Multi-receiver Or Interference Cancellation Patents (Class 375/148)
  • Patent number: 8891698
    Abstract: A scheme determines the first significant path (FSP) of a received multipath signal, from data defining the relative delay and the amplitude of the individual signal paths occurring in a series of time frames. The scheme includes filtering the data to spread the signal paths, performing a persistence test between frames to reject spurious signal paths, combining the energy of the signal paths in a frame, applying a test to determine the time at which the combined energy satisfies a criterion, and selecting the FSP dependent on that time. The combined energy may be evaluated within a sliding window, and the position of the window within the frame determined that maximizes the combined energy. Alternatively, the combined energy may be evaluated as the cumulative energy through the frame, and the position determined at which the cumulative energy reaches a threshold.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 18, 2014
    Assignee: ST-Ericsson SA
    Inventors: Stefania Sesia, Giuseppe Montalbano, Pierre Demaj
  • Patent number: 8891705
    Abstract: A method for processing a signal by a receiver, comprises the steps of: receiving the signal by the receiver, calculating one or more symbols based on the received signal; determining a multipath delay spread from the received signal; rebuilding one or more of the calculated symbols as a function of the multipath delay spread; and processing the rebuilt symbols for decoding by the receiver.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: November 18, 2014
    Assignee: Amlogic Co., Ltd.
    Inventors: Jinhong Zhang, Jin Niu
  • Patent number: 8891591
    Abstract: A receiver circuit includes an estimation unit configured to estimate a noise power of a transmission channel, a calculation unit configured to calculate a decision variable based on the noise power, and a decision unit configured to make a ternary decision based on the decision variable.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 18, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Rajarajan Balraj, Thorsten Clevorn, Herbert Dawid
  • Patent number: 8885686
    Abstract: A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Andreas Schwager, Weiyun Lu, Lothar Stadelmeier
  • Patent number: 8879607
    Abstract: A method and a system for storing a constant path loss exponent corresponding to free space; transmitting a signal; receiving the signal via a rake receiver of a user device; identifying a maximum received signal strength based on a signal strength associated with the signal relative to fingers of the rake receiver; storing a current maximum received signal strength value; determining whether the current maximum received signal strength value is a first maximum received signal strength value; calculating a current indoor position of the user device based on the constant path loss exponent and the current maximum received signal strength value when a determination is that the current maximum received signal strength value is the first maximum received signal strength value; and outputting the current indoor position.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 4, 2014
    Assignees: Sony Corporation, Sony Mobile Communications AB
    Inventor: Carl Filip Erik Skarp
  • Patent number: 8879658
    Abstract: This invention teaches to the details of an interference suppressing receiver for suppressing intra-cell and inter-cell interference in coded, multiple-access, spread spectrum transmissions that propagate through frequency selective communication channels to a multiplicity of receive antennas. The receiver is designed or adapted through the repeated use of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and mixed-decision symbol estimates. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware either within the RAKE (i.e., at the finger level) or outside the RAKE (i.e., at the user or subchannel symbol level). Embodiments may be employed in user equipment on the forward link or in a base station on the reverse link. It may be adapted to general signal processing applications where a signal is to be extracted from interference.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 4, 2014
    Assignee: III Holdings 1, LLC
    Inventors: Tommy Guess, Michael L McCloud, Vijay Nagarajan, Gagandeep Singh Lamba
  • Patent number: 8873683
    Abstract: A receiver circuit receives a signal including a first reference signal from a first antenna port that is allocated to the UE. The receiver circuit includes a descrambling and despreading unit that despreads and descrambles the signal using a spreading code of the first antenna port and a scrambling sequence assigned to the UE to generate a first antenna port signal. The descrambling and despreading unit despreads and descrambles the signal using a spreading code of a second antenna port and the scrambling sequence assigned to the UE, wherein the second antenna port is unallocated to the UE to generate a second antenna port signal. A channel estimator generates a channel estimate of the first antenna port based on the first antenna port signal. An estimation unit estimates an interference and noise covariance measure based on the first antenna port signal, the channel estimate and the second antenna port signal.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Rajarajan Balraj, Biljana Badic, Tobias Scholand
  • Patent number: 8873651
    Abstract: An OFDM generation apparatus and methods for generating OFDM transmission signals from OFDM symbols, each including a plurality of OFDM subcarriers, for transmission in a multi-carrier data transmission system, is provided. The provided apparatus and method may use a selected mixing frequency for mixing complex time-domain samples of OFDM symbols from a baseband frequency up to a passband frequency to obtain OFDM transmission signals, wherein the mixing frequency is selected such that common phase rotations of the OFDM subcarriers of OFDM symbols with respect to adjacent OFDM symbols of the OFDM transmission signals are avoided or compensated after the mixing. Additional apparatuses and methods for avoidance or compensation of such common phase rotations are also provided.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 28, 2014
