Thin Film Optical Waveguide Patents (Class 385/130)
  • Patent number: 8699841
    Abstract: A photosensitive resin composition which includes (A) a cyclic olefin; (B) at least either one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group, having a refractive index different from that of the component (A); and (C) a photoacid generator, is provided.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Tetsuya Mori, Keizo Takahama
  • Patent number: 8693835
    Abstract: A method for transferring a thin layer from a lithium-based first substrate includes proton exchange between the first substrate and a first electrolyte, which is an acid, through a free face of the first substrate so as to replace lithium ions of the first substrate by protons, in a proportion between 10% and 80%, over a first depth e1. A reverse proton exchange between the first substrate and a second electrolyte, through the free face is carried out so as to replace substantially all the protons with lithium ions over a second depth e2 smaller than the first depth e1, and so as to leave an intermediate layer between the depths e1 and e2, in which intermediate layer protons incorporated during the proton exchange step remain. The depth e2 defines a thin layer between the free face and the intermediate layer. A heat treatment is carried out under conditions suitable for embrittling the intermediate layer and the thin film is separated from the first substrate at the intermediate layer.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: April 8, 2014
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Aurélie Tauzin, Jean-Sébastien Moulet
  • Patent number: 8682116
    Abstract: One embodiment provides an integrated circuit including a first non-planar structure and a waveguide configured to provide electromagnetic waves to the first non-planar structure. The first non-planar structure provides a first signal in response to at least some of the electromagnetic waves.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 25, 2014
    Assignee: Infineon Technologies AG
    Inventor: Thomas Schulz
  • Patent number: 8676023
    Abstract: The present invention discloses a method for fabricating polymeric wavelength filter based on an asymmetric Bragg coupler with single-grating waveguide. The asymmetric waveguide coupler is formed firstly on a negative photo-resist mold. PDMS film is injected into the narrow waveguide of the coupler to act as a protection layer. The gratings pattern is exposed on the alternative waveguide and subsequently transferred to PDMS stamp mold. The PDMS stamp mold is used as a stamp to transfer the gratings pattern of the ABC wavelength filter onto UV cured polymer to form the final ABC filter. Whereby, the fabrication process is reliable and accurate, and can offer great potential for mass production of the ABC filter with single-grating waveguide.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 18, 2014
    Assignee: National Formosa University
    Inventor: Wei-Ching Chuang
  • Patent number: 8668371
    Abstract: Light redirecting film comprises a thin optically transparent substrate having a pattern of individual optical elements formed as projections on a light exit surface of the film. At least some of the projections comprise a dome-shaped surface on the light exit surface.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 11, 2014
    Assignee: Rambus Delaware LLC
    Inventors: Jeffery R. Parker, Timothy A. McCollum, Robert M. Ezell
  • Patent number: 8666211
    Abstract: An optical device including at least one first optical waveguide coupled to a second optical waveguide of smaller cross-section which penetrates into it on the side of a first end. The first optical waveguide is capable of being coupled with an optical fiber on the side of a second end. A surface of the first optical waveguide includes a diffraction grating capable of introducing-extracting-sending back light into and from the first optical waveguide.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: March 4, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Christophe Kopp, Badhise Ben Bakir, Stéphane Bernabe
  • Publication number: 20140055847
    Abstract: A structure (100) comprises a transparent substrate (110) having a surface (104), and the surface (104) has a three dimensional pattern (310) resulting from a combination of at least two surface waves (312, 314, 316). The at least two surface waves (312, 314, 316) differ in wavelength by in maximum 50% based on the wavelength of the wave of the at least two surface waves (312, 314, 316) having the bigger wavelength. Each wavelength of the at least two waves (312, 314, 316) is selected from the range of 200 to 900 nm. The structure (100) may be integrated into plastic films or sheets or glazings, especially for the purpose of light management.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 27, 2014
    Applicant: BASF
    Inventor: Martin Stalder
  • Patent number: 8660395
