Input/output Coupler Patents (Class 385/31)
  • Publication number: 20120307253
    Abstract: An optical-fiber filter is provided. The optical-fiber filter includes an optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The first end-face and the second end-face are coated with reflective coatings. When an optical beam emitted from a laser is coupled into one of the first end-face or the second end-face, an optical beam output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Glen A. Sanders, John Feth, Lee K. Strandjord, Tiequn Qiu
  • Patent number: 8326109
    Abstract: Variable optical attenuator (VOA) formed by disposing upon a substrate a waveguide, a p-type region and an n-type region about the waveguide, and an epi-silicon region disposed upon the waveguide, the VOA responsive to a bias current to controllably inject carriers into the waveguide to attenuate thereby optical signal propagating through the waveguide.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 4, 2012
    Assignee: Alcatel Lucent
    Inventors: Mark P. Earnshaw, Mahmoud S. Rasras
  • Patent number: 8326097
    Abstract: A method and an apparatus are provided for launching light into an entrance facet of a multimode optical fiber (MMF) of an optical link in a way that excites one or more higher-order Hermite Gaussian (HMG) mode groups in the MMF. Exciting higher-order HMG mode groups in the MMF increases the bandwidth of the link while also providing reduced modal noise. In addition, selectively exciting one or more higher-order HMG mode groups in the MMF ensures that the launch will provide desirable results even in cases where the connector that connects the end of the MMF to the optical transceiver or transmitter is offset with respect to the receptacle of the optical transceiver or transmitter. This feature allows for greater manufacturing tolerances when manufacturing the connectors and receptacles because precise alignment between them is not critical to achieving a successful launch.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: December 4, 2012
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: David G. Cunningham
  • Publication number: 20120301077
    Abstract: An optical fiber coupler is formed of a section of optical fiber that is positioned between a conventional input fiber (for example, a single mode fiber) or waveguide and a coiled optical fiber device. The adiabatic coupler is coiled (or, at least, curved) to assist in transforming a conventional fundamental mode optical signal propagating along the longitudinal axis of the input fiber to an optical signal that is shifted into a peripheral region of the coiled optical fiber. Moreover, the pitch of an inventive coiled optical fiber coupler can be controlled to assist in the adiabatic transformation process.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: OFS FITEL LLC
    Inventor: Mikhail Sumetsky
  • Publication number: 20120301076
    Abstract: The invention consists in passing a laser beam (3) from each of laser sources (1) through its individual first optical system (4), single reflecting this beam (3) from a substantially flat individual reflecting surface (7) towards an input facet (10?) and focusing this beam (3) by a second common optical system on the input facet (10?) of the fiber (10). The laser beams (3) are emitted by laser modules (1), each containing a single laser source in an individual housing (2) with a first optical system (4), fixed with respect to the housing (2). The housing (2) of each laser module (1) is mounted in a holder (17, 20). The second optical system (9) is placed directly in front of the input facet (10?) of the fiber (10). An axis (12) of each first optical system (3) forms with an axis (13) of the second optical system (9) an angle (?) ranging between 45 (??) and 145 (??) degrees.
    Type: Application
    Filed: October 10, 2010
    Publication date: November 29, 2012
    Inventor: Witold Trzeciakowski
  • Publication number: 20120293744
    Abstract: A light guide sheet (20A) in a display device (100a) according to the present invention includes a light guide element (21A) and a light-transmitting cover sheet (26a). The light guide element has a light-receiving surface (21a) and a side face (21c) which are parallel to a first direction and substantially orthogonal to each other, and an outgoing surface (21b) being formed between the light-receiving surface and the side face and constituting an acute angle with the light-receiving surface. The light-transmitting cover sheet has first and second principal faces which are parallel to the first direction and parallel to each other, and a first side face being formed between the first principal face and the second principal face and constituting an acute angle with the second principal face.