    Assignee: Sony Corporation
    Inventors: Nabil Muhammad, Lothar Stadelmeier, Joerg Robert
  • Patent number: 8873605
    Abstract: A method for estimating a scrambling code used on an uplink of a WCDMA system. The scrambling code is obtained from a Gold code, sum of a first specific M-sequence of the user and of a second M-sequence known from the receiver. After sampling of the signal received at the chip frequency of the scrambling code, the successive samples are subject to a differential treatment and the sequence of differential values is multiplied by the second M-sequence. The observables thereby obtained are decoded with the aid of a belief propagation iterative decoding. The decoded values then serve to determine the content of the shift register of the generator of the first M-sequence. One then deduces therefrom the Gold code and an estimation of the scrambling code, ?.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 28, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventor: Mathieu Bouvier des Noes
  • Publication number: 20140314127
    Abstract: Embodiments of the present invention relate to an interference cancellation method and system. The interference cancellation system of the present invention includes a centralized cancellation unit and at least two signal processing units, where at least a part of signal processing units in the at least two signal processing units are configured to detect at least a part of user signals in all user signals input into the interference cancellation system and reconstruct the detected user signals; the centralized cancellation unit is configured to perform cancellation on reconstructed signals and the user signals input into the interference cancellation system; and the at least two signal processing units are configured to detect, according to a residual signal after the cancellation, the user signals input into the interference cancellation system and output the detected signals.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 23, 2014
    Inventors: Yongchao Pan, Bitao Li, Liang Xu
  • Patent number: 8867601
    Abstract: A receiver is provided that can receive a first signal transmitted on a first carrier and a second signal transmitted on a second carrier. The receiver includes a channel estimation portion, a multicarrier nonlinear equalizer, a first log likelihood computing portion and a second log likelihood computing portion. The channel estimation portion can output a first estimation. The multicarrier nonlinear equalizer can output a first equalized signal and a second equalized signal. The first log likelihood ratio computing portion can output a first log likelihood ratio signal based on the first equalized signal. The second log likelihood ratio computing portion can output a second log likelihood ratio signal based on the second equalized signal. The multicarrier nonlinear equalizer can further output a third equalized signal and a fourth equalized signal. The third equalized signal is based on the first signal, the second signal and the first estimation.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 21, 2014
    Assignee: Hughes Network Systems, LLC
    Inventor: Bassel Beidas
  • Patent number: 8867650
    Abstract: An apparatus and method for cross clock domain interference cancellation is provided to a communication system which includes a transmitter operated in a first clock domain and a receiver operated in a second clock domain. The apparatus comprises a First-In-First-Out (FIFO) circuit and a cancellation signal generator. The FIFO circuit receives a digital transmission signal of the transmitter in the first clock domain, and outputs the digital transmission signal in the second clock domain according to an accumulated timing difference between the first and second clock domains. The cancellation signal generator generates a cancellation signal for canceling an interference signal received by the receiver according to the digital transmission signal outputted by the FIFO circuit. The interference signal is generated in response to the digital transmission signal.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: October 21, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Liang-Wei Huang, Shieh-Hsing Kuo, Chi-Shun Weng, Chun-Hung Liu
  • Patent number: 8861572
    Abstract: A method of delay spread compensation, suitable for use in a communication device a having plurality of receiver antennas, is disclosed. The method comprises receiving a plurality of signals, each via a respective antenna, wherein each signal comprises a signal component corresponding to a transmitted signal, and wherein each received signal experiences a respective channel impulse response having a corresponding delay spread; determining estimates of each of the channel impulse responses; calculating post-coding characteristics based on the estimates of the channel impulse responses; and post-coding the plurality of received signals using the post-coding characteristics to produce at least a first delay spread compensated signal. Corresponding computer program product, processing arrangement and communication device are also disclosed.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Bengt Lindoff, Fredrik Nordström, Bo Lincoln, Anders Rosenqvist
  • Patent number: 8855172
    Abstract: Communication signal processing entails generating an overall signal correlation estimate that reflects overall impairment present in a received signal before despreading. Processing further includes parametrically constructing one or more component-specific correction terms as a function of one or more component signal correlation estimates, each estimate reflecting a particular component of the overall impairment. Combining weights are derived, as a function of this overall estimate and the correction term(s), so that they exclude the contribution of the impairment component(s) to the overall impairment. These weights are used to combine signal samples in an equalization process. As the combining weights exclude the contribution of the impairment component(s) to the overall impairment, the equalization process utilizing the weights exclusively suppresses impairment that is not attributable to the component(s).
