With Phase Or Frequency Shift Keying Patents (Class 375/269)
  • Patent number: 7804891
    Abstract: A device and method for effectively judging a communication quality in a communication system and a program used for the judgment. A communication device generates a four-value FSK symbol by adding a redundant bit to a bit of the most important part of encoded audio data. The symbol containing the redundant bit is set so that the symbol value is the maximum value of the minimum value of the four values which may be obtained. A reception device R receives the FSK modulation wave, restores the symbol, counts the number of redundant bits contained in the restored symbol and having incorrect values, decides whether to perform a bad frame masking process and what kind of bad frame masking process is to be performed, and executes the decided process. Thus, it is possible to accurately or rapidly judge the communication quality with a simple configuration.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Kenwood
    Inventor: Taichi Majima
  • Patent number: 7804912
    Abstract: A communication device converts a bit stream to multiple symbols and provides encryption at a physical layer by shifting a phase of each symbol of the multiple symbols to produce multiple encrypted symbols. Each encrypted symbol of the multiple encrypted symbols is modulated with an orthogonal subcarrier to produce at least one modulated subcarrier and the at least one modulated subcarrier is then transmitted via a wireless link. On a receive side, a receiving communication device receives the transmitted, encrypted symbols and provides decryption at a physical layer by shifting a phase of each encrypted symbol in correspondence with the phase used to encrypt the symbol at the transmit side.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: September 28, 2010
    Assignee: Motorola, Inc.
    Inventors: Yuda Y. Luz, Ronald T. Crocker, John M. Harris
  • Publication number: 20100215116
    Abstract: A wireless communication apparatus for performing communication using a first communication scheme which transmits a signal using amplitude shift keying and a second communication scheme which suppresses communication with others except a communication counterpart by transmitting a transmission suppression signal before communication is started. The apparatus includes: a first signal generation unit configured to generate transmission data; a modulation unit configured to generate first and second signals having different amplitudes by amplitude-shift keying the transmission data; a second signal generation unit configured to generate the transmission suppression signal having a signal length corresponding to that of the first signal; and a transmission unit configured to transmit the transmission suppression signal at the timing when the first signal is transmitted.
    Type: Application
    Filed: September 15, 2009
    Publication date: August 26, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuyoshi KOGAWA, Kiyoshi Toshimitsu, Takafumi Sakamoto, Koji Ogura, Shoji Otaka, Toshiyuki Umeda
  • Patent number: 7782821
    Abstract: There is provided a multi-carrier communication method capable of preventing lowering of a throughput of another mobile device accompanying allocation of a sub-carrier for a new mobile station device. This multi-carrier communication method can acquire reception quality information for one of the sub-carriers already allocated in an MS (150a) from a BS (100a) and for one of the sub-carriers which can be allocated in the MS (150a) from the BS (100b). According to the reception quality information, a release sub-carrier is selected from the sub-carriers already allocated and a new-allocation sub-carrier is selected from the sub-carriers which can be allocated. The new-allocation sub-carrier has a frequency different from the already-allocated sub-carriers excluding the release sub-carrier. The BS (100a) is instructed to release the selected release sub-carrier and the BS (100b) is instructed to allocate the selected new-allocation sub-carrier in the MS (150a).
