Particular Coupling Structure Patents (Class 385/39)
  • Patent number: 8995796
    Abstract: The invention relates to a system (1) for generating a (high-frequency) beat signal. The system has a first light source (3) with a multimode spectrum, a second light source (4) and a coupler and filter arrangement (5) with a first port (6) for coupling in light from the first light source (3), and a second port (7) for coupling in light from the second light source (4). Furthermore, a detector (11) is provided to which light of both light sources (3, 4) can be supplied. The coupler and filter arrangement (5) has a spectral filter (20, 28) for filtering out one or several modes from the spectrum of the first light source (3), and a first fiber-optical coupler (17, 23, 26) for coupling the light of the second light source (4) and the not yet filtered or the already filtered light of the first light source (3). The coupler and filter arrangement (5) is configured to be merely fiber-optical.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Menlo Systems GmbH
    Inventors: Ronald Holzwarth, Marc Fischer, Michael Mei
  • Patent number: 8995804
    Abstract: A monolithic integrated structure comprising a buried heterostructure semiconductor optical amplifier and a deep ridge optical receiver comprising such structure are disclosed.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: March 31, 2015
    Assignee: Alcatel Lucent
    Inventors: Mohand Achouche, Christophe Caillaud, Genevieve Glastre Lemaitre, François Lelarge, Romain Brenot
  • Patent number: 8995844
    Abstract: An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 31, 2015
    Assignee: Teradvance Communications LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Antonije R. Djordjevic, Darby Racey
  • Patent number: 8989535
    Abstract: In embodiments of a multiple waveguide imaging structure, an imaging structure includes a first waveguide for see-through viewing of an environment at a first field of view, and includes a second waveguide for see-through viewing of the environment at a second field of view. The first and second waveguides each include a polarizing beam splitter to reflect light that enters at a first polarization orientation angle in the respective first and second waveguides, and the polarizing beam splitters pass through the light that enters at a second polarization orientation angle. The imaging structure also includes a polarization switch to rotate the polarization of the light through the first and second polarization orientation angles.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 24, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Steven John Robbins
  • Patent number: 8989539
    Abstract: A method of forming a fiber optic device includes securing one or more optical fibers to a support. The support is coupled to a base that includes one or more optoelectronic devices. After one or more of the fibers are secured to the support, and the support is secured to the base, one or more of the fibers are cleaved. This method, and fiber optic devices made using this method are more easily aligned and may be produced at lower costs than existing manufacturing processes.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 24, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Raman K. Selli, Brian M. Cole, Donald G. Doss
  • Publication number: 20150078708
    Abstract: Provided are an optical coupler and an arrayed-waveguide grating structure including the same. The coupler includes a lower clad layer, a core comprising a slab waveguide region disposed on one side of the lower clad layer and a ridge waveguide region disposed on the other side of the lower clad layer, and an upper clad disposed on the core, wherein the ridge waveguide region comprises a self-focusing region configured to focus an optical signal provided form the slab waveguide region and thus to prevent scattering of the optical signal.
    Type: Application
    Filed: July 11, 2014
    Publication date: March 19, 2015
    Inventors: Jaegyu PARK, Hyundai PARK, Jiho JOO, Myung joon KWACK, Gyungock KIM
  • Patent number: 8983244
    Abstract: An optical interferometer for demodulating a differential phase shift keying optical signal includes a planar lightwave circuit and at least one free space delay line optically coupled to the planar lightwave circuit. The planar lightwave circuit has a waveguide splitter, a waveguide coupler, and a phase adjuster. In operation, the splitter splits the optical signal into equal portions, the phase adjuster adjusts the relative phase of the optical signal portions, and the free space delay line provides one-bit delay between the portions of the optical signal. The delayed signals are mixed in the waveguide coupler. The free space delay line can be made variable for adjustment of the bit delay for operation at different bit rates, and/or for optimization of the interferometer performance.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 17, 2015
    Assignee: JDS Uniphase Corporation
    Inventors: Jinxi Shen, Hiroaki Yamada, David J. Chapman, Shanrui Ren
  • Patent number: 8977082
    Abstract: A filter and fabrication process for a thin film filter that is based on frustrated total internal reflection and multiple waveguide layers, in which the waveguide modes are resonantly coupled. The physics of the design is related to prism coupling of light into planar waveguides, and waveguide coupling between planar waveguides in close proximity. Embodiments include a filter that acts as a bandpass filter and polarizer, a filter that acts as a bandpass filter, polarizer and angle filter (spatial filter), a filter that is widely tunable, and a filter that is widely tunable in both peak transmission wavelength and width. Methods of fabrication are disclosed, and methods to correct for manufacturing errors in thin film deposition are described. The filter embodiments can also be used in reflection as notch filters in wavelength and angle, for a particular polarization component.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: March 10, 2015
    Assignee: Stream Technologies Inc.