    Abstract: There is described an optical waveguide structure exhibiting nonlinear properties, a method of fabricating such, and an optical coupling device made of two of such optical waveguide structures. The optical waveguide structure comprises an optical waveguide portion made of a light transmitting material for supporting a light mode traveling therein. The light transmitting material has an intrinsic nonlinearity parameter suitable for inducing a nonlinearity on the light mode, and the optical waveguide portion having a diameter sized to securely confine the light mode therein and to increase the nonlinearity on the light mode. The optical waveguide structure also has a coating surrounding the optical waveguide portion to mechanically support or to protect the optical waveguide portion from surface damage.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 25, 2014
    Inventors: Martin Rochette, Chams Baker
  • Patent number: 8655122
    Abstract: Provided is a mode converter capable of efficiently coupling or emitting light having a single-peaked spot, and has high flexibility of the shape to be easily manufactured. The mode converter is formed of multiple single-mode waveguides optically coupling areas 1 and 2; when an axis parallel to a light propagation direction is z axis, an axis perpendicular to the z axis in a direction crossing the single-mode waveguides is x axis, an axis perpendicular to the x and z axes is y axis, and a plane passing through a center of the mode converter and includes the z axis is plane 1, the multiple single-mode waveguides are arranged reflection-symmetrically with respect to the plane 1; and the mode converter converts light entering from the area 1 into the even mode to cause the light of the even mode to propagate and couple optically with the area 2.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 18, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Taro Kato
  • Patent number: 8649645
    Abstract: There is provided an optical waveguide comprising an optical core having transverse sides, the optical core extending along a curved path; an optical cladding on the transverse sides of the optical core, wherein the distribution of the optical cladding on the transverse sides of the optical core is asymmetric about the centre of the core.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 11, 2014
    Assignee: Xyratex Technology Limited
    Inventor: Richard C. A. Pitwon
  • Patent number: 8644662
    Abstract: An optical connection structure which permits easy and automatic alignment between the optical axes of optical fibers and the optical axes of cores of an optical waveguide, and a production method which ensures that an optical waveguide for the optical connection structure can be efficiently produced with higher dimensional accuracy are provided. An over-cladding layer of the optical waveguide includes an extension portion provided in a longitudinal end portion thereof, and optical fiber fixing grooves are provided in the extension portion as extending along extension lines of cores coaxially with the cores and each having opposite ends, one of which is open in an end face of the extension portion and the other of which is closed. Optical fibers are fitted and fixed in the respective optical fiber fixing grooves. The over-cladding layer further includes a boundary portion (6) provided between the other closed ends of the optical fiber fixing grooves and the cores.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Kazunori Mune, Junichi Fujisawa, Yuichi Tsujita
  • Patent number: 8644660
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon. The optical waveguide unit includes socket portions for locating the electric circuit unit, which are formed on a surface of an undercladding layer and formed of the same material as a core. The socket portions are located at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions which are formed by bending a part of an electric circuit board so as to stand, for fitting into the socket portions. The bent portions are located at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled in a state in which the bent portions fit into the socket portions.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue
  • Patent number: 8630517
    Abstract: A polarization-independent optical multiplexer/demultiplexer with wide passbands has a core including an input optical waveguide, an input slab optical waveguide connected to the input optical waveguide, a waveguide array connected to the input slab optical waveguide, an output slab optical waveguide connected to the waveguide array, a pair of multimode couplers connected to the output slab optical waveguide, and a pair of output optical waveguides connected to the multimode couplers. The multimode couplers are dimensioned so that as both TE and TM polarized light propagates through them, the phase difference between the fundamental and second-order modes changes by an odd multiple of pi radians.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: January 14, 2014
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Patent number: 8611756