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Andres Reial
  • Patent number: 8848822
    Abstract: A feedback method for interference alignment in wireless network having K transmitters and K receivers, the method including: transmitting, by a transmitter n?1, a precoding vector of the transmitter n?1 (n being an integer between 2 and K?1) to a receiver n+1; calculating, by the receiver n+1, a precoding vector of a transmitter n using the precoding vector of the transmitter n?1; and transmitting, by the receiver n+1, the precoding vector of the transmitter n to the transmitter n.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 30, 2014
    Assignees: LG Electronics Inc., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Han Byul Seo, Kaibin Huang, Soon Suk Roh, Sung Yoon Cho, Hyuk Jin Chae, Byoung Hoon Kim, Dong Ku Kim
  • Patent number: 8848765
    Abstract: A receiver in a CDMA system comprises a front end processor that generates a combined signal per source. A symbol estimator processes the combined signal to produce symbol estimates. An S-Matrix Generation module refines these symbol estimates based on the sub channel symbol estimates. An interference canceller is configured for cancelling interference from at least one of the plurality of received signals for producing at least one interference-cancelled signal.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: September 30, 2014
    Assignee: III Holdings 1, LLC
    Inventors: Gagandeep Singh Lamba, Tommy Guess, Michael McCloud, Anand P. Narayan
  • Patent number: 8848764
    Abstract: The present invention proposes an LTE eNodeB receiver channel estimation technique that is referred to as reduced complexity minimum mean squared error (MMSE) technique for channel estimation. From the invention's assumptions, estimations and modified calculations, the present invention generates precise channel estimates of RS using the reduced complexity MMSE matrix and previously computed LS channel estimates HLS is as follows: (Formula I) which generates precise channel estimates of RS using the reduced complexity MMSE matrix and previously computed LS channel estimates. As a second aspect of the present invention, it is desired that the SNR be estimated within ?3 dB of the actual channel SNR. As a third aspect of the invention, an adaptive method of data channel interpolation from RS channel is being proposed in this invention.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 30, 2014
    Assignee: BlackBerry Limited
    Inventors: John P. Panicker, Gary Boudreau, Michael Petras, Ed Illidge
  • Patent number: 8848555
    Abstract: The present invention relates to a method for managing transmission resources in a digital communication system comprising an access network, such as a DSL system, implementing resource management for minimization of cross-talk interference in a cable or cable binder of the access network comprising a number, N of lines. It comprises the steps of: determining, by means of calculating means, for a respective of said lines, a relevant line set, comprising interference relevant lines, for said respective line, and applying, for the respective line, an algorithm for resource management using the determined relevant line set, thus reducing computational complexity of the resource management algorithm.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: September 30, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Fredrik Lindqvist, Boris Dortschy, Aldebaro Klautau, Maria Neiva da silva fonseca Lindqvist, Evaldo Goncalves Pelaes
  • Patent number: 8843166
    Abstract: A method for interference alignment in wireless network having 3 transmitters and 3 receivers which are equipped with M antennas is provided. The method comprising: transmitting, performed by each of the 3 transmitters, a pilot signal known to the 3 receivers; estimating, performed by each of the 3 receivers, each channel from transmitter; transmitting, performed by each of the 3 receivers, feedback information to target transmitter; and determining, performed by transmitter 2 and transmitter 3, a precoding vector; wherein a degree of freedom (DoF) of a transmitter 1 is (M/2??), a DoF of the transmitter 2 or the transmitter 3 is M/2.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 23, 2014
    Assignees: LG Electronics Inc., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Han Byul Seo, Kaibin Huang, Soon Suk Roh, Sung Yoon Cho, Hyuk Jin Chae, Byoung Hoon Kim, Dong Ku Kim
  • Patent number: 8842714
    Abstract: An electronic device may contain clock circuits, transmitters, and other circuits that serve as sources of noise signals. The noise signals may be characterized by a noise spectrum. The noise spectrum produced by a noise source can be adjusted by adjusting spread spectrum clock circuitry in a clock circuit, by adjusting data scrambling circuitry in a transmitter circuit, or by making other dynamic adjustments to the circuitry of the electronic device. During operation of the electronic device, sensitive circuitry in the device such as wireless receiver circuitry may be adversely affected by the presence of noise from a noise source in the device. Based on information such as which receiver bands and/or channels are being actively received and target sensitivity levels for the receiver circuitry, control circuitry within the electronic device can determine in real time how to minimize interference between the noise source and the wireless receiver circuitry.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 23, 2014
    Assignee: Apple Inc.
