting area has shape anisotropy in two mutually perpendicular directions.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: February 11, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Kazuhiro Harasaka, Shunichi Sato, Naoto Jikutani
  • Patent number: 8649408
    Abstract: According to one embodiment, a semiconductor laser device with high reliability and excellent heat dissipation is provided. The semiconductor laser device includes an active layer, a p-type semiconductor layer on the active layer, a pair of grooves formed by etching into the p-type semiconductor layer, a stripe sandwiched by the pair of grooves and having shape of ridge, and a pair of buried layers made of insulator to bury the grooves. The bottom surfaces of the grooves are shallower with an increase in distance from the stripe.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Rei Hashimoto, Maki Sugai, Jongil Hwang, Yasushi Hattori, Shinji Saito, Masaki Tohyama, Shinya Nunoue
  • Patent number: 8638827
    Abstract: A high-power semiconductor laser includes a support block, an anode metal plate, a cathode metal plate and a chip. The support block has a step, and the two ends of the support block have bosses, in which there are screw holes. The chip is welded to an insulation plate, which is attached to the support block. The anode metal plate and the cathode metal plate are, respectively, welded with an anode insulation plate and a cathode insulation plate, which are welded on the step of the support block. The cathode of the chip is connected with a metal connecting plate. The metal connecting plate is connected to the anode metal plate and the cathode metal plate. The insulation plate and the anode metal plate are bonded using a gold wire in press-welding.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: January 28, 2014
    Assignee: XI'AN Focuslight Technologies Co., Ltd
    Inventor: XingSheng Liu
  • Patent number: 8638828
    Abstract: A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: January 28, 2014
    Assignee: Soraa, Inc.
    Inventors: James W. Raring, Mathew C. Schmidt, Yu-Chia Chang
  • Patent number: 8634444
    Abstract: The present disclosure relates to a self-contained, random scattering laser generating device comprising a housing comprises an opening and an inner chamber, at least one quantum dot positioned inside the inner chamber, a high-energy emitting source positioned within the inner chamber and in radioactive communication with the at least one quantum dot, and a first lasing medium. The present disclosure also relates to a method comprising providing at least one quantum dot, contacting the at least one quantum dot with a high-energy emitting source whereby randomly scattered light is produced, partially coherently amplifying the randomly scattered light emitted from the at least one quantum dot, and generating a random scattering laser.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: January 21, 2014
    Assignee: The Boeing Company
    Inventors: Maurice P. Bianchi, Timothy R. Kilgore, David A. Deamer
  • Patent number: 8634442
    Abstract: An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about ?1 degree towards (000-1) and less than about +/?0.3 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. In a preferred embodiment, the laser stripe region is characterized by a cavity orientation that is substantially parallel to the c-direction, the laser stripe region having a first end and a second end. The device includes a first cleaved c-face facet, which is coated, provided on the first end of the laser stripe region. The device also has a second cleaved c-face facet, which is exposed, provided on the second end of the laser stripe region.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 21, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Daniel F. Feezell, Nicholas J. Pfister, Rajat Sharma, Mathew C. Schmidt, Christiane Poblenz, Yu-Chia Chang
  • Patent number: 8630325
    Abstract: A manufacturing method for manufacturing a surface-emitting laser device includes the steps of forming a laminated body in which a lower reflecting mirror, a resonator structure including an active layer, and an upper reflecting layer having a selective oxidized layer are laminated on a substrate; etching the laminated body to form a mesa structure having the selective oxidized layer exposed at side surfaces thereof; selectively oxidizing the selective oxidized layer from the side surfaces of the mesa structure to form a constriction structure in which a current passing region is surrounded by an oxide; forming a separating groove at a position away from the mesa structure; passivating an outermost front surface of at least a part of the laminated body exposed when the separating groove is formed; and coating a passivated part with a dielectric body.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: January 14, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Hiroyoshi Shouji, Shunichi Sato, Toshihiro Ishii, Kengo Makita, Masahiro Hayashi, Toshihide Sasaki, Akihiro Itoh