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: August 24, 2010
    Assignee: Panasonic Corporation
    Inventors: Hidenori Matsuo, Akihiko Nishio, Daichi Imamura
  • Patent number: 7778354
    Abstract: A communicating apparatus includes: a local signal generator, an orthogonal modulator, an orthogonal demodulator, and two orthogonal error compensators. The local signal generator generates a first local signal and a second local signal. The orthogonal modulator modulates an input signal into a modulation signal by using the first local signal. The orthogonal demodulator demodulates the modulation signal into a demodulation signal by using the second local signal. Each of the two orthogonal error compensators corrects orthogonal modulation error generated in the orthogonal modulator and an orthogonal demodulation error generated in the orthogonal demodulator respectively. Set values to be set to the orthogonal error compensators are calculated based on (1) a phase difference between the first local signal and the second local signal, (2) the input signal and (3) the demodulation signal.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: August 17, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiichi Yamaguchi, Atsushi Yamaoka
  • Patent number: 7746939
    Abstract: A spectral notch modulation technique for encoding information in a signal involves transforming the signal into the frequency domain via a fast Fourier transform (FFT) of length N, such that the signal is represented by N frequency bins, selectively nulling M of the N frequency bins, where nulled combinations of M frequency bins respectively correspond to encoded information bits, transforming the selectively nulled signal to the time domain via an inverse FFT, and transmitting the selectively nulled signal. At the receiving end, the signal is demodulated to recover the encoded information by transforming the signal into the frequency domain via a fast Fourier transform (FFT) of length N, identifying the set of M nulled frequency bins among the N frequency bins, and converting the set of M nulled frequency bins to corresponding information bits.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: June 29, 2010
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: Dennis D. McCrady
  • Patent number: 7742539
    Abstract: A radio transmitter with IQ-modulator error compensation includes a homodyne observation receiver (42) producing a first real baseband (S5) signal from a real radio frequency signal (S2). A real-value extracting element (44) and a down-sampler (46) convert a complex baseband signal (S1) into a second real baseband signal. An adapter (40) determines parameters controlling an IQ-error compensator (12) by minimizing the error between the two real baseband signals. In a preferred embodiment he transmitter also includes a phase shifter (56) providing three different phase shifts to compensate for the fact that the homodyne observation receiver produces a real and not a complex signal.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: June 22, 2010
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Tony Fonden, Mats Klingberg
  • Patent number: 7738565
    Abstract: A peak detector provides repeatable and accurate measurements of the signal amplitude for variable frequencies of input signals. The peak detector includes a pulse edge generator circuit that generates a pulse edge signal in response to the signal peaks of an input signal and a sampler circuit that is triggered to sample the input signal by the pulse edge signal. The pulse edge generator circuit compares the input signal with a delayed version of the input signal to produce a differential signal and generates the pulse edge signal using the differential signal. An analog or digital sampler is triggered by the pulsed edge signal to measure the information, e.g., peak value, of the input signal. One or more delay circuits may be used to align the edges of the pulsed edge signal with the peaks of the input signal.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 15, 2010
    Assignee: Magnetic Recording Solutions, Inc.
    Inventors: Victor Pogrebinsky, Vladimir Pogrebinsky
  • Patent number: 7715486
    Abstract: A method of COFDM demodulation of successive symbols, each symbol comprising data carriers and pilots. The method includes, for each symbol, the determination of estimates of the transfer function of the channel for the symbol carriers, including the steps of determining, for first carriers such that, for the frequency positions of the considered carriers, symbols different from the symbol include pilots, a first estimate based on second estimates obtained for pilots having the frequency of the carrier; and determining, for second carriers, a third estimate based on the first estimates. For at least one first carrier, the first estimate is further determined based on at least the third estimate determined for a carrier of a symbol received before the symbol at the same frequency as the carrier.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: May 11, 2010
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Isson, Fabrice Belveze, Fatima Aourik
  • Patent number: 7702301
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining an error signals with the appropriate phase shift with input signals to be amplified. The error signal being generated by subtractively combining a fed-forward portion of the input signal with a portion of the fed-back amplified output signal, and signal processing applied to it between its generation and application to correcting the input signal in the baseband domain. The error therefore being down-converted, filtered, and up-converted in the feedback path. The filtered baseband error signal components providing inputs to a controller which adjusts active elements of the amplification and feedback path in order to minimize the distortion within the output of the amplifier.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: April 20, 2010
    Assignee: Sige Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh
  • Patent number: 7697629
    Abstract: An apparatus comprising a first circuit, a second circuit, a third circuit and a fourth circuit. The first circuit may be configured to generate a demodulated signal in response to (i) a modulated signal and (ii) a seed value. The second circuit may be configured to generate a first control signal in response to the demodulated signal. The third circuit may be configured to generate a second control signal in response to (i) the first control signal and (ii) a compensation signal. The fourth circuit may be configured to generate the seed value in response to the second control signal.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 13, 2010
