Input/output Coupler Patents (Class 385/31)
  • Patent number: 8849079
    Abstract: A light diffusing element diffuses light output from an output facet of an optical fiber that enters the light diffusing element at a first end and outputting the diffused light from a second end. The light diffusing element is equipped with a semireflective surface for reflecting a portion of the light, provided at a predetermined portion of the light diffusing element corresponding to the core of the output facet. The semireflective surface intersects at least with the optical axis of the optical fiber. Thereby, propagation of light in directions away from the optical axis of the optical fiber can be promoted during the step of reflecting the portion of the light that enters the light diffusing element.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: September 30, 2014
    Assignee: Fujifilm Corporation
    Inventors: Koji Yoshida, Tadashi Kasamatsu, Tatsuya Yoshihiro
  • Publication number: 20140270640
    Abstract: An electronic device may be provided with imaging modules or communications modules. Imaging modules and communications modules may be improved with the use of plasmonic light collectors. Plasmonic light collectors exploit the interaction between incoming light and plasmons in the plasmonic light collector to redirect the path of the incoming light. Plasmonic light collectors may be used to form lenses for image pixels in an imaging module or to form light pipes or lenses for use in injecting optical communications into a fiber optic cable. Plasmonic lenses may be formed by lithography of metallic surfaces by implantation or by stacking and patterning of layers of materials having different dielectric properties. Plasmonic image pixels may be smaller and more efficient than conventional image pixels. Plasmonic light guides may have significantly less signal loss than conventional lenses and light guides.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 18, 2014
    Applicant: Aptina Imaging Corporation
    Inventor: Kenneth Edward Salsman
  • Publication number: 20140270639
    Abstract: The invention relates to an optical scattering element suitable for dispersing or scattering light transmitted by optical device by Mie scattering. The optical scattering element comprises a phase-separated or porous borosilicate glass having dispersed phase particles with a particle size of 200 to 500 nanometers or pores with a size of 200 to 500 nanometers, at a number density of 108 to 1012 mm?3. The optical scattering element can be prepared by subjecting a borosilicate glass to a controlled heat treatment to induce phase separation, and then optionally leaching out one of the phases with an acid leach. The optical scattering element can be, for example, attached to an end of an optical fiber or bundle of optical fibers. The invention also relates to a method of dispersing or scattering light by transmitting the light through the optical scattering element.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: SCHOTT CORPORATION
    Inventors: William H. JAMES, III, Elizabeth CHASE, Mark J. DAVIS, Paula VULLO, Sally PUCILOWSKI, Eric Hector URRUTI
  • Patent number: 8837885
    Abstract: The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hong Seok Seo, Bong Je Park, Joon Tae Ahn, Jung-Ho Song
  • Patent number: 8837884
    Abstract: The optical semiconductor device includes a spot-size converter formed on a semiconductor substrate. The spot-size converter has a multilayer structure including a light transition region. The multilayer structure includes a lower core layer, and an upper core layer having a refractive index higher than that of the lower core layer. The width of the upper core layer is gradually decreased and the width of the lower core layer is gradually increased in the light transition region. Both sides and an upper side of the multilayer structure are buried by a semi-insulating semiconductor layer in the light transition region. Light incident from one end section of the spot-size converter is propagated to the upper core layer. The light transits from the upper core layer to the lower core layer in the light transition region, is propagated to the lower core layer, and exits from the other end section thereof.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: September 16, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Takanori Suzuki, Takafumi Taniguchi
  • Publication number: 20140254984
    Abstract: An optical coupling system having an optical coupler and a light-transmissive external medium, the optical coupler comprising a light guide which extends parallel to a main plane of the optical coupler, a mirror surface which is inclined relative to the main plane by an angle of inclination and an outer surface of the coupler which abuts on the medium, the waveguide.