  • Patent number: 8630326
    Abstract: A hybrid integrated optical device includes a substrate comprising a silicon layer and a compound semiconductor device bonded to the silicon layer. The device also includes a bonding region disposed between the silicon layer and the compound semiconductor device. The bonding region includes a metal-semiconductor bond at a first portion of the bonding region. The metal-semiconductor bond includes a first pad bonded to the silicon layer, a bonding metal bonded to the first pad, and a second pad bonded to the bonding metal and the compound semiconductor device. The bonding region also includes an interface assisted bond at a second portion of the bonding region. The interface assisted bond includes an interface layer positioned between the silicon layer and the compound semiconductor device, wherein the interface assisted bond provides an ohmic contact between the silicon layer and the compound semiconductor device.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Patent number: 8625647
    Abstract: A semiconductor laser of an embodiment includes: an optical resonator having a first cladding layer, a ring-shaped active layer on the first cladding layer, a ring-shaped second cladding layer on the active layer, a first electrode inside the ring shape on the first cladding layer, a ring-shaped second electrode on the second cladding layer, a first insulating layer between the first cladding layer and the active layer, formed from an inside wall toward an outside wall of the ring shape, where an outside wall side edge thereof is on an inner side than the outside wall, and a second insulating layer between the active layer and the second cladding layer, formed from the inside wall toward the outside wall, where an outside wall side edge thereof is on an inner side than the outside wall; and an optical waveguide optically coupled to the optical resonator.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuya Ohira, Nobuo Suzuki
  • Patent number: 8625646
    Abstract: A semiconductor device includes a submount; a semiconductor laser mounted on the submount via solder in a junction-down manner. The semiconductor laser includes a semiconductor substrate, a semiconductor laminated structure containing a p-n junction, on the semiconductor substrate, and an electrode on the semiconductor laminated structure and joined to the submount via the solder. A high-melting-point metal or dielectric film is located between the submount and the semiconductor laminated structure and surrounds the electrode.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 7, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Harumi Nishiguchi, Misao Hironaka, Kyosuke Kuramoto, Masatsugu Kusunoki, Yosuke Suzuki
  • Publication number: 20140003457
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Application
    Filed: November 28, 2012
    Publication date: January 2, 2014
    Applicant: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
  • Patent number: 8620164
    Abstract: Described herein is a hybrid III-V Silicon laser comprising a first semiconductor region including layers of semiconductor materials from group III, group IV, or group V semiconductor to form an active region; and a second semiconductor region having a silicon waveguide and bonded to the first semiconductor region via direct bonding at room temperature of a layer of the first semiconductor region to a layer of the second semiconductor region.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: John Heck, Hanan Bar, Richard Jones, Hyundai Park
  • Patent number: 8619828
    Abstract: A group III nitride substrate has a semi-polar primary surface. A first cladding layer has a first conductivity type, and comprises aluminum-containing group III nitride. The first cladding layer is provided on the substrate. An active layer is provided on the first cladding layer. A second cladding layer has a second conductivity type, and comprises aluminum-containing group III nitride. The second cladding layer is provided on the active layer. An optical guiding layer is provided between the first cladding layer and the active layer and/or between the second cladding layer and the active layer. The optical guiding layer comprises a first layer comprising Inx1Ga1-x1N (0?x1<1) and a second layer comprising Inx2Ga1-x2N (x1<x2<1). The second layer is provided between the first layer and the active layer. The total thickness of the first layer and the second layer is greater than 0.1 ?m. The wavelength of laser light is in a range of 480 nm to 550 nm.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: December 31, 2013
    Assignee: Sumitomo Electronic Industries, Ltd.