    Type: Application
    Filed: January 27, 2011
    Publication date: November 22, 2012
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Hisashi Watanabe
  • Patent number: 8315491
    Abstract: To provide an optical connector which enables heat generated by an optical interface module arranged on the lower surface of the optical connector to be efficiently dissipated from the upper surface of the optical connector. The optical connector includes an optical transmission path 101 including a 45-degree mirror 106 at an end section thereof, wherein, in the optical transmission path 101, the lower surface on which an optical input/output section 102 is provided, and the upper surface facing the lower surface are sandwiched by metal patterns 107 and 108 having a heat conductivity higher than that of the optical transmission path 101, and wherein the metal patterns 107 and 108 are physically connected to each other by heat dissipation vias 103 having a heat conductivity higher than that of the optical transmission path 101.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: November 20, 2012
    Assignee: NEC Corporation
    Inventors: Tomoyuki Hino, Ichiro Hatakeyama, Ichiro Ogura
  • Publication number: 20120288230
    Abstract: An embodiment of a light delivery portion of a photoplethysmographic device having a series of two or more optical elements. The series of two or more optical elements (20, 40, 50) are arranged to conduct light (10) from a laser and at least two consecutive elements of the series of two or more optical elements are coupled together by a non-reflective coupling (30a, 30b). This minimizes the extent to which back reflected light can re-enter the laser and adversely alter the optical output properties of the laser and additionally minimizes the light loss associated with back reflection thus helping to maximize the optical throughput. Other embodiments are described and shown.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: KESTREL LABS, INC.
    Inventors: Jonas Alexander Pologe, Theodore Philip Delianides
  • Patent number: 8306374
    Abstract: The invention provides an optical printed circuit board connector, comprising: a housing having a major plane; an optical interface for connection in use to another optical interface on a device to which in use the optical printed circuit board connector is arranged to be connected, in which the optical interface on the connector is mounted such that it is twistable about a vertical axis in the major plane to vary the launch angle of light from the interface with respect to the housing.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: November 6, 2012
    Assignee: Xyratex Technology Limited
    Inventors: Richard C. A. Pitwon, Kenneth M Hopkins, David A. Milward
  • Patent number: 8306369
    Abstract: An optical hybrid circuit includes a multimode interference coupler; a first 2:2 optical coupler; a second 2:2 optical coupler; a third 2:2 optical coupler; and a phase controlling region. The first 2:2 optical coupler, the second 2:2 optical coupler, and the third 2:2 optical coupler are coupled to one of the pair of first output channels, the pair of second output channels, the pair of third output channels, and the pair of fourth output channels of the multimode interference coupler. The phase controlling region is provided in one or both of each pair of at least two pairs of output channels from among three pairs of output channels to which the first 2:2 optical coupler, the second 2:2 optical coupler, and the third 2:2 optical coupler are coupled, respectively.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 6, 2012
    Assignee: Fujitsu Limted
    Inventor: Seok Hwan Jeong
  • Publication number: 20120275745
    Abstract: Systems and methods for coupling light into a transparent sheet. The systems include a light source and a light-diffusing optical fiber optically coupled to the light source. The light-diffusing optical fiber has a core, a cladding and a length, with at least a portion of the core comprising randomly arranged voids configured to provide substantially continuous light emission from the core and out of the cladding along at least a portion of the length, and into the transparent sheet.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Inventor: Stephan Lvovich Logunov
  • Patent number: 8300997
    Abstract: The present invention provides a wavelength interleaver comprising a first interleaving unit, a second interleaving unit and an adapting waveguide coupled between the first interleaving unit and the second interleaving unit; both the first interleaving unit and the second interleaving unit including an input waveguide, an output waveguide and a filter coupled between the input waveguide and the output waveguide. The present invention sets up the gap between the input waveguide and the filter, and the filter and the output waveguide for extending components usage specification of the signal transmission system. Therefore, there is no need to add unnecessary components in design, the size is smaller and the cost of the signal transmission system is reduced.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 30, 2012
    Assignee: National Tsing Hua University
    Inventors: Shiuh Chao, Chih-T'sung Shih
  • Publication number: 20120269482