    Inventors: Moon Jung Kim, Geertjan Joordens, Paolo Sacchetto, Wonjae Choi, Altan N. Yazar, Jaydeep V. Ranade
  • Patent number: 8842716
    Abstract: In an RF communication system, aspects for processing multipath clusters may comprise tracking a plurality of received clusters of signals and estimating a phase and amplitude of at least a portion of each of the plurality of received clusters of signals. Each of the plurality of received clusters of signals may be specified in time and an aggregate of received signal paths in a single cluster for a single base station may be processed. At least one cluster path processor may be assigned to process the plurality of received clusters of signals from each transmitting antenna at a single base station. At least one cluster path processor may be assigned to each of a plurality of base stations that are utilized for soft handoff.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: September 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Mark Kent, Uri M. Landau
  • Publication number: 20140269850
    Abstract: A system that incorporates the subject disclosure may include, for example, a process that includes adjusting a filter in electrical communication between an input terminal and a demodulator. The filter is applied to an information bearing signal, e.g., to mitigate interference, received at the input terminal, resulting in a filtered signal. An error signal is received, indicative of errors detected within information obtained by demodulation of a modulated carrier of the filtered signal. A modified filter state is determined in response to the error signal and the filter is adjusted according to the modified filter state, e.g., to improve mitigation of the interference. Other embodiments are disclosed.
    Type: Application
    Filed: August 9, 2013
    Publication date: September 18, 2014
    Applicant: ISCO International, LLC
    Inventors: Amr Abdelmonem, Mikhail Galeev, Sean S. Cordone, Howard Wong
  • Publication number: 20140269248
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a method for selecting a spectral region in a radio frequency spectrum for initiating a communication session having an uplink and a downlink, correlating a signal strength of portions of the spectral region to generate a correlation factor, detecting radio frequency interference in the spectral region according to the correlation factor, and generating tuning coefficient data to substantially suppress the radio frequency interference in the spectral region during the communication session. Other embodiments are disclosed.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: ISCO International, LLC
    Inventors: Amr Abdelmonem, Sean S. Cordone
  • Publication number: 20140269849
    Abstract: A system that incorporates the subject disclosure may perform, for example, a method for receiving interference information from each of the plurality of communication devices detecting interference information in a plurality of segments of a radio frequency spectrum, correlating the interference information of the plurality of communication devices to generate correlated information, and identifying a plurality of interferers according to the correlated information. Other embodiments are disclosed.
    Type: Application
    Filed: August 2, 2013
    Publication date: September 18, 2014
    Applicant: ISCO International, LLC
    Inventors: Amr Abdelmonem, Sean S. Cordone, Dariusz Seskiewicz, Bill Myers, Krishna Komoravolu
  • Publication number: 20140269848
    Abstract: Described is an apparatus for providing spread-spectrum to a clock signal. The apparatus comprises: an oscillator to generate an output clock signal, the oscillator to receive an adjustable reference signal to adjust frequency of the output clock signal; a first circuit to provide a first signal indicative of a center frequency of the output clock signal; a second circuit to generate a switching waveform to provide spread-spectrum for the output clock signal; and a third circuit, coupled to the first and second circuits, to provide the adjustable reference signal according to the first signal and the switching waveform.
    Type: Application
    Filed: May 31, 2013
    Publication date: September 18, 2014
    Inventors: Gerhard SCHROM, Alexander LYAKHOV, Michael W. ROGERS, Dawson W. KESLING, Jonathan P. DOUGLAS, J. Keith HODGSON
  • Publication number: 20140269847
    Abstract: Techniques are described herein that perform symbol-level equalization using multiple spreading factors. The techniques may allow for symbol-level equalization to be performed between a serving cell and a non-serving cell(s) for WCDMA and HSDPA protocols, for example. A serving cell operates using a first spreading factor, and a non-serving cell(s) operates using a second, different spreading factor. Data communications received from the serving cell and the non-serving cell(s) may be aligned using extended channel representation(s) of the non-serving cell(s) and/or scrambling code offset(s). The aligned communications may be equalized using symbol-level equalization to obtain a joint linear minimum mean square error between the serving cell and the non-serving cell(s).