    Inventors: Katsushi Akita, Yohei Enya, Takashi Kyono, Masahiro Adachi, Shinji Tokuyama, Yusuke Yoshizumi, Takamichi Sumitomo, Masaki Ueno
  • Patent number: 8620843
    Abstract: A pattern recognition system includes an active media, an input system, and a sensing system. The active media is such that initial states respectively evolve over time to distinguishable final states. The input system establishes in the active media in an initial state corresponding to an input pattern, and the sensing system measures the media at separated locations to identify of which of the final states the media has after an evolution time. The identification of the final state indicates a feature of the input pattern.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 31, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov, Ekaterina V. Ponizovskaya Devine
  • Patent number: 8615026
    Abstract: A method of manufacturing a semiconductor optical device including a semiconductor layer includes: forming a semiconductor layer; forming a first dielectric film on a first region of a surface of the semiconductor layer; forming a second dielectric film on a second region of the surface of the semiconductor layer, the second dielectric film having a density higher than that of the first dielectric film; and performing a thermal treatment in a predetermined temperature range after the second dielectric film forming, wherein within the temperature range, as the temperature is lowered, a difference increases between a bandgap in the semiconductor layer below the second dielectric film and a bandgap in the semiconductor layer below the first dielectric film due to the thermal treatment.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 24, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Hidehiro Taniguchi
  • Patent number: 8615027
    Abstract: A laser diode capable of performing self-pulsation operation, and capable of sufficiently reducing the coherence of laser light and stably obtaining low-noise laser light is provided. A laser diode includes: a laser chip including at least one laser stripe which extends in a resonator length direction between a first end surface and a second end surface opposed to each other, in which the laser stripe includes a gain region and a saturable absorption region in the resonator length direction, and the width of the laser stripe in the saturable absorption region is larger than the width of the laser stripe in the gain region.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 24, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Makoto Oota, Hiroyuki Yokoyama, Masaru Kuramoto, Masao Ikeda
  • Patent number: 8610148
    Abstract: An optical module is described, where the optical module installs an optical device whose identification mark is able to be distinguished even after the optical device is installed in the optical module. The identifying mark of the optical device is formed in a position able to be inspected from the direction of the normal line of the light-emitting facet of the optical device. Accordingly, the identifying mark becomes able to be identified through the lens after the optical device is installed in the package of the optical module.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Sumitomo Electric Industries Ltd.
    Inventor: Toshio Nomaguchi
  • Patent number: 8611388
    Abstract: A composite integrated optical device includes a substrate including a silicon layer and a waveguide disposed in the silicon layer. The composite integrated optical device also includes an optical detector bonded to the silicon layer and a bonding region disposed between the silicon layer and the optical detector. The bonding region includes a metal-assisted bond at a first portion of the bonding region. The metal-assisted bond includes an interface layer positioned between the silicon layer and the optical detector. The bonding region also includes a direct semiconductor-semiconductor bond at a second portion of the bonding region.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: December 17, 2013
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Patent number: 8605769
    Abstract: A semiconductor laser device includes: a substrate having a principal plane; a photonic crystal layer having an epitaxial layer of gallium nitride formed on substrate in a direction in which principal plane extends and a low refractive index material having a refractive index lower than that of epitaxial layer; an n-type clad layer formed on substrate; a p-type clad layer formed on substrate; an active layer that is interposed between n-type clad layer and p-type clad layer and emits light when a carrier is injected thereinto; and a GaN layer that covers a region directly on photonic crystal layer. Thus, the semiconductor laser device can be manufactured without fusion.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: December 10, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Susumu Yoshimoto, Hideki Matsubara, Hirohisa Saitou, Takashi Misaki, Fumitake Nakanishi, Hiroki Mori
  • Patent number: 8599894
    Abstract: Provided are a semiconductor laser manufacturing method and a semiconductor laser with a low device resistance. First, an active layer is deposited above a GaN substrate of a first conductivity type. A first guide layer made of GaN of a second conductivity type is deposited above the active layer. An AlN layer is deposited on the first guide layer. An opening is formed in the AlN layer. A first cladding layer made of a group-III nitride semiconductor of the second conductivity type is formed on the AlN layer and the first guide layer exposed through the opening such that a first growth rate at a start of growth on the first guide layer exposed through the opening becomes greater than a second growth rate at a start of growth on the AlN layer. A contact layer of the second conductivity type is formed on the first cladding layer.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Shunsuke Nozu