    Assignee: LSI Corporation
    Inventor: Dean L. Raby
  • Patent number: 7697466
    Abstract: At a base station apparatus, known pilot signals for use in channel estimation are transmitted, and in addition thereto MCS pilot signals that are used to perform adaptive modulations respectively corresponding to a plurality of modulation schemes are multiplexed and output. A mobile station apparatus dispreads the respective MCS signals out of the multiplex signal, compares these to known symbols patterns, and sends the MCS pilot signals that show a matching relationship to the base station apparatus as a mobile station reception result. Upon receiving the mobile station reception result from the mobile station apparatus, the base station apparatus selects the modulation scheme of the optimum modulation level for the downlink signals. This configuration makes it possible to switch the modulation schemes in an accurate and simple way.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Kazunari Hashimoto, Sadaki Futagi, Kenichi Miyoshi
  • Publication number: 20100074208
    Abstract: A method and apparatus reducing overhead usage associated with communications is provided. The method may comprise generating an acknowledgment (ACK) for a successfully received codeword from a group of codewords or a negative acknowledgement (NACK) for a codeword unsuccessfully received from the group of codewords, and populating a response information matrix with a plurality of response information elements, wherein the response information elements are determined as a function of the generated acknowledgement or negative acknowledgements.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 25, 2010
    Applicant: QUALCOMM INCORPORATED
    Inventors: Amir Farajidana, Juan Montojo, Kapil Bhattad, Ravi Palanki
  • Patent number: 7680468
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining an error signals with the appropriate phase shift with input signals to be amplified. The error signal being generated by subtractively combining a fed-forward portion of the input signal with a portion of the fed-back amplified output signal, and signal processing applied to it between its generation and application to correcting the input signal in the baseband domain. The error therefore being down-converted, filtered, and up-converted in the feedback path. The filtered baseband error signal components providing inputs to a controller which adjusts active elements of the amplification and feedback path in order to minimize the distortion within the output of the amplifier.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 16, 2010
    Assignee: SIGE Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh
  • Patent number: 7672392
    Abstract: Methods, computer-readable medium, a transmitter, a receiver and a transceiver include the transmitter and the receiver in a digital communication system for reducing the transmit power level when there is no user data is to send, i.e., when dummy data is sent instead. That is achieved by defining a symbol alphabet Q and scrambling a modulated bit stream including user data and dummy data with randomly generated symbols from the symbol alphabet Q.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: March 2, 2010
    Assignee: Ericsson AB
    Inventor: Magnus Johansson
  • Patent number: 7668257
    Abstract: Procedures performed prior to convolutional interleaving of 8VSB digital television signals restrict the alphabet of symbols in novel methods of generating trellis-coded digital television signals that include more robust symbol coding using a restricted alphabet of symbols selected from a full 8VSB symbol alphabet consisting of ?7, ?5, ?3, ?1, +1, +3, +5 and +7 normalized modulation levels superposed on a background modulation level. Certain of these novel procedures generate pseudo-2VSB or P-2VSB robust symbol coding with a restricted alphabet of symbols consisting of ?7, ?5, +5 and +7 normalized modulation levels superposed on a background modulation level. Others of these novel procedures generate prescribed-coset-pattern-modulation or PCPM robust symbol coding intermixing two restricted alphabets of symbols according to a prescribed pattern. One of the two restricted alphabets of symbols used in PCPM consists of ?3, ?1, +5 and +7 normalized modulation levels superposed on a background modulation level.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: February 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Allen LeRoy Limberg
  • Patent number: 7639762
    Abstract: A receiver architecture for receiving an FSK signal having a predetermined number of modulation levels includes a selectivity filter (206) for selectively passing a wanted channel and rejecting unwanted channels. The selectivity filter has a filter bandwidth of about one-half the bandwidth of a pre-modulation filter in a transmitter sending the FSK signal. A discriminator (208) is coupled to the selectivity filter for demodulating the signal. A symbol recovery processor (210) is coupled to the discriminator for recovering the symbols through a maximum likelihood sequence estimation (MLSE) technique utilizing N states for each symbol time, wherein N equals the predetermined number of modulation levels, and wherein templates used in the MLSE for symbol transitions are optimized with a bandwidth substantially less than the bandwidth of the pre-modulation filter.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 29, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Chen Weizhong
  • Publication number: 20090313528
    Abstract: A method and system are provided in a wireless communications system comprising a plurality of nodes (users) working cooperatively. The system provides cooperative diversity by allowing nodes to actively share their antennas and other resources to obtain spatial diversity. The nodes receive the same message (information data) from a common source. Each node enhances the reliability of the message with a modern forward error correction (FEC) code, converts the FEC encoded message into an ensemble of symbols, divides the ensemble of symbols into packets, modulates, dithers and transmits the packets to a receiving node. The dithering process is performed by varying the signal amplitude, phase, frequency and/or symbol timing of the modulated packets. A unique dither pattern is assigned to each node. The receiving node captures a composite signal comprising the transmitted packets of all or most of the transmitting nodes in the cooperative communications system.
    Type: Application
    Filed: October 6, 2008
    Publication date: December 17, 2009
    Applicant: TrellisWare Technologies, Inc.