    Type: Application
    Filed: December 20, 2013
    Publication date: September 11, 2014
    Applicant: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventor: Hans-Herrmann Oppermann
  • Patent number: 8829393
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8831387
    Abstract: In one embodiment, in an optical device, a bar-shaped optical waveguide has either a polygonal or circular cross-sectional shape. A light entry portion is formed in a circumferential area of a first-end surface of the optical waveguide. The light entry portion includes a sloping surface having a normal vector containing a component in a circumferential direction of the first-end surface. An incident light beam travels towards a second-end surface of the optical waveguide while repeating total reflections on a side surface of the optical waveguide. The incident light beam travels without passing through a central portion in a cross section of the optical waveguide. A light exit portion is formed in the side surface of the optical waveguide. The light exit portion is configured to let the light beam in the optical waveguide out of the optical waveguide.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Nakai, Tsuyoshi Hioki
  • Patent number: 8827572
    Abstract: A side-coupling optical fiber assembly comprises a first substrate (200), on a surface of which at least one concave groove is provided; an optical fiber (210) disposed in the concave groove; and a second substrate (220) disposed on the first substrate (200) and pressed on the optical fiber (210). The end of the optical fiber (210) between the first substrate (200) and the second substrate (220) is set as a slant surface (240), which is used for performing total reflection for the light beam transmitted in the optical fiber (210). A method for making the side-coupling optical fiber assembly is provided.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: September 9, 2014
    Assignee: Wuhan Telecommunication Devices Co., Ltd.
    Inventor: Dan Zhou
  • Patent number: 8824839
    Abstract: An optical coupling device includes an optical fiber holder configured to hold an optical fiber, a wavelength conversion member including a phosphor and an optical characteristic matching member and a wavelength conversion member holder configured to hold the wavelength conversion member. The optical coupling device includes a first region which is formed on an end face of the optical fiber and an end face of the wavelength conversion member, which are optically coupled, when bonding the optical fiber holder and the wavelength conversion member holder, and in which foreign bodies that shield the laser beam are removed from an optical axis of the optical fiber and an optical axis of the wavelength conversion member and a second region which is formed outside the first region when bonding the optical fiber holder and the wavelength conversion member holder, and in which the foreign bodies removed from the first region flow.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 2, 2014
    Assignee: Olympus Corporation
    Inventor: Yoshinori Tanaka
  • Patent number: 8818151
    Abstract: An novel fiber pump signal combiner is disclosed in which a fiber bundle array is coupled to a double-clad fiber with a taper section that is formed by etching a tapered outer surface into the cladding of a fiber rod to produce a high quality tapered outer surface free of defects with an inner core that has a constant diameter.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: August 26, 2014
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Benjamin G. Ward
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Publication number: 20140233886
    Abstract: The invention relates to methods and devices for shaping plastic optical fibres (POFs), more specifically for optically modifying and yet more specifically for rapidly joining two portions of the plastic optical fibres to create a new optical connection. The plastic optical fibres may be heated under controlled conditions, to soften them and lens, sensor or patterns may be imprinted on portions of the fibre. Methods are provide to optical joints, and combined physical and optical joints.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 21, 2014
    Applicant: BAE SYSTEMS PLC
    Inventors: Henry Jameson White, Geoffrey Martland Proudley, Ying Lia Li
  • Patent number: 8805128
    Abstract: A sensing device for detecting a physical parameter exemplified by pressures, strains, temperatures, indices of refraction, and combinations thereof. The sensing device comprises a probe having a housing for sealably mounting therein an optical fiber. The optical fiber is provided at its distal end with at least two spaced apart fiber Bragg gratings. The proximal end of the probe is engagable with a holder, and is in communication with fiber Bragg grating interrogation systems. Spacers and seals may be provided about the optical fiber between the fiber Bragg gratings. An orifice may be provided and sealed with a resilient membrane to provide a contained airspace around each fiber Bragg grating. The contained airspace may be optionally filled with a fluid or a gas.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: August 12, 2014
    Assignee: UVic Industry Partnerships Inc.