    Type: Application
    Filed: April 1, 2013
    Publication date: September 18, 2014
    Applicant: Broadcom Corporation
    Inventor: Fu-Hsuan Chiu
  • Patent number: 8837651
    Abstract: An apparatus and a method for estimating a channel in a broadband wireless access system. A receiving apparatus includes a first channel estimation filter having a tap coefficient which is channel-adaptively variable, the first channel estimation filter acquiring a channel impulse response by filtering received pilot symbols, a second channel estimation filter having a fixed tap coefficient, the second channel estimation filter acquiring a channel impulse response by filtering received pilot symbols, and a selector which selects the operation of one of the first and the second channel estimation filters according to channel correlativity.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Jae-Hoon Jeon
  • Patent number: 8838033
    Abstract: Methods and systems for processing a signal with a corresponding noise profile are disclosed. Aspects of the method may comprise analyzing spectral content of the noise profile. At least one noise harmonic within the signal may be filtered based on said analyzed spectral content. The filtered signal may be amplified. The noise profile may comprise a phase noise profile. The signal may comprise at least one of a sinusoidal signal and a noise signal. At least one filter coefficient that is used to filter the at least one noise harmonic may be determined. The filtering may comprise low pass filtering. The signal may be modulated prior to filtering. The amplifying may comprise buffering. A non-linearity characteristic of the signal may be determined and a noise harmonic may be low-pass filtered within the signal based on the determined non-linearity characteristic.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: September 16, 2014
    Assignee: Broadcom Corporation
    Inventor: Shervin Moloudi
  • Patent number: 8837556
    Abstract: In one aspect, the present invention provides for blindly detecting the presence of one or more secondary pilot signals that are not being used to serve a communication apparatus, such as a User Equipment (UE). Among its several advantages, the approach to blind detection taught herein provides robust detection performance, yet it requires relatively few receiver resources. The contemplated apparatus, in at least one example embodiment, uses its blind detection of secondary pilot signal(s) to trigger suppression of secondary pilot interference, for improved reception performance. In a particular, non-limiting example, the apparatus operates in an HSDPA-MIMO network in a non-MIMO mode and blindly detects secondary pilot signal energy associated with the supporting network providing MIMO service to nearby equipment.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 16, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Elias Jonsson, Kazuyoshi Uesaka
  • Publication number: 20140254635
    Abstract: A method for determining the validity of a most significant path in a wireless communication system wherein data is transmitted in frame units in a multipath environment begins by accumulating a correlated data sequence N times, each time at a frame offset apart from the previous time. A preliminary noise estimate (PNE) is calculated as an average of the accumulated data values. A preliminary noise threshold (PNT) is calculated according to the equation C1×PNE. A final noise estimate (FNE) is calculated as the average of accumulated data values below the PNT. A final noise threshold (FNT) is calculated according to the equation C2×FNE. The validity of the most significant path is determined if the most significant path value is greater than the FNT.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: INTERDIGITAL TECHNOLOGY CORPORATION
    Inventors: Aykut Bultan, John W. Haim, Donald M. Grieco
  • Patent number: 8831139
    Abstract: Certain aspects of a method and system for delay matching in a rake receiver are disclosed. Aspects of one method may include compensating for a delay associated with at least one or both of the following in a rake receiver: a control channel and a data channel, prior to individual processing of received data by the data channel and individual processing of received data by the control channel. The data channel or the dedicated physical channel (DPCH) may be delayed with respect to the control channel, which may comprise, for example, the common pilot control channel (CPICH), by a particular time period.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 9, 2014
    Assignee: Broadcom Corporation
    Inventors: Hongwei Kong, Nelson Sollenberger, Li Fung Chang, Zoran Kostic, Mark Hahm
  • Patent number: 8831156
    Abstract: Techniques for interference cancellation in a CDMA system. In an exemplary embodiment, a channel set scrambled using a secondary scrambling code (SSC) is estimated and cancelled along with a channel set scrambled using a primary scrambling code (SSC). The estimation and cancellation of the SSC channel set may proceed in series with the estimation and cancellation of the PSC channel set. Alternatively, the estimation of the SSC channel set may proceed in parallel with the estimation of the PSC channel set, and the cancellations of the PSC and SSC channel sets may be simultaneously performed. Multiple iterations of such estimation and cancellation may be performed in a successive interference cancellation (SIC) scheme.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: September 9, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Jiye Liang, Michael Fan, Yisheng Xue
  • Patent number: 8831146
    Abstract: A method of operation of a communication system includes: retaining an a-posteriori detector-data, a detector-extrinsic-information, an a-posteriori-decoder-data, a decoder-extrinsic-value, or a combination thereof calculated from a received signal; determining an a-priori-decoder-information or an a-priori detector-information from the a-posteriori detector-data, the detector-extrinsic-information, the a-posteriori-decoder-data, the decoder-extrinsic-value, or a combination thereof; and adjusting the a-posteriori detector-data, the detector-extrinsic-information, the a-posteriori-decoder-data, the decoder-extrinsic-value, or a combination thereof using the a-priori-decoder-information or the a-priori detector-information for communicating through a device.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chun Kin Au Yeung, Hanju Kim, Jungwon Lee, Inyup Kang