    Inventors: Keith M. Chugg, Mark Johnson
  • Publication number: 20090257522
    Abstract: An exemplary aspect of an embodiment of the present invention is a communication apparatus including an amplifier circuit which adjusts transmit power of a first signal and transmit power of a second signal if the transmit power of the first signal having a first frequency included in a first frequency band is different from the transmit power of the second signal having a second frequency included in a second frequency band, where the second frequency is different from the first frequency. The amplifier circuit includes a variable inductor which varies an inductance value for each of the first signal and the second signal to adjust the transmit power of the first signal and the transmit power of the second signal.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 15, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Akira KUWANO
  • Publication number: 20090196373
    Abstract: A system for increasing the sensitivity of a receiver in an RFID tag reader. The system includes a directional coupler which receives the signal transmitted by the reader and which receives a backscatter signal from the RFID tag. The output of the directional coupler includes a transmit reference signal and a combined signal comprising the received signal and a transmit leakage signal. A first feedback loop generates an amplitude-compensated reference signal including a transmit signal component having the same amplitude as the transmit leakage signal. A second feedback loop adjusts the phase angle of the amplitude-compensated reference signal to a phase angle 180 degrees out-of-phase with the combined signal, to generate a canceling signal which effectively cancels out the transmit leakage signal component of the combined signal thereby improving the signal-to-noise ratio thereof.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Applicant: SKYETEK, INC.
    Inventor: Lee SNOOK
  • Patent number: 7570697
    Abstract: A MIMO transmitter including an interleaving system for parsing encoded bits to a plurality of spatial streams and a plurality of interleavers to interleave bits for spatial streams such that at least a first spatial stream uses a first stream interleaver that interleaves with a pattern distinct from a second stream interleaver interleaving for a second spatial stream.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: August 4, 2009
    Assignee: QUALCOMM Incorporated
    Inventor: D. J. Richard van Nee
  • Patent number: 7564915
    Abstract: An apparatus for coding a pseudo orthogonal space-time block code in a transmitter using 4 transmission antennas of first to fourth transmission antennas. Upon receiving information symbol streams x1x2x3x4 to be transmitted, a serial-to-parallel converter parallel-converts the received information symbol streams x1x2x3x4 into x1,x2,x3,x4. A pseudo orthogonal space-time block coding (PO-STBC) encoder codes the parallel-converted information symbol streams x1,x2,x3,x4 using a pseudo orthogonal space-time block coding scheme such that the information symbol streams x1,x2,x3,x4 are transmitted via corresponding transmission antennas for first to fourth time periods.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: July 21, 2009
    Assignees: Samsung Electronics Co., Ltd., Seoul National University Industry Foundation
    Inventors: In-Kyu Lee, Heun-Chul Lee
  • Patent number: 7564908
    Abstract: A communication device converts a bit stream to multiple symbols and provides encryption at a physical layer by shifting a phase of each symbol of the multiple symbols to produce multiple encrypted symbols. Each encrypted symbol of the multiple encrypted symbols is modulated with an orthogonal subcarrier to produce at least one modulated subcarrier and the at least one modulated subcarrier is then transmitted via a wireless link. On a receive side, a receiving communication device receives the transmitted, encrypted symbols and provides decryption at a physical layer by shifting a phase of each encrypted symbol in correspondence with the phase used to encrypt the symbol at the transmit side.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: July 21, 2009
    Assignee: Motorola, Inc.
    Inventors: Yuda Y. Luz, Ronald T. Crocker, John M. Harris
  • Patent number: 7562280
    Abstract: Method and apparatus for implementing LDPC codes in an IEEE 802.11 standard system configured to operate in a Multiple-Input, Multiple-Output (MIMO) schema. A method in accordance with the present invention comprises defining a base LDPC code, having a length equal to an integer number of data carriers in an ODFM symbol, transmitting the base LDPC code over a plurality of sub-carriers, wherein the base code is transmitted at an expected phase on sub-carriers specified by the IEEE 802.11 standard system, and transmitting the base LDPC code on other sub-carriers than those specified by the IEEE 802.11 standard system, wherein the base LDPC code on the other sub-carriers is transmit offset in phase from the base LDPC code on the specified sub-carriers.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 14, 2009
    Assignee: The DIRECTV Group, Inc.