    Inventors: Peter Martin Wild, Christopher Raymond Dennison, David Andrew Singlehurst, Chris Bueley
  • Patent number: 8803444
    Abstract: The invention provides a method and system of controlling illumination characteristics of a plurality of lighting segments. According to the invention, there is provided an illumination system, comprising: a plurality of lighting segments; a detecting subsystem configured to detect an illumination intensity and/or color of lights emitted from each lighting segment; a controller configured to receive the detecting subsystem's output signals representing illumination intensity and/or color of lights emitted from each lighting segment and to generate sets of driving signals to respectively adjust the driving currents of each lighting segment in response to the output signals, so as to adjust the illumination intensity and/or color of the lights emitted from each lighting segment in accordance with a predetermined illumination setting, wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 12, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ang Ding, Xiaoyan Zhu, Gongming Wei, Hugo Johan Cornelissen
  • Patent number: 8805131
    Abstract: An optical module includes an optical waveguide that transmits and outputs signal light; a circuit board that transmits the signal light output from the optical waveguide, and includes a low refractive-index portion that neighbors and surrounds a transmissive portion and has a lower refractive index than the transmissive portion, which transmits the signal light; and a light-receiving element that includes, on a side toward the circuit board, a light-receiving portion that receives the signal light that has transmitted through the circuit board, where the signal light is reflected toward the light-receiving element at a boundary surface between the transmissive portion and the low refractive-index portion.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Patent number: 8805141
    Abstract: An illumination system that includes at least one light-diffusing optical fiber is disclosed. The illumination system includes at least one low-scatter light-conducting optical fiber that optically couples the at least one light-diffusing optical fiber to at least one light source. The light-diffusing optical fiber includes a light-source fiber portion having a length over which scattered light is continuously emitted. The light-source fiber portion can be bent, including wound into a coil shape. The light-diffusing optical fiber includes a plurality of nano-sized structures configured to scatter guided light traveling within the light-diffusing optical fiber out of an outer surface of the fiber.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: August 12, 2014
    Assignee: Corning Incorporated
    Inventors: Edward John Fewkes, Stephan Lvovich Logunov, Alranzo Boh Ruffin
  • Patent number: 8794809
    Abstract: A lighting system has one or more light guides capable of guiding light, each comprising a core and two optically smooth faces. A cavity adjacent to two of the optically smooth faces has an opening and a reflective-transmissive surface opposite the opening. A cover having a light source is proximate to and occludes the opening. A major portion of any light emitted from the light source is reflected by the reflective-transmissive surface of the cavity and is injected into the light guides, and a minor portion of any light emitted by the light source is transmitted through the reflective-transmissive surfaces of the cavity and emitted from the lighting system. A light injection coupler is also disclosed that has an optically transmissive housing and suitable for use to couple ends of at least one light guide thereby making a lighting system.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 5, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: David J. Lundin, David G. Freier, Kenneth A. Epstein, Scott D. Gullicks
  • Patent number: 8798412
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, Lisa C. Chacon, Adam J. G. Ellison, Rostislav R. Khrapko, Stephan L. Logunov, Michael T. Murtagh, Sabyasachi Sen
  • Publication number: 20140211598
    Abstract: A light coupling structure, a method of manufacturing a memory cell, and a magnetic recording head are provided. The light coupling structure includes a light coupling layer having a cavity; a waveguide having a cladding layer and a core layer; wherein the cladding layer of the waveguide is disposed in the cavity of the light coupling layer and the core layer of the waveguide is disposed over the light coupling layer and the cladding layer of the waveguide; wherein the light coupling layer is configured to receive light from a light source and couple the received light into the core layer of the waveguide.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 31, 2014
    Inventors: Qian Wang, Seng-Tiong Ho
  • Publication number: 20140211818
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Inventors: Kai-Chung HOU, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Publication number: 20140212092
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Patent number: 8792754
    Abstract: A modalmetric fiber sensor comprising a multimode sensor fiber; a light source for launching light into the multimode sensor fiber to produce a multimode speckle pattern of light at an end of the multimode sensor fiber; a single mode fiber to receive light from the multimode speckle pattern; a detector connected to the single mode fiber to detect the received light from the speckle pattern; and a further multimode fiber disposed between the end of the sensor fiber and the single mode fiber such that the single mode fiber receives light from the speckle pattern by transmission through the further multimode fiber and the received light includes higher order modes regenerated in the further multimode fiber, wherein the further multimode fiber is overfilled with received light from the speckle pattern.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 29, 2014
    Assignee: Future Fibre Technologies Pty Ltd
    Inventors: Yuvaraja Visagathilagar, Jim Katsifolis, Bernhard Koziol
  • Publication number: 20140205234
    Abstract: Described herein are an apparatus, system, and method for providing a vertical optical coupler (VOC) for planar photonics circuits such as photonics circuits fabricated on silicon-on-insulator (SOI) wafers. In one embodiment, the VOC comprises a waveguide made from a material having refractive index in a range of 1.45 to 3.45, the waveguide comprising: a first end configured to reflect light nearly vertical by total internal reflection between the waveguide and another medium, a second end to receive the light for reflection, and a third end to output the reflected light. The VOC couples with a Si waveguide having a first region including: a first end to receive light; and an inverted tapered end in the direction of light propagation to output the received light, wherein the inverted tapered end of the Si waveguide is positioned inside the waveguide.