    Abstract: A four-fiber collimator is coupled to the optics of a single interleaver to produce the functionality of two co-packaged interleavers. Two fibers of the collimator are coupled to the core optics of a single interleaver to produce two pairs of output beams. The other two fibers of the collimators are coupled to receive the reflection output beams. The geometry of the optical fibers in the bundle is controlled to produce interleaver outputs with no offset. In another embodiment two fibers of the four-fiber collimator are coupled as inputs to and the other two fibers as outputs from a Fabry-Perot etalon. The geometry of the fibers and the focal length of the collimator are controlled to produce two outputs with peaks offset by a predetermined amount.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Applicant: Optoplex Corporation
    Inventor: YUNG-CHIEH HSIEH
  • Patent number: 8295667
    Abstract: A microstructured fiber or photonic crystal fiber is described having a doped solid core region and a cladding region, holes being provided in the cladding region, the fiber having a low hybrid splice loss to conventional fiber as well as being able to be tightly bent due to the microstructured cladding. The cladding region can contain a plurality of holes surrounding and distanced from the core. These holes are preferably located symmetrically around the core and extend longitudinally along the length of fiber. The holes may be two or more D-shaped holes or truncated D-shaped holes arranged symmetrically around the care. In other embodiments, the holes comprise hole structures arranged symmetrically around the core in a ring. The holes may be arranged having the inner side facing the core formed from arcs of a circle, e.g. equal arcs of a circle. Between the arcs circular holes may be provided called capillaries, i.e. smaller holes.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 23, 2012
    Assignee: Tyco Electronics Raychem BVBA
    Inventors: Jan Watté, Jürgen Van Erps, Tomasz Nasilowski, Christof Debaes, Hugo Thienpont
  • Patent number: 8295659
    Abstract: An anti-resonant reflecting optical waveguide structure for reducing optical crosstalk in an image sensor and method of forming the same. The method includes forming a trench within a plurality of material layers and over a photo-conversion device. The trench is vertically aligned with the photo-conversion device and is filled with materials of varying refractive indices to form an anti-resonant reflecting optical waveguide structure. The anti-resonant reflecting optical waveguide structure has a core and at least two cladding structures. The cladding structure in contact with the core has a refractive index that is higher than the refractive index of the core and the refractive index of the other cladding structure. The cladding structures act as Fabry-Perot cavities for light propagating in the transverse direction, such that light entering the anti-resonant reflecting optical waveguide structure remains confined to the core.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 23, 2012
    Assignee: Aptina Imaging Corporation
    Inventor: Hong-Wei Lee
  • Patent number: 8295657
    Abstract: An optical fiber sensor includes: an optical fiber; a light source portion; and a light receiving portion. The optical fiber includes: a core that includes a grating that generates a clad mode upon receipt of light; a clad that covers the core; and a fiber jacket that covers the clad, wherein a part of the fiber jacket corresponding to an area where the grating is formed is removed so that the clad is contactable with the fuel. The light source portion includes a light cutting element that emits light, whose wavelength is within a wavelength band of the cladding mode toward the optical fiber. The light receiving portion that detects intensity of the light transmitted through the grating. The optical fiber, the light receiving portion and the light source portion are arranged linearly.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 23, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tateki Mitani, Satoshi Nishikawa, Shigeki Kanamaru
  • Patent number: 8287172
    Abstract: The planar illumination device includes: a light guide plate formed by arranging a plurality of unit light guide plates each having a light emission surface as a front surface and a reflection surface as a back surface so that facing end surfaces of adjacent unit light guide plates of the plurality of unit light guide plates are closely arranged; one or two or more light sources arranged on a first side surface, in a direction where the plurality of unit light guide plates are arranged, of each of the plurality of unit light guide plates; and a recessed-and-projected structure arranged on a second side surface, facing the light sources, of each of the plurality of unit light guide plates and having an edge parallel to a normal to the light emission surface.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Sony Corporation
    Inventor: Tetsuro Kuwayama
  • Patent number: 8285093
    Abstract: A microstructure optical adapter or tip according to the present disclosure may incorporate precision micro structure optical components engaging the input or output end of light energy delivery devices for customized light delivery of the light energy. The incorporation of precision micro structure optical components in injection molded plastic or glass parts will allow for inexpensive modification of the output light while also serving to protect the end of the illumination device. The micro structure optical components may also be incorporated in an adapter to tailor the light energy to the subsequent device.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: October 9, 2012
    Assignee: Invuity, Inc.