    Abstract: A lasing cavity can provide a substantial portion of a path over which data, messages, communication signals, or other information travels from a sender to a recipient. The lasing cavity can support light amplification by stimulated emission of radiation. The sender can be coupled to an input port of the lasing cavity, while the recipient can be coupled to an output port of the lasing cavity. The sender can input information at the input port via applying energy to the lasing cavity, removing energy from the lasing cavity, perturbing the lasing cavity, lengthening the lasing cavity, shortening the lasing cavity, or otherwise inducing a cavity change or a dynamic response. The recipient can receive the information via monitoring the lasing cavity at the output port for changes or responses caused by the sender at the input port.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: December 17, 2013
    Assignee: Cirrex Systems, LLC
    Inventor: Michael L. Wach
  • Patent number: 8611716
    Abstract: A channeled substrate for forming integrated optical devices that employ optical fibers and at least one active optical component is disclosed. The channeled substrate includes a substrate member having an upper surface one or more grooves formed therein, and a transparent sheet. The transparent sheet, which is preferably made of thin glass, is fixed to the substrate member upper surface to define, in combination with the one or more grooves, one or more channels. The channels are each sized to accommodate an optical fiber to allow for optical communication through the transparent sheet between the active optical component and the optical fibers. Channeled substrates formed by molding and by drawing are also presented. Integrated optical devices that employ the channeled substrate are also disclosed.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Corning Incorporated
    Inventors: Jeffery Alan DeMeritt, Richard Robert Grzybowski, Brewster Roe Hemenway, Jr., James Scott Sutherland
  • Patent number: 8606056
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes notch portions for locating the electric circuit unit, which is formed in portions of at least one of an undercladding layer and an overcladding layer, and the notch portions are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions, which fit into the notch portions, and the bent portions are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other under a state in which the bent portions fit into the notch portions.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 10, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Yuichi Tsujita, Masayuki Hodono, Akiko Nagafuji, Masami Inoue, Mayu Takase
  • Patent number: 8606060
    Abstract: The present invention is a method and an apparatus for dynamic manipulation and dispersion in photonic crystal devices. In one embodiment, a photonic crystal structure comprises a substrate having a plurality of apertures formed therethrough, a waveguide formed by “removing” a row of apertures, and a plurality of pairs of lateral electrical contacts, the lateral electrical contact pairs extending along the length of the waveguide in a spaced-apart manner. The lateral electrical contact pairs facilitate local manipulation of the photonic crystal structure's refractive index. Thus, optical signals of different wavelengths that propagate through the photonic crystal structure can be dynamically manipulated.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Sharee J. McNab, Martin P. O'Boyle, Yurii A. Vlasov
  • Patent number: 8571373
    Abstract: An active device for dynamic control of lightwave transmission properties has at least one photonic crystal waveguide that has anti-reflection photonic crystal waveguides with gradually changed group refractive indices at both input and output side. An alternating voltage or current signal applied to two electrically conductive regions changes the refractive indices of the photonic crystal materials, introducing a certain degree of blue-shift or red-shift of the transmission spectrum of the photonic crystal waveguide. The output lightwave with frequency close to the band-edge of the photonic crystal waveguide is controlled by the input electric signal. Devices having one or more such active photonic crystal waveguides may be utilized as an electro-optic modulator, an optical switch, or a tunable optical filter.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: October 29, 2013
    Inventors: Xiaolong Wang, Ray T Chen, Harish Subbaraman
  • Patent number: 8554040
    Abstract: A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: October 8, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Yohei Sakamaki, Toshikazu Hashimoto, Tsutomu Kitoh, Hiroshi Takahashi, Masahiro Yanagisawa, Senichi Suzuki, Yasuhiro Hida, Motohaya Ishii, Munehisa Tamura
  • Patent number: 8545543