    Type: Application
    Filed: September 29, 2011
    Publication date: July 24, 2014
    Inventors: Haisheng Rong, Ofir Gan, Pradeep Sirnivasan, Assia Barkal, I-Wel Andy Hsieh, Mahesh Kirshamurthi, Yun-Chung Neil Na
  • Publication number: 20140205236
    Abstract: An optical fiber combiner 1 has: a plurality of input optical fibers 20; a plurality of divergence angle reducing members 50 which lights emitted from the respective input optical fibers 20 enter and which emits the lights from the input optical fibers 20 at divergence angles made lower than divergence angles upon entrance; a bridge fiber 30 which the lights emitted from the respective divergence angle reducing members 50 enter and which has a tapered portion 34 which has a portion in which the lights propagate and a diameter of which is gradually reduced apart from a divergence angle reducing member 50 side; and an output optical fiber 40 which a light emitted from a side of the bridge fiber 30 opposite to the divergence angle reducing member 50 side enters.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: FUJIKURA LTD.
    Inventors: Yoshikiyo Noguchi, Kensuke Shima
  • Patent number: 8787717
    Abstract: Systems and methods for coupling light into a transparent sheet. The systems include a light source and a light-diffusing optical fiber optically coupled to the light source. The light-diffusing optical fiber has a core, a cladding and a length, with at least a portion of the core comprising randomly arranged voids configured to provide substantially continuous light emission from the core and out of the cladding along at least a portion of the length, and into the transparent sheet.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 22, 2014
    Assignee: Corning Incorporated
    Inventor: Stephan Lvovich Logunov
  • Patent number: 8787714
    Abstract: Provided is a lens array that can reliably obtain monitor light and is easy to manufacture. In the provided lens array, light incident on a first lens surface (11) from light-emitting elements is split by a reflective/transmissive layer (17) between a first optical surface (14a) and a first prism surface (16a) and sent, respectively, towards a second lens surface (12) and a third lens surface (13). Monitor light included in the light sent towards the third lens surface (13) is sent by the third lens surface (13) towards a light-receiving element (8). The path of light incident on the first optical surface (14a) is collinear with the path of light outgoing from the second optical surface (14b).