    Inventors: Mustafa Eroz, Lin-Nan Lee, Feng-Wen Sun
  • Publication number: 20090154589
    Abstract: Certain embodiments provide a system for recovering data from at least one signal. The system can include an analog-to-digital converter (ADC) and in-phase/quadrature (IQ) generator component that can sample a signal recovered from a communication medium to generate a first signal sample and a second signal sample. A Fast Fourier Transform (FFT) component can process the first signal sample to generate a first signal phase and process the second signal sample to generate a second signal phase. A phase difference calculation component can determine a phase difference between the first signal phase and the second signal phase, determine a bit value represented by the signal based on the phase difference, and output the bit value to an end device coupled to the phase difference calculation component.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 18, 2009
    Inventor: Emmanuel Monnerie
  • Patent number: 7529312
    Abstract: Systems and methods are disclosed for applying layered modulation to an 8-VSB signal as used in the Advanced Television Systems Committee (ATSC) digital television signal. A system for transmitting the layered signal includes a first antenna for transmitting an upper layer signal comprising an 8-VSB signal and a second antenna for transmitting a lower layer signal. A layered modulation signal comprises the upper layer signal and the lower layer signal both interfering in a common frequency band. At least one receiver demodulates the upper layer signal directly from the layered modulation signal and demodulates the lower layer signal after subtracting the upper layer signal from the layered modulation signal. The second antenna can have a selectively limited range so that the lower layer signal does not interfere with the upper layer signal in a range where the lower layer signal could not be demodulated.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 5, 2009
    Assignee: The DIRECTV Group, Inc.
    Inventor: Ernest C. Chen
  • Publication number: 20090110039
    Abstract: A bus interface unit is provided for intermediate switching in a two-wire current loop, wherein the bus interface unit has a transformer for potential-free decoupling of an alternating current signal modulated with digital receive data and/or for coupling in of an alternating current signal to be modulated with digital send data. The alternating current signal is modulated onto a direct current signal of a two-wire current loop. The bus interface unit has a bidirectional modem unit connected on the secondary side to the transformer for output of the receive data on a data bus and for input of the send data from the data bus. The transformer has two primary windings, which are interconnected such that the magnetic fields generated by the two-wire loop current flowing through it cancel each other out. A lowpass and/or a highpass filter for the alternating current signal is connected upstream from the at least one primary winding.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 30, 2009
    Inventor: Valentin Kort
  • Publication number: 20090103643
    Abstract: Provided is a human body communication method using a multi-carrier modulation method, in which users do not interfere with each other in an environment with several users, and stable communication is possible when users are exposed to strong interference generated at other electronic devices. Also, provided are a multi-carrier modulation method, in which data between communication devices connected to a human body used as a channel is divided into a plurality of sub-channels and the data is transmitted by loading it on each of a plurality of sub-carrier signals, and a multi-connection method using the multi-carrier modulation method. The plurality of sub-channels having a predetermined bandwidth include several sub-carriers, and by changing a modulation method applied to the sub-carriers, stable communication can be realized.
    Type: Application
    Filed: April 20, 2007
    Publication date: April 23, 2009
    Applicant: Electronic Telecommunication Research Institute
    Inventors: Chang-Hee Hyoung, Sung-Weon Kang, Jung-Hwan Hwang, Duck-Gun Park, Jin-Kyung Kim, Jin-Bong Sung
  • Patent number: 7512188
    Abstract: The present invention relates to a system for communicating between two integrated circuits (ICs) or within an IC. The ICs are either on the same circuit boards or on different circuit boards with a common backplane. The system comprises a first integrated circuit having an output circuit for generating phase shift keying signals and a second integrated circuit having an input circuit for decoding the phase shift keying signals. The output circuit may include a ring oscillator for generating multiple clock signals that are phase-locked to one another.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: March 31, 2009
    Assignee: Xilinx, Inc.
    Inventors: James A. Watson, Michael A. Margolese
  • Patent number: 7469491
    Abstract: A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200, 1800, 2800) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Distortion introduced by an analog-to-digital converter (304) may be compensated using a variety of adaptive techniques. Linear distortion is compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112).
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: December 30, 2008
    Assignee: Crestcom, Inc.
    Inventors: Ronald Duane McCallister, Eric M. Brombaugh
  • Publication number: 20080288849
    Abstract: According to an example embodiment, a method of generating a soft decision value using an Analog-to-Digital Converter (ADC) having a given resolution may include receiving metric values calculated based on levels of a transmission signal and output levels of the ADC. Metric values corresponding to a level of a received signal may be selected from among the received metric values. A first maximum metric value may be detected from among the selected metric values when a transmission bit is a first level, and a second maximum metric value may be detected from among the selected metric values when the transmission bit is a second level. The soft decision value may be generated based on a difference between the first maximum metric value and the second maximum metric value.