    Abstract: This invention may be implemented as a microstructure probe for delivering light of variable color and/or power, via a set of integrated lightguides, from an optical source (or set of sources) to regions spatially arranged 3-dimensionally, with a length scale of microns to millimeters. In exemplary embodiments of this invention, a microstructure probe comprises many lightguides and is adapted to be inserted into neural or other tissue. The lightguides run in parallel along at least a portion of the axis of the probe. The probe may deliver light to many points along the axis of insertion of the probe. This invention may be implemented as an array of two or more such probes (each of which comprises multiple lightguides). This array may be used to deliver light to neural tissue in a complex 3D pattern.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Anthony Zorzos, Clifton Fonstad, Edward Boyden, Jacob Bernstein
  • Patent number: 8548285
    Abstract: A method of manufacturing an optical sensor module which eliminates the need for the operation of alignment between a core in an optical waveguide section and an optical element in a substrate section, and an optical sensor module obtained thereby. An optical waveguide section W1 including groove portions (fitting portions) 4a for the positioning of a substrate section, and a substrate section E1 including fitting plate portions (to-be-fitted portions) 5a for fitting engagement with the groove portions 4a are individually produced. The fitting plate portions 5a in the substrate section E1 are brought into fitting engagement with the groove portions 4a in the optical waveguide section W1 whereby the substrate section E1 and the optical waveguide section W1 are integrated together.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 1, 2013
    Assignee: Nitto Denko Corporation
    Inventor: Masayuki Hodono
  • Patent number: 8538222
    Abstract: A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: September 17, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Yohei Sakamaki, Toshikazu Hashimoto, Tsutomu Kitoh, Hiroshi Takahashi, Masahiro Yanagisawa, Senichi Suzuki, Yasuhiro Hida, Motohaya Ishii, Munehisa Tamura
  • Patent number: 8532452
    Abstract: There is provided an optical device including a first optical waveguide of a directional coupler, a second optical waveguide connected to the first optical waveguide and which guides light, and a common cladding of the first and second optical waveguides, wherein: the common cladding of the first and second optical waveguides includes a first cladding and a second cladding, the second cladding being provided on the first cladding and having a higher refractive index than the first cladding; the first optical waveguide and the second optical waveguide are formed continuously on the first cladding with a constant width and a constant height and are integrated with each other, and a cross sectional shape of each of the first and second optical waveguides is a rectangular shape that is longest in a direction orthogonal to a surface of the first cladding.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: September 10, 2013
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Publication number: 20130223805
    Abstract: The invention relates to a photonic crystal magneto-optical circulator, which comprises first dielectric material columns in an air background, wherein the first dielectric material columns are arranged in the form of two-dimensional square lattice.
    Type: Application
    Filed: November 29, 2010
    Publication date: August 29, 2013
    Inventors: Zhengbiao Ouyang, Qiong Wang
  • Patent number: 8509584
    Abstract: A nano-electron fluidic logic (NFL) device for controlling launching and propagation of at least one surface plasma wave (SPW) is disclosed. The NFL device comprises a metallic gate patterned with a plurality of terminals at which SPWs may be launched and a plurality of drain terminals a which the SPWs may be detected. A wave guiding structure such as a 2 DEG EF facilitates propagation of the SPW within the structure so as to scatter/steer the SPW in a direction different from a pre-scattering direction. A bias SPW is excited by an application of a control SPW with a momentum vector at an angle to the bias SPW and a control current with a wavevector which scatters the bias SPW in the direction of at least one output SPW, towards a drain terminal. The NFL device is rendered with device speed as a function of SPW propagation velocity.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 13, 2013
    Inventor: Hector J. De Los Santos
  • Publication number: 20130188918
    Abstract: A SOI optical structure is provided, including a succession of a substrate, insulator layer, patterned silicon layer and first and second cladding layer. In one embodiment the substrate is made of silicon, the insulator layer and first cladding are made of silicon oxide, and the second cladding layer is made of silicon nitride. The double cladding configuration provides both light confinement within the waveguides defined by the patterned silicon layer and optical isolation, for example from metal absorption when the optical structure is metallized. The double cladding configuration may also help reducing stresses within the optical structure.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 25, 2013
    Applicant: TERAXION, INC.
    Inventor: TERAXION, INC.