  • Patent number: 8831130
    Abstract: A data transmission method includes transmitting an encoded data signal in form of a data stream of data bursts between a transmitter and a receiver, making a decision as a function of at least one data transmission parameter as to whether an interference treatment of the data signal to be transmitted will be performed in the transmitter or in the receiver, performing the interference treatment in terms of at least one code in the transmitter, and performing the interference treatment of the data to be transmitted in terms of at least one further code in the receiver.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: September 9, 2014
    Assignee: Ipcom GmbH & Co. KG
    Inventors: Frank Kowalewski, Peter Mangold
  • Patent number: 8831530
    Abstract: A method of operation of a communication system includes: calculating a total received power estimation based on a designated received signal having a designated pilot symbol; calculating an instantaneous channel estimation based on the designated pilot symbol calculating a channel gain power estimation based on the instantaneous channel estimation; calculating a total interference power estimation based on a difference between the instantaneous channel estimation and a delayed channel estimation; calculating a designated received power based on a difference between the total received power estimation and the total interference power estimation; and determining a relative transmission power estimation based on the designated received power and the channel gain power estimation for communicating with a device.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hongbing Cheng, Soobok Yeo, Kwangman Ok, Inyup Kang
  • Patent number: 8824537
    Abstract: A method, receiver and program for equalizing digital samples of a radio signal received over a wireless communications channel. The method comprises: receiving digital samples of the radio signal; calculating equalizer coefficients in the frequency domain; transforming the equalizer coefficients from the frequency domain to the time domain; and equalizing the digital samples in the time domain using the transformed time domain equalizer coefficients.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: September 2, 2014
    Assignee: ICERA Inc.
    Inventors: Steve Allpress, Carlo Luschi, Simon Nicholas Walker
  • Patent number: 8824527
    Abstract: An OFDM communication system performs time domain channel estimation responsive to received symbols before the symbols are processed by a fast Fourier transform. The communication system generates virtual pilots from actual pilots to improve the stability and quality of channel estimation. The system generates a reference signal from the actual and virtual pilots and correlates the resulting reference signal with a signal responsive to the received symbol to generate an initial channel impulse response (CIR) and to determine statistics about the channel. In some circumstances, the resulting reference signal is correlated with a modified symbol in which the actual and virtual pilot locations are emphasized and the data locations are deemphasized. Time domain channel estimation iteratively improves on the initial CIR. The system determines channel estimates for data only symbols through averaging such as interpolation.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 2, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Steven C Thompson, Fernando Lopez de Victoria
  • Patent number: 8824526
    Abstract: An apparatus provides a baseband signal for exploiting receive antenna diversity by means of a digital baseband processor. The apparatus includes a combiner configured to temporally alternately select at least one sample of a first received signal corresponding to a first receive antenna and at least one sample of a second received signal corresponding to a second receive antenna and to interleave the selected samples of the first and second received signal to obtain a temporally continuous stream of samples of a baseband representation of a combined signal at an output of the combiner as the baseband signal for exploiting receive antenna diversity.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 2, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Bernd Adler, Elmar Wagner, Christian Drewes, Clemens Buchacher
  • Patent number: 8824611
    Abstract: A receiver may be operable to generate estimates of transmitted symbols using a sequence estimation process that may incorporate a non-linear model. The non-linear model may be adapted by the receiver based on particular communication information that may be indicative of non-linearity experienced by the transmitted symbols. The receiver may generate a reconstructed signal from the estimates of the transmitted symbols. The receiver may adapt the non-linear model based on values of an error signal generated from the reconstructed signal, and the values of the error signal may be generated from a portion of the generated estimates that may correspond to known symbols and/or information symbols. The values of the error signal corresponding to the known symbols may be given more weight in an adaptation algorithm, and the values of the error signal corresponding to the information symbols may be given less weight in the adaptation algorithm.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: September 2, 2014
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20140241401
    Abstract: This invention teaches to the details of an interference suppressing receiver for suppressing intra-cell and inter-cell interference in coded, multiple-access, spread spectrum transmissions that propagate through frequency selective communication channels to a multiplicity of receive antennas. The receiver is designed or adapted through the repeated use of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and mixed-decision symbol estimates. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware either within the RAKE (i.e., at the finger level) or outside the RAKE (i.e., at the user or subchannel symbol level). Embodiments may be employed in user equipment on the forward link or in a base station on the reverse link. It may be adapted to general signal processing applications where a signal is to be extracted from interference.