    Inventors: Alex Vayser, Kenneth C. Trauner
  • Patent number: 8285097
    Abstract: An annular side fire optical device for laterally redirecting electromagnetic radiation comprises a tapered section of silica, a conical section of silica adjoining the tapered section and an annular beveled end surface. The tapered section of silica has a diameter that increases with distance along a longitudinal axis in a direction toward a transmitting end. The conical section of silica comprises a wall of silica surrounding a conical bore. The conical bore has a diameter that increases with distance along the longitudinal axis in a direction toward the transmitting end. The annular beveled end surface is formed in the wall of silica at the transmitting end and is angled relative the longitudinal axis such that electromagnetic radiation propagating along the longitudinal axis through the conical section is reflected by the beveled end surface at an angle that is transverse to the longitudinal axis.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: October 9, 2012
    Assignee: AMS Research Corporation
    Inventor: Stephen E. Griffin
  • Patent number: 8280214
    Abstract: Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: October 2, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Matt Law, Donald J. Sirbuly, Justin C. Johnson, Richard Saykally, Rong Fan, Andrea Tao
  • Patent number: 8280207
    Abstract: A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chip and one or more grating couplers may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chip via one or more optical fibers and/or optical source assemblies. The optical signals may be coupled to the grating couplers via a light path etched in the chip, which may be refilled with silicon dioxide. The chip may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the grating couplers via metal reflectors, which may be integrated in dielectric layers on the chip.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: October 2, 2012
    Assignee: Luxtera Inc.
    Inventors: Thierry Pinguet, Attila Mekis, Steffen Gloeckner
  • Patent number: 8272157
    Abstract: A device for directing a beam of radiation at a target. The device includes a fiber laser for producing the beam of radiation, an aiming mechanism, for aiming the beam of radiation at the target, that moves independently of the fiber laser, and an optical fiber for conveying the beam of radiation to the aiming mechanism.
    Type: Grant
    Filed: March 26, 2006
    Date of Patent: September 25, 2012
    Assignee: Rafael Advanced Defense Systems
    Inventor: Yehuda Nachshon
  • Patent number: 8275010
    Abstract: The pulse light source according to the present invention comprises: a seed pulse generator 1 for outputting an input pulse 10 as a seed pulse; a pulse amplifier 2; and a dispersion compensator 3 for dispersion compensating a light pulse output from the pulse amplifier 2. Moreover, the pulse amplifier 2 comprises a normal dispersion medium (DCF 4) and an amplification medium (EDF 5) that are multistage-connected alternately, for changing the input pulse 10 to a light pulse having a linear chirp and outputting the light pulse. Furthermore, an absolute value of the dispersion of the DCF 4 becomes to be larger than the absolute value of the dispersion of the EDF 5.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Patent number: 8272773
    Abstract: An illuminating device acceding to the present invention has light sources, a light guide body which emits lights incident from the light sources, and a blurring structure, and, on the surface opposing to the emission surface of the light guide body, the light deflection elements which guide lights incident from the light sources toward the emission surface are formed regularly in two-dimensional direction of the first direction and second direction. The blurring structure has a function of blurring the light deflection elements regularly formed in the two-dimensional direction, and this blurring structure converts incident lights into linear lights inclined in the direction of the angle ? with respect to the first direction.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: September 25, 2012
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Tomohiro Nakagome, Luis Manuel Murillo-Mora, Yu Ookubo
  • Patent number: 8275224
    Abstract: An optical coherent detector that employs an interleave-chirped arrayed waveguide grating (AWG). The AWG has a periodic chirp pattern that enables the AWG to function as an optical 90-degree hybrid. If the AWG is implemented using a birefringent material, then the AWG can also function as a polarization demultiplexer. In one embodiment, the AWG is designed to simultaneously function as a wavelength demultiplexer, a polarization demultiplexer for each wavelength-division-multiplexed (WDM) signal component, and a 90-degree hybrid for each polarization-division-multiplexed component of each WDM signal component.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 25, 2012
    Assignee: Alcatel Lucent
    Inventor: Christopher R. Doerr
  • Publication number: 20120237153
    Abstract: An optical device includes a waveguide slab, first and second input port couplers, and first and second output port couplers located over a planar optical substrate. The waveguide slab has a plane of symmetry. The first and second input port couplers extend from the waveguide slab and have an input coupler pair axis located about midway between the first and second input port couplers. The input coupler pair axis is offset at a nonzero first distance from the plane of symmetry. The first and second output port couplers extend from the waveguide slab and have an output coupler pair axis located about midway between the first and second output port couplers. The output coupler pair axis is offset at a different nonzero second distance from the plane of symmetry.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 20, 2012