  • Patent number: 8487914
    Abstract: An optical finger navigation device. Embodiments of the optical finger navigation device include a light guide film (LGF) including a finger interface surface, a light source in optical communication with the LGF to provide light from the light source to the finger interface surface, a sensor, and a navigation engine. At least a portion of the LGF exhibits total internal reflection (TIR). The sensor detects light from the LGF in response to contact between a finger and the finger interface surface which modifies reflection of light out of the LGF to the sensor. The light detected by the sensor is changed over at least a portion of the sensor in response to the contact between the finger and the finger interface surface. The navigation engine is configured to generate lateral movement information indicative of lateral movement of the finger relative to the sensor, in response to the detected light.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 16, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Gary R. Trott
  • Publication number: 20130170802
    Abstract: The invention provides an optical waveguide and a method of making an optical waveguide. The waveguide has a curved section having an asymmetric refractive index profile, in which the refractive index varies asymmetrically across the waveguide cross-section in dependence on the radius of the curved section of the waveguide.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: Xyratex Technology Limited
    Inventor: Richard C.A. PITWON
  • Patent number: 8478086
    Abstract: An apparatus for imaging light from a plurality of laser diodes (504) onto a multi-channel light valve (6) includes a plurality of laser diodes each coupled to at least one fiber waveguide (508). A planar lightwave circuit (408) is coupled to at least one waveguide on a first side (508), and to the multi-planar light valve (6) on a second side.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: July 2, 2013
    Assignee: Eastman Kodak Company
    Inventor: Ruizhi Zheng
  • Publication number: 20130163942
    Abstract: A waveguide is provided on which an electromagnetic wave impinges, the electromagnetic wave having a wavelength ? included in a given interval ?? of interest centered on a ?centr. The waveguide comprises a film defining a surface on a plane on which the electromagnetic waves are apt to impinge, having a thickness in a direction substantially perpendicular to the surface, the film being realized in a material having a first refractive index; a plurality of scatterers being randomly distributed in two directions in at least a portion of the surface of the film, the scatterers having a substantially constant cross section along said substantially perpendicular direction. The scatterers are realized in a material having a second refractive index lower than the first refractive index, wherein the wavelength of the incident electromagnetic waves is comprised between 0.
    Type: Application
    Filed: September 2, 2010
    Publication date: June 27, 2013
    Applicant: CNR - CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Diederik Sybolt Wiersma, Francesco Riboli, Kevin Vynck, Matteo Burresi
  • Patent number: 8467640
    Abstract: An optical waveguide unit having board unit engaging vertical grooves and a board unit having engagement plate portions to be fitted in the vertical grooves and projections are individually produced, and the engagement plate portions and the projections are brought into fitting engagement with the vertical grooves of the optical waveguide unit. At this time, the projections are deformed to accommodate the tolerances of the components, thereby preventing wobbling and warpage of the board unit. Further, the vertical grooves of the optical waveguide unit are provided in proper positions with respect to a light transmission face of a core, and the engagement plate portions of the board unit are provided in proper positions with respect to the optical element. Therefore, the fitting engagement between the vertical grooves and the engagement plate portions permits proper positioning of the light transmission face of the core and the optical element for self-alignment.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: June 18, 2013
    Assignee: Nitto Denko Corporation
    Inventor: Masayuki Hodono
  • Patent number: 8463090
    Abstract: An optical fuse or energy-switching-off device includes an optical waveguide having an input section and an output section, the two sections forming a pair of opposed surfaces extending transversely through the axes of the waveguide sections. A substantially transparent material is disposed between the opposed surfaces and comprises an electrically conductive nanotube web immersed in dielectric material, where the nanotubes are not in electrical contact with each other. The substantially transparent material forms a plasma when exposed to optical signals propagating within the optical waveguide with an optical power level above a predetermined threshold, and the plasma damages the opposed surfaces sufficiently to render the surfaces substantially opaque to light propagating within the input section of the optical waveguide so as to prevent the transmission of such light.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 11, 2013
    Assignee: KiloLambda Technologies Ltd.