    Type: Application
    Filed: October 30, 2007
    Publication date: November 20, 2008
    Inventors: Sung Chung Park, Jun Jin Kong, Seung Jae Lee, Seung-Hwan Song
  • Patent number: 7450715
    Abstract: The present invention relates to a transceiver for bidirectional frequency division multiplexed transmission, a communication system including one or more transceivers. Optionally, the communication system is a communication system for a digital subscriber line. The transceiver comprises transmission means with a voltage source output or a current source output for transmitting data in a transmission frequency range, receiving means for receiving data in a receiving frequency range, and a coupling impedance for connecting the transmission means and the receiving means to a transmission medium. The magnitude of the coupling impedance in the transmission frequency range is smaller than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a voltage source output and is higher than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a current source output.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 11, 2008
    Assignee: Broadcom Corporation
    Inventor: Rudi Verbist
  • Patent number: 7443920
    Abstract: Header information is used to facilitate coarse frequency and frame recovery. The coarse frequency and frame recovery is thereafter utilized to perform adaptive phase and frequency synchronization on a frame-by-frame basis. A digitized signal representative of a wireless signal may be received. A frame identifier in a physical layer header in the signal may be identified by correlating the digitized signal to one or more known frame identifiers. The identified frame identifier may be used to estimate a phase or frequency error.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 28, 2008
    Assignee: ViaSat, Inc.
    Inventors: William Thesling, Fan Mo
  • Publication number: 20080247484
    Abstract: A system and method for data communication over a cellular communications network that allows the transmission of digital data over a voice channel using a vocoder that monitors parameters of a Levinson Durbin recursion and then uses full rate CELP if the monitored prediction error falls to below a predetermined threshold within a pre-selected number of iterations of the recursion. The system and method encode digital data to be transmitted using a continuous signal modulation technique at a selected bit rate and one or more frequencies that are selected such that the resulting modulated carrier signal is processed by the vocoder using full rate CELP as a result of the monitored prediction error.
    Type: Application
    Filed: April 3, 2007
    Publication date: October 9, 2008
    Applicant: GENERAL MOTORS CORPORATION
    Inventors: Elizabeth Chesnutt, Jijun Yin, Sethu Madhavan, Iqbal Surti
  • Patent number: 7433428
    Abstract: This method reduces the variance of the estimation of the signal-to-noise rate in a multiuser digital communications system. These communications require a sending of a phase reference symbol prior to sending a information, where the estimation is made of the signal-to-noise rate in order to use a modulation with a maximum number of bits per symbol, maintaining a bit error probability in reception within certain given margins. The method minimizes and equalizes the variance of the samples obtained for the different values, even and odd of bits per carrier, which the system uses. The estimation is necessary for selecting the number of bits per carrier in order to be adapted to the channel and as back-up information in the event of using a receiver with diversity.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: October 7, 2008
    Assignee: Diseno de Sistemas en Silicio, S.A.
    Inventors: Jorge Vicente Blasco Claret, Juan Carlos Riveiro Insúa, Agustín Badenes Corella
  • Patent number: 7434136
    Abstract: An ECC determining unit determines whether an error detected by using an ECC has been corrected. When the detected error has not been corrected, an equalizer output sequence transfer unit transfers an equalizer output sequence yk stored in an equalizer output sequence storage unit to a transfer data storage unit in a hard disk controller, so that a high-performance decoding unit (software) performs repetitive decoding, using the transferred equalizer output sequence yk.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: October 7, 2008
    Assignee: Fujitsu Limited
    Inventors: Kazuhito Ichihara, Takao Sugawara, Akihiro Yamazaki
  • Patent number: 7424662
    Abstract: An approach is provided for a method of encoding structure Low Density Parity Check (LDPC) codes. Memory storing information representing a structured parity check Matrix of Low Density Parity Check (LDPC) codes is accessed during the encoding process. The information is organized in tabular form, wherein each row represents occurrences of one Values within a first column of a group of columns of the parity check matrix. The rows correspond to groups of columns of the parity check matrix, wherein subsequent columns within each of the groups are derived according to a predetermined operation. An LDPC coded signal is output based on the stored information representing the parity check matrix.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: September 9, 2008
    Assignee: The DIRECTV Group, Inc.