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 22, 2014
    Assignee: Enplas Corporation
    Inventor: Shimpei Morioka
  • Patent number: 8787716
    Abstract: A fiber coupler with an inner tube, an inner fiber arranged within the inner tube and several outer fibers arranged around the inner fiber, is disclosed, wherein said fiber coupler tapers in the longitudinal direction of the inner fiber from a main section to a terminal section and the inner cross section on the inner tube corresponds to the diameter of the inner fiber along the tapering section of the fiber coupler.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: July 22, 2014
    Assignees: TRUMPF Laser GmbH + Co. KG, JENOPTIK Laser GmbH
    Inventors: Malte Kumkar, Marcin Michal Kozak, Clemens Hoenninger, Andreas Liem, Thomas Gabler, Inka Manek-Hoenninger
  • Patent number: 8786930
    Abstract: Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: July 22, 2014
    Assignee: Ram Photonics, LLC
    Inventor: Ping Piu Kuo
  • Publication number: 20140193155
    Abstract: An optical resonator supports three resonance modes and having third-order optical nonlinearity. One or more waveguides are coupled to the three resonant modes. A waveguide input port is more strongly coupled to the first resonant mode than to the second and third resonant modes. A waveguide output port is more strongly coupled to at least one of the second and third resonant modes than to the first resonant mode. An optical filter has at least two optical resonators. The optical filter provides a passband having at least two poles and a transmission zero positioned outside the two poles. An optical demultiplexer includes first optical filter coupled in series with a second optical filter. Both optical filters provide a passband having at least two poles and a zero positioned outside the two poles. The zero of the first filter is located within the passband of the second filter.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 10, 2014
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Milos Popovic, Mark Taylor Wade, Xiaoge Zeng
  • Patent number: 8774575
    Abstract: An optical waveguide includes a clad layer, a core layer and a clad layer which are laminated together in this order from a lower side thereof. Within the core layer, a core portion and a side clad portion provided adjacent to the core portion so as to surround side surfaces of the core portion are formed. Further, a part of the side clad portion prevents a left side end of the core portion from being exposed outside. A mirror formation region is constituted from a region consisting of such a part of the side clad portion and a part of each of the clad layers located thereabove and therebelow. This mirror formation region is subjected to digging processing so that a concave portion is formed. An inner surface of this concave portion serves as the mirror. From the mirror, a material other than a material constituting the core portion, that is, a material constituting each of the clad layers and a material constituting the side clad portion are exposed.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: July 8, 2014
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Makoto Fujiwara, Kenji Miyao, Yoji Shirato, Koji Choki, Mutsuhiro Matsuyama
  • Patent number: 8774578
    Abstract: An optical module includes a substrate including an optical device chip disposed on a top surface thereof, a spacer having at least one through hole and combined with the substrate on the substrate to insert the optical device chip into the through hole, a cover combined with the spacer on the spacer to stop the through hole, and an optical fiber combined with the cover on the cover in a position corresponding to a position of the optical device chip. The optical module is configured such that light transmitted through the optical fiber is incident to the optical device chip or light emitted from the optical device chip is incident to the optical fiber. The optical module may be downscaled and produced in large quantities at low cost.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 8, 2014
    Assignees: XL Photonics Inc.
    Inventor: Heung Ro Choo
  • Publication number: 20140185979
    Abstract: A photonic integrated circuit is provided that may include a substrate; one or more optical sources, on the substrate, to output light associated with a corresponding one or more optical signals; one or more waveguides connected to the one or more optical sources; a multiplexer connected to the one or more waveguides; and one or more light absorptive structures, located on the substrate adjacent to one of the one or more optical sources, one of the one or more waveguides, and/or the multiplexer, to absorb a portion of the light associated with at least one of the corresponding one or more optical signals.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: Infinera Corporation
    Inventors: Peter Weindel Evans, Pavel Viktorovich Studenkov, Mehrdad Ziari, Matthias Kuntz
  • Patent number: 8768108
    Abstract: A solid state light source comprising a light pump outputting light energy; a waveguide optically coupled to the light pump source for receiving the light energy; and a down-converter for converting the light energy from the waveguide to a lesser light energy.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Pei-Cheng Ku, Max Shtein
  • Patent number: 8766092
    Abstract: An energy collection system is provided. The system can include an energy collection device and an energy concentration device disposed proximate at least a portion of the energy collection device. The energy concentration device includes a non-periodic, sub-wavelength, dielectric grating.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhen Peng, Marco Fiorentino, David A. Fattal, Nathaniel J. Quitoriano
  • Patent number: 8768120
    Abstract: An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 1, 2014
    Assignee: Kaiam Corp.
    Inventors: Bardia Pezeshki, John Heanue
  • Patent number: 8768119
    Abstract: An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 1, 2014
    Assignee: Kaiam Corp.