    Inventors: Ariela Donval, Doron Nevo, Moshe Oron, Tali Fisher Masliah
  • Patent number: 8463097
    Abstract: A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: June 11, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Yohei Sakamaki, Toshikazu Hashimoto, Tsutomu Kitoh, Hiroshi Takahashi, Masahiro Yanagisawa, Senichi Suzuki, Yasuhiro Hida, Motohaya Ishii, Munehisa Tamura
  • Patent number: 8463086
    Abstract: An optical semiconductor device in which light having a wavelength of 1.25 ?m or greater is waveguided, includes: a first waveguide of embedded type that includes a semiconductor and is lattice-matched with InP, the first waveguide having a region having a first constant width equal to or greater than 1.50 ?m and a first region narrower than the region; and a second waveguide of embedded type that includes another semiconductor having a refractive index different from that of the first waveguide, the second waveguide having a region having a second constant width smaller than 1.50 ?m and a second region wider than said region. The first waveguide and the second waveguide are joined at an intermediate waveguide portion. The intermediate waveguide portion includes the first region and the second region and a joining plane on which the first region and the second region are joined. The joining plane has a width equal to or smaller than 1.35 ?m.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 11, 2013
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Daisei Shoji, Takuya Fujii
  • Patent number: 8457450
    Abstract: A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: June 4, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang-Hoon Kim, Je-Gwang Yoo, Joon-Sung Kim, Han Seo Cho
  • Patent number: 8452181
    Abstract: A combined optical and electrical transmission assembly includes a combined optical, electrical and power cable having an optical fiber, electrical wiring and a power line combined therein or a combined optical and electrical cable having an optical fiber and electrical wiring combined therein, and a combined optical and electrical transmission module that includes an electrical-to-optical conversion unit having a laser for converting electrical signals to optical signals and a driving IC for driving the laser, and/or an optical-to-electrical conversion unit having a photodiode for converting optical signals to electrical signals and an amplification IC for amplifying electrical signals from the photodiode. The combined optical and electrical transmission module is connected to both ends of the combined optical, electrical and power cable or the combined optical and electrical cable.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 28, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hiroki Yasuda, Koki Hirano, Masahiko Kobayashi
  • Patent number: 8447147
    Abstract: Some embodiments include communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses. In one embodiment, a communication method includes accessing an optical signal comprising photons to communicate information, accessing an electrical signal comprising electrical data carriers to communicate information, and using a single interconnect, communicating the optical and electrical signals between a first spatial location and a second spatial location spaced from the first spatial location.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 21, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20130121634
    Abstract: An apparatus for illuminating a sample includes a planar waveguide. The planar waveguide includes a first substrate, including a first outer surface and a first inner surface, and a second substrate, including a second outer surface and a second inner surface. The first and second inner surfaces of the first and second substrates, respectively, are spaced apart from each other and partly define a volume for confining the sample therein. The apparatus also includes a light source for providing light directed toward the planar waveguide, such that the light is optically coupled to and contained within the planar waveguide between the outer surfaces of the first and second substrates, while illuminating at least a portion of the sample confined within the volume.
    Type: Application
    Filed: December 4, 2012
    Publication date: May 16, 2013
    Applicant: MBIO DIAGNOSTICS, INC.
    Inventor: mBio Diagnostics, Inc.
  • Patent number: 8442364
    Abstract: An optical waveguide device includes an optical branch device for branching a first input light and outputting the branched first input light to a first and a second optical waveguides, another optical branch device, arranged between the first and the second optical waveguides, for branching a second input light and outputting the branched second input light to a third and a fourth optical waveguides, an optical coupler which couples the lights traveling along the first and the third optical waveguides, then branches the coupled lights, and outputs them; and another optical coupler which couples the lights traveling along the second and the fourth optical waveguides, then branches the coupled lights, and outputs them, wherein optical path lengths of either a pair of the first and the second optical waveguides or a pair of the third and the fourth optical waveguides are set to be equal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 14, 2013
    Assignee: NEC Corporation
    Inventor: Shinya Watanabe
  • Patent number: 8428404
    Abstract: A hybrid integrated module includes a semiconductor die mechanically coupled face-to-face to an integrated device in which the substrate has been removed. For example, the integrated circuit may include an optical waveguide that conveys an optical signal, which is fabricated on a silicon-on-insulator (SOI) wafer in which the back-side silicon substrate or handler has been completely removed. Moreover, an optical device may be disposed on the bottom surface of an oxide layer (such as a buried-oxide layer) in the integrated device, and the geometry and materials in the integrated device may be selected and/or defined so that the optical signal is evanescently coupled between the optical waveguide and the optical device.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 23, 2013
    Assignee: Oracle America, Inc.