    Inventors: Mustafa Eroz, Feng-Wen Sun, Lin-Nan Lee
  • Publication number: 20080212707
    Abstract: Aspects of a system for a digital polar transmitter may include a digital to analog converter circuit (DAC), for which an analog voltage and/or current step size generated in response to a sequence of received binary numbers may be dynamically programmable based on an input control signal. The input control signal may be based on an amplitude modulation (AM) signal. The DAC may receive the sequence of binary numbers, generated based on a phase modulation (PM) signal, from an accumulator circuit. The dynamically programmable-step-size DAC may generate an analog signal, which is amplified by a power amplifier circuit (PA) and transmitted via an antenna. The dynamically programmable-step-size DAC may enable utilization of a linear PA circuit.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Inventor: Ahmadreza Rofougaran
  • Publication number: 20080205541
    Abstract: Methods and systems for polar modulation using a digital direct frequency synthesizer (DDFS) are disclosed and may comprise generating a phase modulated signal in a DDFS, amplitude modulating the generated phase modulated signal in a non-linear device and transmitting the signal via a wireless medium. A processor may control the generation of the phase and amplitude modulated signals. The non-linear device may comprise a non-linear power amplifier or a mixer. The method may also comprise generating a first phase modulated signal in a first DDFS and generating a second phase modulated signal in a second DDFS, or in a single DDFS with two integrated digital-to-analog converters, and upconverting and combining the first and second phase modulated signals and amplitude modulating the combined upconverted signals in a non-linear device. A processor may be enabled to control the generation of the first and second phase modulated signals.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 28, 2008
    Inventor: Ahmadreza Rofougaran
  • Patent number: 7409002
    Abstract: According to an embodiment of the invention, a method and apparatus for signal modulation are described. According to an embodiment of the invention, a method comprises producing and transferring a modulated signal. The modulation of the signal is over a plurality of amplitude levels, including at least a first amplitude level, a second amplitude level and a third amplitude level, and over a plurality of time slots, including at least a first time slot, a second time slot, and a third time slot. The modulated signal transitions from the first amplitude level to the second amplitude level in the first phase slot, remains at the second amplitude level in the second time slot, and transitions from the second amplitude level to the third amplitude level in a third time slot.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 5, 2008
    Assignee: Intel Corporation
    Inventors: Matthew E. Becker, Karl Wyatt
  • Patent number: 7382717
    Abstract: An improved multicarrier modulation system and method is introduced which has the advantages of both isotropic orthogonal transfer algorithm orthogonal frequency division multiplexing (IOTA OFDM) and scalable advanced modulation (SAM). The invention reduces adjacent channel interference (ACI) in the multicarrier modulation system used in multicast systems by generating (2601) a spectrally efficient modified pulse for multicarrier modulation and then adapting (2605) the pulse at the edge of the subchannel for reducing the ACI product by the total multicarrier signal (2607). This BTRRC OFDM (2607) is an Offset OFDM with BTRRC pulse (2605) while the prior art RRC OFDM (604) is an Offset OFDM with RRC pulse (603). BTRRC OFDM has characteristics similar to RRC OFDM and has better power efficiency in simulcast or Nakagami fading environments where there is a timing error. Thus, BTRRC OFDM is desirable to substitute SAM in a simulcast environment.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: June 3, 2008
    Assignee: Motorola, Inc.
    Inventor: Young-Seo Park
  • Patent number: 7349488
    Abstract: The present invention relates to a system for communicating between two integrated circuits (ICs) or within an IC. The ICs are either on the same circuit boards or on different circuit boards with a common backplane. A first integrated circuit has transmitter circuit that generates frequency shift keying signals using digital data and a second integrated circuit has a receiver circuit for recovering the digital data from the frequency shift keying signals.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: March 25, 2008
    Assignee: Xilinx, Inc.
    Inventors: Michael A. Margolese, James A. Watson
  • Patent number: 7342976
    Abstract: A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200, 1800) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Distortion introduced by an analog-to-digital converter (304) may be compensated using a variety of adaptive techniques. Linear distortion is compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112).
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: March 11, 2008
    Assignee: CrestCom, Inc.
    Inventor: Ronald Duane McCallister
  • Publication number: 20080049864
    Abstract: A method and associated apparatus for preserving frequency spectrum in a linear modulation scheme, by adding a compensation signal to a modulated signal, the compensation signal having the same spectrum as the modulated signal. In the present invention, peaks above a pre-determined maximum threshold and/or minima below a pre-determined minimum threshold are searched. When a peak is found, the amount by which the signal peak exceeds the maximum threshold, as well as the signal phase at the peak is calculated. A compensation signal is generated with the same peak amplitude as the signal exceeds the maximum threshold, and with opposite phase. Then the shape of the compensation signal is chosen to be the same as the transmitter pulse of the modulated signal. Finally, the compensation signal is added to the modulated signal.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 28, 2008
    Inventors: Stefan G. Eriksson, Marten Sundberg
  • Patent number: 7269233
    Abstract: An algorithm for bit synchronization in a frequency shift keying (FSK) receiver. In the algorithm, a training sequence is received from a transmitter. The training sequence has a plurality of bits. A starting point of a next bit received by the FSK receiver after the training sequence is determined according to peak values of the bits of the training sequence.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 11, 2007
    Assignee: Novatek Microelectronics Corp.