    Inventors: Bardia Pezeshki, John Heanue
  • Patent number: 8768117
    Abstract: There are provided an optical fiber coupler configured to improve or optimize optical efficiency and coupling efficiency, a method of manufacturing the optical fiber coupler, and an active optical module. The optical fiber coupler includes a first optical fiber and second optical fibers. The first optical fiber includes a first core and a first cladding surrounding the first core, and the second optical fibers are coupled to the first cladding. The first cladding includes a first coupling facet to which ends of the second optical fibers are coupled.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 1, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hong-Seok Seo, Joon Tae Ahn, Bong Je Park
  • Patent number: 8761550
    Abstract: A method for installing an optical tap into an optical waveguide formed in a printed circuit board which comprises obtaining a printed circuit board having an optical waveguide formed therein, cutting a transverse groove that has a front plane and a back plane into the optical waveguide, such that the back plane of the groove forms an oblique angle relative to the incident beam of light, and inserting a pre-fabricated beamsplitter into the groove so that the beamsplitter is positioned at the oblique angle of incidence relative to the beam of light to enable a predetermined portion of the beam of light to be directed out of the waveguide.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 24, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Paul Kessler Rosenberg, Terrel Morris, Shih-Yuan Wang
  • Patent number: 8761557
    Abstract: The present invention provides a compact optical fiber amplifier, which can minimize the size of an optical module and increase the degree of freedom in mounting the module on a board. The compact optical fiber amplifier according to the present invention includes: an optical module including a plurality of optical elements provided therein, an input port for introducing an optical fiber thereinto, and an outlet port for extract the optical fiber to the outside of the module; and a plurality of optical fibers introduced into or extracted from the optical module through the input port or the outlet port of the optical module and disposed above a predetermined radius of curvature on the outside of the optical module.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: June 24, 2014
    Assignee: Licomm Co., Ltd.
    Inventors: Sung Jun Kim, Jeong Mee Kim, Soo Young Yoon, Meong Kyu Choi, Jung Kwon Lee
  • Patent number: 8761556
    Abstract: A new concept of the light guide device has developed to have multi channels, the present invention comprises: a transparent body through which light can freely pass; channel condensing units disposed at predetermined intervals on the body to form a plurality of one-dimensional arrays; an optical module unit for independently sighting incident light, and re-sighting and focusing light which passes through the one-dimensional arrays formed by the channel condensing units disposed at predetermined intervals in the body; and a fiber channel module for creating independent light passages (fiber channels) which condense light from the left, right, up and down aspects of the optical module unit, at a one-to-one correspondence between the body and the optical module unit. The present device maximizes the efficiency of the solar energy utilization by reducing the guide distance of incident light.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: June 24, 2014
    Inventors: Taerok Jung, Jaeheun Jung
  • Publication number: 20140168631
    Abstract: Methods and apparatus for light detecting and range sensing. In one approach, a light detecting and ranging (LiDAR) sensor uses an optical directing device; a multi-clad optical fiber, a light source, and a detector. The light source is optically coupled to the multi-clad optical fiber which is configured to receive optical rays transmitted from the light source and route the rays on an optical path leading to the optical directing device. The optical directing device is configured both to direct the transmitted optical rays routed through the multi-clad fiber towards a target to be sensed and direct optical rays reflected from the target on an optical path leading to the multi-clad optical fiber. The multi-clad optical fiber is configured to receive the reflected optical rays and route the reflected optical rays on an optical path leading to the detector. The detector is configured to detect the reflected optical rays.
    Type: Application
    Filed: October 9, 2013
    Publication date: June 19, 2014
    Applicant: Pouch Holdings LLC
    Inventors: James A. HASLIM, Michael D. KARASOFF, Nicholas M. ITURRARAN, Brent S. SCHWARZ
  • Patent number: 8755650
    Abstract: A light source is coupled to an input facet that directs light from the light source to a core layer of a waveguide and a gradient index material layer disposed beside the core layer along a portion of a propagation length of the waveguide. Light is launched from the light source into the input facet. In response, the gradient index material layer directs light to the core layer at least along the portion of the propagation length.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Seagate Technology LLC
    Inventor: Chubing Peng
  • Patent number: 8755647
    Abstract: A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Ami Yaacobi, Brad Gilbert Cordova, Jie Sun, Michael Watts
  • Patent number: 8755649
    Abstract: An optical connector having a plurality of directional taps and connecting between a plurality of optical waveguides (e.g., such as a connector between a waveguide that is part of, or leads from, a seed laser and/or an initial optical-gain-fiber power amplifier, and a waveguide that is part of, or leads to, an output optical-gain-fiber power amplifier and/or a delivery fiber), wherein one of the directional taps extracts a small amount of the forward-traveling optical output signal from the seed laser or initial power amplifier (wherein this forward-tapped signal is optionally monitored using a sensor for the forward-tapped signal), and wherein another of the directional taps extracts at least some of any backward-traveling optical signal that may have been reflected (wherein this backward-tapped signal is optionally monitored using a sensor for the backward-tapped signal).