    Inventors: Ivan Shubin, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 8422834
    Abstract: Provided is a semiconductor integrated circuit. The semiconductor integrated circuit includes a semiconductor pattern disposed on a substrate and including an optical waveguide part and a pair of recessed portions. The optical waveguide part has a thickness ranging from about 0.05 ?m to about 0.5 ?m. The recessed portions are disposed on both sides of the optical waveguide part and have a thinner thickness than the optical waveguide part. A first doped region and a second doped region are disposed in the recessed portions, respectively. The first and second doped regions are doped with a first conductive type dopant and a second conductive type dopant, respectively. An intrinsic region is formed in at least the optical waveguide part to contact the first and second doped regions.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: April 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong-Woo Park, Gyung-Ock Kim, Mi-Ran Park, Jong-Bum You
  • Patent number: 8422845
    Abstract: A photo-electric integrated circuit device comprises an on-die optical input/output device. The on-die optical input/output device comprises a substrate having a trench, a lower cladding layer disposed in the trench and having an upper surface lower than an upper surface of the substrate, and a core disposed on the lower cladding layer at a distance from sidewalls of the trench and having an upper surface at substantially the same level as the upper surface of the substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Dae Lok Bae, Gil Heyun Choi, Jong Myeong Lee
  • Patent number: 8420502
    Abstract: A method for producing a Group III-V semiconductor device, includes forming, on a base, a plurality of semiconductor devices isolated from one another, forming, through ion implantation, a high-resistance region in a surface layer of a side surface of each semiconductor device, after formation of the high-resistance region, forming a p-electrode and a low-melting-point metal diffusion prevention layer on the top surface of the semiconductor device, bonding the semiconductor device to a conductive support substrate via a low-melting-point metal layer, and removing the base through the laser lift-off process.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 16, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masanobu Ando, Shigemi Horiuchi, Yoshinori Kinoshita, Kazuyoshi Tomita
  • Patent number: 8412005
    Abstract: A Mach-Zehnder interferometer type optical modulator includes first and third optical waveguides; input and output optical couplers; and a phase shifting section disposed between the input and output optical couplers. The phase shifting section includes first and second optical waveguide structures each including an n-type semiconductor section, a core layer and a cladding layer. The cladding layer of the first optical waveguide structure includes a first section disposed on the core layer, and second and third sections disposed on the first section. The second and third sections are juxtaposed to each other in a direction that intersects a waveguiding direction. The first and second sections are composed of a p-type semiconductor, and the third section is composed of an undoped semiconductor.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 2, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Jun-ichi Hashimoto
  • Patent number: 8412008
    Abstract: A semiconductor optical device includes a first optical waveguide including first, second, and third sections; a second optical waveguide including fourth, fifth, and sixth sections; an input optical coupler; and an output optical coupler. The first and second optical waveguides and the input and output optical couplers each include a first cladding layer composed of an n-type semiconductor and a core layer. The second and fifth sections each include an intermediate semiconductor layer on the core layer, and a second cladding layer composed of an n-type semiconductor. The first, third, fourth, and sixth sections and the input and output optical couplers each further include a third cladding layer on the core layer. At least one of the third cladding layers includes a first cladding section on the core layer and a second cladding section on the first cladding section. The second cladding section is composed of a semi-insulating semiconductor.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 2, 2013
    Assignee: Sumitomo Electric Industries Ltd.