    Inventors: Nils Weimann, Vincent Houtsma, Mahand Achouche
  • Patent number: 8270787
    Abstract: An optical fiber coupler is formed of a section of optical fiber that is positioned between a conventional input fiber (for example, a single mode fiber) or waveguide and a coiled optical fiber device. The adiabatic coupler is coiled (or, at least, curved) to assist in transforming a conventional fundamental mode optical signal propagating along the longitudinal axis of the input fiber to an optical signal that is shifted into a peripheral region of the coiled optical fiber. Moreover, the pitch of an inventive coiled optical fiber coupler can be controlled to assist in the adiabatic transformation process.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: September 18, 2012
    Assignee: OFS Fitel, LLC
    Inventor: Mikhail Sumetsky
  • Patent number: 8270784
    Abstract: An optical adapter that is arranged to connect two or more optical devices that have different connector layouts, the optical adapter comprising a material through which a plurality of waveguides is formed, the waveguides defining a first connector configuration at one end or face of the material and a second connector configuration at another, or same end or face of the material.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 18, 2012
    Assignee: Heriot-Watt University
    Inventors: Robert Roderick Thomson, Henry Thomas Gibson Bookey, Nicholas David Psaila, Ajoy Kumar Kar
  • Patent number: 8270790
    Abstract: There is provided a planar optical waveguide element comprises a core of an optical waveguide; and first Bragg grating pattern and second Bragg grating pattern that are provided on the core, wherein the first Bragg grating pattern and the second Bragg grating pattern are mutually parallel along a propagation direction of guided light.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: September 18, 2012
    Assignee: Fujikura Ltd.
    Inventors: Kensuke Ogawa, Ning Guan, Ken Sakuma
  • Patent number: 8270789
    Abstract: There is provided an optical waveguide element comprises: a core of an optical waveguide; and a Bragg grating pattern that is provided on the core, wherein a pitch of the Bragg grating pattern takes a value from among three or more predetermined discrete values; the pitches that take the respective discrete values are present in a plurality of locations over an entire length of the optical waveguide respectively; and if a value from among all of the discrete values which has the highest distribution frequency is taken as M, and if the closest value to the M which is larger than the M is taken as A, and if the closest value to the M which is smaller than the M is taken as B, then a difference expressed as A?M is equal to a difference expressed as M?B.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: September 18, 2012
    Assignee: Fujikura Ltd.
    Inventors: Kensuke Ogawa, Ning Guan, Ken Sakuma
  • Patent number: 8270792
    Abstract: In some variations, the present invention provides a method for forming a chip-scale photonic frequency channelizer or spectrum analyzer. A low-loss waveguide forms a long delay-line in a first level, from which a large number of filter-taps form narrow channel passbands. Multi-dimensional laser-written waveguides feed a slab waveguide coupler located at a stacked, second level. A chip-scale RF-photonic spectrum analyzer provided by this invention has extremely high resolution, such as a passband width of about 30 MHz over a free spectral range of 12 GHz, while occupying a device footprint of only about 10 cm2 area.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 18, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Willie W. Ng
  • Publication number: 20120230632
    Abstract: The present invention provides a compact optical fiber amplifier, which can minimize the size of an optical module and increase the degree of freedom in mounting the module on a board. The compact optical fiber amplifier according to the present invention includes: an optical module including a plurality of optical elements provided therein, an input port for introducing an optical fiber thereinto, and an outlet port for extract the optical fiber to the outside of the module; and a plurality of optical fibers introduced into or extracted from the optical module through the input port or the outlet port of the optical module and disposed above a predetermined radius of curvature on the outside of the optical module.
    Type: Application
    Filed: December 8, 2011
    Publication date: September 13, 2012
    Applicant: LICOMM CO.,LTD.
    Inventors: Sung Jun KIM, Jeong Mee KIM, Soo Young YOON, Meong Kyu CHOI, Jung Kwon LEE
  • Patent number: 8265434
    Abstract: In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Schleifring und Apparatebau GmbH
    Inventors: Gregor Popp, Matthias Rank
  • Publication number: 20120224808
    Abstract: According to the present invention, as a result of using a depressed or trench-assisted light-receiving waveguide in which the core is surrounded by a layer having a refractive index lower than that of a cladding as light-receiving means for receiving light outputted from a multi-core optical fiber, the layer of a low refractive index can inhibit the propagation of noise, etc. from the cladding to the core. Consequently, even in cases where the inter-core crosstalk is small, it is possible to accurately measure the inter-core crosstalk since components different from crosstalk-derived components in optical power are reduced.