    Type: Application
    Filed: May 17, 2013
    Publication date: August 28, 2014
    Applicant: III Holdings 1, LLC
    Inventors: Tommy Guess, Michael L. McCloud, Vijay Nagarajan, Gagandeep Singh Lamba
  • Patent number: 8817825
    Abstract: Methods and systems for processing signals in a receiver are disclosed herein and may comprise receiving spatially multiplexed signals via M receive antennas. A plurality of multiple data streams may be separated in the received spatially multiplexed signals to detect MIMO data streams. Each of the MIMO data streams may correspond to a spatially multiplexed input signal. Complex phase and/or amplitude may be estimated for each detected MIMO data streams utilizing (M-1) phase shifters. Complex waveforms, comprising in-phase (I) and quadrature (Q) components for the MIMO data streams within the received spatially multiplexed signals may be processed and the processed complex waveforms may be filtered to generate baseband bandwidth limited signals. Phase and/or amplitude for one or more received spatially multiplexed signals may be adjusted utilizing the estimated complex phase and amplitude. Phase and/or amplitude may be adjusted continuously and/or at discrete intervals.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: August 26, 2014
    Assignee: Broadcom Corporation
    Inventors: Mark Kent, Vinko Erceg, Uri Landau, Pieter Van Rooyen
  • Patent number: 8817936
    Abstract: A system for synchronizing IQ demodulators includes IQ demodulators, phase-controlling devices, a reference signal, a phase detector, and a control device. The phase-controlling devices are each associated with one of the IQ demodulators for outputting an output signal to its associated IQ demodulator having a phase controlled by the associated phase-controlling device. The phase detector is in communication with the output signals for determining whether the phase of any of the output signals is out-of-phase with a reference phase of the reference signal. The control-device is in communication with the phase-controlling devices programmed, internally or externally, to send a control signal to the associated phase-controlling device for any of the output signals which are out-of-phase with the reference phase of the reference signal so that the associated phase-controlling device synchronizes the phase of the output signal to being in-phase with the reference phase of the reference signal.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: August 26, 2014
    Assignee: The Boeing Company
    Inventor: David Charles Dominguez
  • Patent number: 8817846
    Abstract: A diversity reception device includes branches, a controller and a combining section. Each branch includes a correlation section that generates a correlation signal that represents a correlation between a received signal and a delayed signal or between the received signal and a reference signal, where the correlation signal level disregarding the received signal level, a time position detector that detects time positions at which the level of the correlation signal is at a peak, a demodulation section that demodulates the received signal, and a multiplication section that multiplies the demodulated signal with a weighting factor. The controller controls the weighting factor on the basis of the respective levels of the correlation signals at the detected time positions. The combining section combines, by adding, the respective demodulated signals of the branches subsequent to the demodulated signal of each branch being multiplied with the weighting factor.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: August 26, 2014
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Hiroji Akahori
  • Patent number: 8818445
    Abstract: A power control method for interference alignment in wireless network having K transmitters and K receivers is provided. The method includes: receiving, performed by receiver n (n is an integer, 1?n?K?1), a power indication signal of transmitter n+1 from the transmitter n+1; determining, performed by the receiver n, power of transmitter n; and transmitting, performed by the receiver n, a power indication signal of transmitter n to the transmitter n, wherein the power of transmitter n is determined based on a residual interference of the receiver n, and the power indication signal of transmitter n indicates a minimum transmission power or a maximum transmission power of transmitter n.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: August 26, 2014
    Assignees: LG Electronics Inc., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Han Byul Seo, Kaibin Huang, Soon Suk Roh, Sung Yoon Cho, Hyuk Jin Chae, Byoung Hoon Kim, Dong Ku Kim
  • Patent number: 8811453
    Abstract: An intermediate symbol buffer (ISB) configuration and method is provided such that the ISB memory comprises 15 portions, one for each HSDPA spreading code. Symbols associated with a spreading code are written to the memory portion associated with the same spreading code. When a covariance calculation is performed to obtain a more accurate channel estimate, only the symbols associated with spreading codes determined to be needed for the covariance calculation are written to the ISB by a buffer block and red from the ISB by a correlation core. The symbols associated with spreading codes that are not necessary for a covariance calculation may be masked from being written or read from the ISB. In some embodiments each memory portion is an individual memory block. In other embodiments a plurality of memory blocks may contain a plurality of memory portions, one memory partition designated, at least temporarily, for each spreading code.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 19, 2014