  • Patent number: 8599893
    Abstract: Disclosed is a terahertz wave generator which includes a dual mode semiconductor laser device configured to generate at least two laser lights having different wavelengths and to beat the generated laser lights; and a photo mixer formed on the same chip as the dual mode semiconductor laser device and to generate a continuous terahertz wave when excited by the beat laser light.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: December 3, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Namje Kim, Kyung Hyun Park, Young Ahn Leem, Hyunsung Ko, Sang-Pil Han, Chul-Wook Lee, Dong-Hun Lee
  • Patent number: 8594143
    Abstract: The invention relates to a laser diode structure, specifically for use in gas detection, with a hermetically sealed housing with electrical connections having a bottom and a window. A laser diode chip and a temperature control system for the laser diode chip are provided in the housing. A thermo element in the form of a Peltier element forms the temperature control system, and is connected via a lower flat surface to the bottom of the housing and via an upper flat surface to the laser diode chip, with a temperature-controlled beam shaping element as collimator provided between the laser diode chip and the window of the housing that acts on a laser beam emerging from a laser aperture of the laser diode chip before it passes through the window. The beam shaping element is in contact with the laser diode chip and is preferably connected via a boundary surface to the laser aperture with surface-to-surface contact or adhesively, or is made in one piece together with the laser aperture.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 26, 2013
    Assignee: Axetris AG
    Inventors: Bert Willing, Rui Protasio, Mathieu Gaillard
  • Patent number: 8593724
    Abstract: A four level magnon laser comprising: a Magnon Gain Medium, wherein the Magnon Gain Medium supports generation of nonequilibrium magnons, and a means for pumping nonequilibrium electrons into Magnon Gain Medium. Propagation of nonequilibrium electrons in Magnon Gain Medium causes generation of nonequilibrium magnons. Magnon Gain Medium comprises ferromagnetic materials at room temperatures including the half-metallic ferromagnets.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 26, 2013
    Assignee: Terahertz Technologies LLC
    Inventors: Yehiel Korenblit, Boris G. Tankhilevich
  • Patent number: 8588260
    Abstract: Optical gain of a nonpolar or semipolar Group-III nitride diode laser is controlled by orienting an axis of light propagation in relation to an optical polarization direction or crystallographic orientation of the diode laser. The axis of light propagation is substantially perpendicular to the mirror facets of the diode laser, and the optical polarization direction is determined by the crystallographic orientation of the diode laser. To maximize optical gain, the axis of light propagation is oriented substantially perpendicular to the optical polarization direction or crystallographic orientation.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: November 19, 2013
    Assignee: The Regents of the University of California
    Inventors: Robert M. Farrell, Mathew C. Schmidt, Kwang Choong Kim, Hisashi Masui, Daniel F. Feezell, James S. Speck, Stephen P. DenBaars, Shuji Nakamura
  • Patent number: 8588265
    Abstract: Disclosed herein is a semiconductor laser element including: on a substrate, a laser structure section configured to include a semiconductor laminated structure having an n-type semiconductor layer, active layer and p-type semiconductor layer in this order, and a p-side electrode on top of the p-type semiconductor layer; a pair of resonator edges provided on two opposed lateral sides of the semiconductor laminated structure; and films made of a non-metallic material having a thermal conductivity higher than that of surrounding gas, and provided in the region of the top side of the laser structure section including the positions of the resonator edges.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: November 19, 2013
    Assignee: Sony Corporation
    Inventors: Kazuhiro Hongo, Koji Fukumoto
  • Patent number: 8582618
    Abstract: A surface-emitting semiconductor laser device that includes an edge-emitting laser formed in layers of semiconductor material disposed on a semiconductor substrate, a polymer material disposed on the substrate laterally adjacent the layers in which the edge-emitting laser is formed, a diffractive or refractive lens formed on an upper surface of the polymer material, a side reflector formed on an angled side reflector facet of the polymer material generally facing an exit end facet of the laser, and a lower reflector disposed on the substrate beneath the polymer material. Laser light passes out of the exit end facet and propagates through the polymer material before being reflected by the side reflector toward the lower reflector. The laser light is then re-reflected by the lower reflector towards the lens, which directs the laser light out the device in a direction that is generally normal to the upper surface of the substrate.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: November 12, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Guido Alberto Roggero, Rui Yu Fang, Alessandro Stano, Giuliana Morello