    Type: Application
    Filed: February 22, 2012
    Publication date: September 6, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tetsuya HAYASHI, Osamu SHIMAKAWA
  • Patent number: 8257991
    Abstract: A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 4, 2012
    Assignee: Intelligent Fiber Optic Systems, Inc.
    Inventors: Yong-Lae Park, Behzad Moslehi, Richard James Black, Mark R. Cutkosky, Kelvin K. Chau
  • Patent number: 8260100
    Abstract: A light guiding layer comprises an optical incoupling structure (3) on which light from a light source (7) is incident, said optical incoupling structure (3) having a slanted surface (15) configured to give the light a first directional distribution by reflecting the light in a first general direction, by total internal reflection within the layer, towards a reflecting structure (5). The reflecting structure (5) is configured to give the light a second directional distribution by reflecting the light in a second general direction towards the optical incoupling structure (3), and at least a part of the light reflected in the second general direction is transmitted through the slanted surface (15) of the optical incoupling structure (3). A display unit, a segmented backlight, a luminaire, and a method is also disclosed.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 4, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Fetze Pijlman, Michel Cornelis Josephus Marie Vissenberg, Giovanni Cennini
  • Patent number: 8254746
    Abstract: An optical sight is provided and may include: a housing; at least one optic supported by the housing; an illumination device associated with the at least one optic and selectively supplying the at least one optic with light, the illumination device including a first fiber associated with a first light source; a coupler collecting light from the first fiber and supplying the at least one optic with light from the first light source; and an electroluminescent device associated with the at least one optic and selectively supplying the at least one optic with light separate from the coupler.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 28, 2012
    Assignee: Trijicon, Inc.
    Inventors: Darin W. Schick, Thomas K. Maciak, Kian Siong Lim
  • Patent number: 8254736
    Abstract: A prism array for collecting light is provided. The prism array includes a first prism module and a coupling joint. The first prism module includes a first guiding prism and at least one first reflective prism. The first reflective prism is close to the first guiding prism, wherein light travels from the first guiding prism to the first reflective prism, and is reflected thereby. The coupling joint includes a first light pipe, a second light pipe, a third light pipe and a light transmitting pipe, wherein the first light pipe, the second light pipe and the third light pipe are coupled to an end of the light transmitting pipe, the third light pipe corresponds to the first reflective prism, and the light travels from the first reflective prism, passing through the third light pipe to the light transmitting pipe.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 28, 2012
    Assignee: National Taiwan University of Science and Technology
    Inventors: Jong-Woei Whang, Yi-Yung Chen
  • Patent number: 8254735
    Abstract: A coupling device includes a fiber collimator, a wedge window pair and a plane window for coupling a light beam provided by a beam source to optical fiber. The fiber collimator is mounted to a base plate and includes a collimator lens, an end of the optical fiber being positioned at a focal point of the collimator lens. The wedge window pair is mounted to the base plate, and is configured to adjust the light beam to be parallel to an optical axis of the fiber collimator. The plane window is mounted to the base plate between the wedge window pair and the fiber collimator. The plane window is configured to align the parallel direction of the light beam with the optical axis of the fiber collimator.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 28, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: George Tsai
  • Publication number: 20120213475
    Abstract: A method of forming a fiber optic device includes securing one or more optical fibers to a support. The support is coupled to a base that includes one or more optoelectronic devices. After one or more of the fibers are secured to the support, and the support is secured to the base, one or more of the fibers are cleaved. This method, and fiber optic devices made using this method are more easily aligned and may be produced at lower costs than existing manufacturing processes.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 23, 2012
    Inventors: Raman K. Selli, Brian M. Cole, Donald G. Doss
  • Publication number: 20120215211
    Abstract: An optical surgical fiber assembly for delivering laser radiation from a laser radiation source to a treatment site has a sealed off capillary enclosing a delivery end of the fiber. The capillary is formed from an outermost layer of fused silica and an adjacent layer of boron-doped fused silica having a higher CTE than that of the fused silica. The capillary is shrink-fitted onto the delivery end of the fiber. A compressive stress is imparted to the outermost layer of the capillary as a result of the shrink-fitting process and the CTE difference between the layers. This provides mechanical hardening of the surface of the outermost layer.