    Assignee: Ericsson Modems SA
    Inventors: Ricky Nas, Cornelis Van Berkel, Jean-Paul Smeets
  • Patent number: 8811577
    Abstract: Embodiments of the present invention disclose an ATCA data exchange system which includes: a backboard, at least one exchange board and service board. The exchange board includes at least one Fabric port group, each of which is connected to a service board through the backboard to form a first exchange channel for broadband service, the Fabric port group includes four difference sending and receiving port pairs, and each port pair includes a pair of difference receiving and sending ports. A connector 20 in the Fabric interface of the exchange board includes at least one port pair, and each port pair is connected to a service board through the backboard to form a second exchange channel and is configured for a separate narrowband service data exchange that is independent of the broadband data exchange. Thus to simplify the processing of narrowband data and to decrease the time delay.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 19, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Fangmin Lu, Jianxing Liao, Ying Shi
  • Patent number: 8811451
    Abstract: Apparatus and methods, in several embodiments, are disclosed for generating and managing a set of sectors, the signals received from which are utilized to generate an interference estimate for use by an interference cancellation circuit. The set of sectors generally includes a subset of the combined set of sectors in the Active Set and the Candidate Set for an access terminal. A finger of a receiver at an access terminal can be assigned to each sector in the set of sectors for interference cancellation to improve receiver operations.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: August 19, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Ameer Dabbagh, Peter P. Ang, Rashid Ahmed Akbar Attar, Jing Sun
  • Patent number: 8811273
    Abstract: A method of power saving for a wireless transceiver (FIGS. 1 and 2) is disclosed. The transceiver has an active power mode (504) and a reduced power mode (510). The transceiver is operated in the reduced power mode (510) and monitors transmissions from a remote wireless transmitter while in the reduced power mode. The transceiver identifies a transmission from the remote wireless transmitter by a transceiver identity included in the transmission (FIG. 6, UE identification). The transceiver transitions to the active power mode (512) in response to identifying the transmission.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: August 19, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Timothy M. Schmidl, Eko N. Onggosanusi, Anand G. Dabak, Aris Papasakellariou
  • Patent number: 8811468
    Abstract: Methods and systems for processing signals are provided and may include removing a DC component from a signal envelope comprising a combined signal within a range of allocated FM channels to generate a modified signal envelope. Fluctuation in power in the signal envelope may be detected based on a ratio of a magnitude of the signal envelope and a magnitude of the modified signal envelope. The removing may further include low-pass filtering the signal envelope to generate a low-pass filtered signal envelope. A square values of the low-pass filtered signal envelope may be determined to generate a squared signal envelope. The squared signal envelope may be high-pass filtered to generate a high-pass filtered signal envelope. The fluctuation in power in the signal envelope may be detected based on a ratio of a magnitude of the high-pass filtered signal envelope and a magnitude of the low-pass filtered signal envelope.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 19, 2014
    Assignee: Broadcom Corporation
    Inventors: Brima Ibrahim, Paul Lettieri
  • Patent number: 8804791
    Abstract: A communication device according to an embodiment of the present invention includes a communication antenna that receives a transmission signal where a spectrum spread signal subjected to a spectrum spread is modulated; an intermediate frequency converting unit that converts the transmission signal received by the communication antenna into an intermediate frequency signal having a predetermined frequency; an analog to digital converting unit that discretizes the intermediate frequency signal and outputs a discretization signal; a noise removing unit that detects a noise other than a normal thermal noise included in the discretization signal and removes the detected noise from the discretization signal; and a demodulating unit that demodulates the spectrum spread signal, based on the discretization signal that is output from the noise removing unit.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Sony Corporation
    Inventors: Katsuyuki Tanaka, Hideki Takahashi