    Inventors: David Shiung, Yung-Lung Chen
  • Patent number: 7260159
    Abstract: A method and apparatus for providing an asymmetrical backwards compatible communications signal that is capable of being decoded by QPSK and OQPSK receivers as well as PSK and QAM receivers is provided. The invention comprises a timing error accumulator coupled to a first bit stream. The first bit stream includes content that is common to the QPSK/OQPSK receiver and to the PSK/QAM receiver. A phase error accumulator is coupled to a second bit stream and adjusts the phase of symbols in the second bit stream. A phase and timing error compensator is coupled to the phase error accumulator and the timing error accumulator and adjusts the first and second bit streams received from the phase error accumulator and the timing error accumulator in order to reduce timing and phase errors. A higher order modulator coupled to the phase and timing error compensator is also provided. The higher order modulator processes the first and second bit streams to provide the asymmetrical backwards compatible signal.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: August 21, 2007
    Assignee: The DirecTV Group, Inc.
    Inventors: Lin-Nan Lee, Feng-Wen Sun, Mustafa Eroz, Yimin Jiang
  • Patent number: 7248647
    Abstract: A system to communicate digital data symbols with higher than QPSK modulation comprises a transmitter and receiver. The transmitter comprises, a modulator and circuitry to split and encode the data into a first block of more significant bits and a second block of less significant bits for modulating by. The receiver receives digital data bits by iterative determination of soft estimates of bits followed by a hard decision as to what bit was intended, and comprises a first processor to provide first soft estimates of bits of the received signal, and a second processor to decode the first soft estimates and to provide second soft estimates of the bits.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 24, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Holger Claussen, Hamid Reza Karimi
  • Patent number: 7239668
    Abstract: A new class of 16-ary Amplitude and Phase Shift Keying (APSK) coded modulations, called double-ring APSK modulation, based on an amplitude and phase shift keying constellation in which the locations of the digital signals to be encoded are placed on two concentric rings of equally spaced signal points. The APSK constellation parameters are optimised so as to pre-compensate the impact of non-linearities. The new modulation scheme is suited for being used with different coding schemes. It is shown that, for the same coding scheme, pre-distorted double-ring APSK modulation significantly outperforms classical 16-QAM and 16-PSK over a typical satellite channel, due to its intrinsic robustness against the high power amplifier non-linear characteristics. The proposed coded modulation scheme is shown to provide a considerable performance advantage for future satellite multi-media and broadcasting systems.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: July 3, 2007
    Assignee: Agence Spatiale Europeenne
    Inventors: Riccardo De Gaudenzi, Albert Guillen i Fabregas, Alfonso Martinez Vicente, Beatrice Ponticelli
  • Patent number: 7191387
    Abstract: A convolutional decoder for a wired or wireless receiver receiving an encoded datastream. The branch and path metric components compute branch and path metrics for the encoded datastream stream. The traceback unit couples to the path metric component to trace in each traceback interval a single path through the path metrics to determine correction factors for decoding at least two corresponding successive sub-symbols/symbols from the encoded datastream in each traceback interval.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 13, 2007
    Assignee: Ikanos Communication Inc.
    Inventor: Firooz Massoudi
  • Patent number: 7181186
    Abstract: A frequency conversion apparatus having a mixer eliminates phase miss-matching between two intermediate frequency (IF) signals having the same frequency and a 90 degree difference in phase. The frequency conversion apparatus for compensating for phase mismatching of first and second IF signal in response to an RF input signal transmitted through an RF input terminal includes a quadrature signal generator (QSG) outputting first and second oscillating frequency signals having a 90 degre difference in phase, a first mixer mixing the RF input signal with a first resultant frequency signal having a first resultant phase and generated from the first oscillating frequency signal and an inverted signal of the second oscillating frequency signal, and a second mixer mixing the RF signal with a second resultant frequency signal having a second resultant phase and generated from the second oscillating frequency signal and an inverted signal of the first second oscillating frequency signal.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: February 20, 2007
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Min Oh, Hyo Seok Kwon