    Type: Application
    Filed: May 13, 2011
    Publication date: August 23, 2012
    Applicant: Coherent, Inc.
    Inventor: Richard P. TUMMINELLI
  • Patent number: 8249404
    Abstract: A polymer optical waveguide includes: a core; and a cladding enclosing the core and extending along a direction of light propagation, the polymer optical waveguide having a substantially rectangular parallelepiped shape, and the polymer optical waveguide having, at least at a position near one end thereof in a longitudinal direction, a groove that has a surface inclined at an angle of 45° with respect to the light propagation direction which reflects light propagating through the core so as to change the light propagation direction by 90°.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 21, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Masahiro Igusa
  • Patent number: 8249409
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, Jr., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey A. Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Publication number: 20120207432
    Abstract: A light guide of the tapered-waveguide type includes an input slab for expanding a projected image between an input end and an output end; and a tapered output slab arranged to receive rays from the said output end of the input slab, and to emit them at a point on its face that corresponds to the angle at which the ray is received. The taper is calculated so that all rays injected into the input end undergo the same number of reflections before leaving the output face. The thickness of the input slab light guide is greater in the transverse direction away from the centre line, so that light travelling at the critical angle from the input face of the slab waveguide towards the output waveguide bounces the same number of times in the input slab, regardless of its fan-out angle, in order to further reduce image distortion.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 16, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Adrian Travis, Timothy Andrew Large, Neil Emerton
  • Publication number: 20120207434
    Abstract: A light guide of the tapered-waveguide type includes an input slab for expanding a projected image between an input end and an output end, and an output slab arranged to receive rays from the said output end, and to emit them at a point on its face that corresponds to the angle at which the ray is received. The input slab and output waveguide are matched so that all rays injected into the input end undergo the same number of reflections before leaving the output surface. With the invention, the input slab is itself tapered slightly towards the output waveguide. This means that input and output waveguides can be made the same length, in the direction of ray travel, and can therefore be folded over each other with no wasted space.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 16, 2012
    Applicant: MICROSOFT CORPORATION
    Inventor: Timothy Large
  • Publication number: 20120207431
    Abstract: In one embodiment, in an optical device, a bar-shaped optical waveguide has either a polygonal or circular cross-sectional shape. A light entry portion is formed in a circumferential area of a first-end surface of the optical waveguide. The light entry portion includes a sloping surface having a normal vector containing a component in a circumferential direction of the first-end surface. An incident light beam travels towards a second-end surface of the optical waveguide while repeating total reflections on a side surface of the optical waveguide. The incident light beam travels without passing through a central portion in a cross section of the optical waveguide. A light exit portion is formed in the side surface of the optical waveguide. The light exit portion is configured to let the light beam in the optical waveguide out of the optical waveguide.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Inventors: Yutaka Nakai, Tsuyoshi Hioki
  • Patent number: 8244077
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8244079
    Abstract: Provided are a light emitting device and an optical coupling module. The device includes a substrate, a light emitting part provided to the substrate, and a reflecting part provided to a lower surface of the substrate. The light emitting part includes an active pattern disposed on the substrate, an upper mirror provided to an upper portion of the active pattern, and a lower mirror provided to a lower portion of the active pattern. The light emitting part may emit light normal to the substrate, and the reflecting part may reflect the emitted light to a side surface of the substrate.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: August 14, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin-Tae Kim, Sun-Tak Park, Jung-Jin Ju, Seung-Koo Park, Min-Su Kim, Jong-Moo Lee, Joong-Seon Choe
  • Patent number: 8244083
    Abstract: A method and apparatus for forming and controlling a microwave Bessel beam which may be utilized for examining microstructure including very early stage tumors.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: August 14, 2012
    Inventor: Abraham N. Seidman
  • Patent number: 8235605
    Abstract: Disclosed herein are a self-standing parallel plate beam splitter, a method for manufacturing the same, and a laser diode package structure using the same. The self-standing parallel plate beam splitter according to the present invention is easy to manufacture and is applicable to various laser diode packages, thereby enabling easy implementation of a laser diode package that is capable of performing bidirectional communication, a laser diode package having a triplexer function, a laser diode package having a wavelength locking function, and a laser diode package having a front side monitoring function to monitor the operation state of a laser diode chip using some of laser light emitted from the front side of the laser diode chip.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: August 7, 2012
    Inventor: Jeong Soo Kim