    Inventor: Jun-ichi Hashimoto
  • Patent number: 8406580
    Abstract: A transform spectrometer measurement apparatus and method for a planar waveguide circuit (PLC). The spectrometer typically includes an input optical signal waveguide carrying an input optical signal; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal; and an array of interleaved, waveguide Mach-Zehnder interferometers (MZI), each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output. A phase shifting circuit is applied to at least one arm of the MZIs to induce an active phase shift on the arm to thereby measure phase error in the MZIs. Light output from the MZIs is measured under intrinsic phase error conditions and after an active phase shift by the phase shifting circuit.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 26, 2013
    Assignees: AiDi Corporation, GUNMA University
    Inventors: Kazumasa Takada, Katsunari Okamoto
  • Patent number: 8406581
    Abstract: A photoelectric composite wiring module, being superior in performances and mass-productivity thereof, and a transmission apparatus of applying that therein are provided. Optical devices 2a and 2b are disposed on a circuit board 1, so that they are optically coupled with optical guides 11 formed on the circuit board 1, wherein a filet-like resin is formed on a side surface of a bump, which is formed on side surfaces or/and upper portions of the optical devices, on an upper layer thereof being compressed a resin film to be adhered thereon, thereby forming an insulation film 31, and an electric wiring layer 3 is laminated, so that the electrodes of the optical devices 2 and wirings of the electric wiring layer are electrically connected with, and further thereon is mounted a semiconductor element 4; thereby obtaining the structure for brining the transmission speed to be high per channel, and for preventing the power consumption from increasing.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: March 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Saori Hamamura, Naoki Matsushima, Madoka Minagawa, Satoshi Kaneko, Norio Chujo, Yasunobu Matsuoka, Toshiki Sugawara, Tsutomu Kono
  • Patent number: 8398274
    Abstract: Light redirecting film including a thin optically transparent substrate having a pattern of individual optical elements of well-defined shape on at least one surface that are quite small relative to the length and width of the surface. At least some of the optical elements have at least one flat surface and at least one curved surface, and intersecting each other over an intersection volume of the intersecting optical elements.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 19, 2013
    Assignee: Rambus International Ltd.
    Inventors: Jeffery R. Parker, Timothy A. McCollum
  • Patent number: 8396341
    Abstract: The present invention discloses a method for fabricating an optical filter based on polymer asymmetric bragg couplers using holographic interference techniques, soft lithography, and micro molding, which comprises following steps: prepare a UV polymer with gratings; coating photo-resister film on the UV polymer, and exposed by UV light to obtain a photo-resister mold with two grooves each having gratings; coating diluted PDMS film on the photo-resister mold, and baking the PDMS film to obtain a PDMS mold having two waveguides with gratings; placing glass substrate over the PDMS mold to form a first tunnel; injecting a precure UV polymer into the first tunnel to from a cladding layer with two grooves having gratings pattern at its bottom; placing glass slide over the cladding layer and injecting a mixed UV polymer into the grooves to form waveguide cores; placing a second glass substrate over the cladding layer, and injecting UV polymer to form an upper cladding layer laminated with the cladding layer to obtai
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: March 12, 2013
    Assignee: China University of Science and Technology
    Inventors: Kun-Yi Lee, Wei-Ching Chuang, Cheng-Che Lee, Wei-Yu Lee
  • Patent number: 8396339
    Abstract: A virtual image display device with an optical waveguide to guide, by internal total reflection, parallel pencil groups meeting a condition of internal total reflection, a first reflection volume hologram grating to diffract and reflect the parallel pencil groups incident upon the optical waveguide from outside and traveling in different directions as they are so as to meet the condition of internal total reflection inside the optical waveguide and a second reflection volume hologram grating to project the parallel pencil groups guided by internal total reflection inside the optical waveguide as they are from the optical waveguide by diffraction and reflection thereof so as to depart from the condition of internal total reflection inside the optical waveguide.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 12, 2013
    Assignee: Sony Corporation
    Inventors: Hiroshi Mukawa, Katsuyuki Akutsu