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: June 17, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Tolga Yilmaz, Khush Brar, Charles A. Lemaire
  • Publication number: 20140158872
    Abstract: A coupling device for an optical waveguide includes an optical waveguide connection for a first optical waveguide. The coupling device includes an optical filter arranged in a beam path between a laser light source and the optical waveguide connection which reflects light of a first wavelength range or a first polarization direction and transmits light of a second wavelength range or a second polarization direction.
    Type: Application
    Filed: April 12, 2012
    Publication date: June 12, 2014
    Applicants: VIMECON GMBH, INGENERIC GMBH
    Inventors: Jan Kallendrusch, Volker Sinhoff, Christian Wessling, Kai Ulf Markus
  • Patent number: 8750658
    Abstract: An optical coupling module includes a substrate, a circuit board defining two through holes, an optical waveguide positioned between the substrate and the circuit board, and an optical assembly. The optical waveguide includes a core and a clad, each core comprises two coupling surfaces corresponding to the two through holes. At least one coupling surfaces is in an arcuate shape. The clad covers the core, except for the two coupling surfaces exposing out of the clad. The optical assembly formed on the circuit board comprises an optical emitting element and an optical receiving element. The optical emitting element and the optical receiving element are positioned above the two through holes, respectively. Light emitted from the optical emitting element enters the optical waveguide via one of the coupling surface, and leaves from another coupling surface to reach the optical receiving element. The coupling surface is capability of focusing light.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Bing-Heng Lee
  • Patent number: 8750656
    Abstract: An optical adapter includes a loading plate and a coupling lens. The coupling lens includes a main body, a first optical reflector, and a second optical reflector. The first optical reflector is positioned on the loading plate. The main body includes a top plate made of transparent material and spaced a predetermined distance from the loading plate. The second optical reflector is positioned on the first top plate. The first loading plate loads a portion of a planar optical waveguide of an optical printed circuit board. An optical signal from the planar optical waveguide is reflected by the first optical reflector to the second optical reflector, then is reflected by the second optical reflector to the outside of the optical adapter.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 10, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8743371
    Abstract: A Mach-Zehnder interferometer (MZI) incorporates a tunable multimode interference (MMI) coupler comprising a tunable MMI coupler with a tuning electrode on a surface of a tunable MMI region and an electrically insulating region provided within the tunable MMI region. The MMI region is tunable in response to detection of a photocurrent by a photodetector section. Such a tunable MZI is particularly advantageous in enabling a split ratio of an optical splitter, the split ratio and the splitter to be controlled in a particularly efficient manner.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: June 3, 2014
    Assignee: Oclaro Technology Limited
    Inventors: Lloyd Langley, Robert Griffin, Ian Brian Betty
  • Patent number: 8744221
    Abstract: An apparatus consisting of stacked slab waveguides whose outputs are vertically staggered is disclosed. At the input to the stacked waveguides, the entrances to each slab lie in approximately the same vertical plane. A spot which is imaged onto the input will be transformed approximately to a set of staggered rectangles at the output, without substantial loss in brightness, which staggered rectangles can serve as a convenient input to a spectroscopic apparatus. A slit mask can be added to spatially filter the outputs so as to present the desired transverse width in the plane of the spectroscopic apparatus parallel to its dispersion.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: June 3, 2014
    Assignee: Redox Biomedical, Inc.
    Inventors: Sascha Hallstein, Jan Lipson, Donald A. Ice, Rudolf J. Hofmeister, Ueyn L. Block