    Inventors: Kirat Singh, Elmar Prenner, Alan D. Streater
  • Patent number: 8971680
    Abstract: A method is provided for controlling the collimation of light from a backlight top surface. A backlight device includes a first waveguide and a transparent top film overlying the first waveguide top surface. A plurality of bubble structures is formed in the top film bottom surface, having a refractive index less than a first waveguide medium. A plurality of lenses overlies the top film top surface, where each lens is aligned overlying a corresponding gap (W) between bubble structures. The method forms a maximum angle (?) of light propagation through the first waveguide medium. In response to the values W and H (bubble structure height), light, having the maximum angle (?) of light propagation, is reflected off the bubble structure sides, through total internal reflection, into the top film. The method collimates in a vertical direction, orthogonal to the horizontal direction, light exiting the top film through the lenses.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: March 3, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Jiandong Huang
  • Patent number: 8968987
    Abstract: A method, system and computer program product for implementing an enhanced optical mirror coupling and alignment mechanism utilizing two-photon resist. An initial placement is provided for one or more vias on a printed circuit board. A via is filled with a resist. A series of tightly focused light beams suitably exposes the resist at varying depths in the via, the varying depths defining a sloped polymer in the via after removing resist that had not been at the focus of the light beam. The sloped polymer is coated with reflective material to reflect light into or out of the via.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Atta, Darcy Berger, John R. Dangler, Matthew S. Doyle, Jesse Hefner, Thomas W. Liang
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8965150
    Abstract: An optical switch assembly includes a first member, a second member movably secured to the first member, and first and second optical cable connectors attached to the first member. The second member is movable between first and second positions relative to the first member. The optical switch assembly also includes an optical cable having opposite first and second ends. The optical cable first end is in optical communication with the first optical cable connector and the optical cable second end is attached to the second member. Movement of the second member to the second position causes the optical cable second end to be in optical communication with the second optical cable connector such that an optical path is established between the first and second optical cable connectors. The establishment of an optical path allows the optical cable to pass an optical signal back to a monitoring station.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 24, 2015
    Assignee: CommScope, Inc. of North Carolina
    Inventors: W. Larkin Crutcher, Anil K. Trehan
  • Patent number: 8958670
    Abstract: The device for coupling an electromagnetic wave includes a waveguide and a slit metal guide. The slit metal guide is formed by two metal elements which are coplanar and spaced out from one another so as to form the slit. The slit metal guide is arranged in a plane offset from the plane of the waveguide and partially covers said waveguide, said waveguide and the slit guide being maintained at a distance from one another by a dielectric.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 17, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Cecile Delacour, Badhise Ben Bakir, Jean-Marc Fedeli, Alexei Tchelnokov
  • Patent number: 8958669
    Abstract: The present disclosure relates to a method for manufacturing end microlenses of individual optical fibers which are part of a bundle or a multi-core fiber, including depositing a drop of a photopolymerizable solution on a first end of the bundle; adapting the size of the drop; applying light centered on a predetermined wavelength onto a second end of the bundle in order to selectively polymerize the drop; rinsing the first end using a methanol solution in order to obtain a network of individual optical fibers, each one of which is provided with a microlens at the first end of the multi-core fiber, the microlenses being physically separated from one another. The disclosure additionally relates to a bundle of microlensed fibers obtained by the method, as well as to the use of such a bundle, for example in medical or multiplexed imaging and/or in the coupling of optical fibers.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 17, 2015
    Assignee: Universite de Technologie de Troyes
    Inventors: Jérôme Plain, Renaud Bachelot, Pascal Royer, Xinhua Zeng, Safi Jradi
  • Patent number: 8958667
    Abstract: An optical bus (130) of an integrated circuit (100) comprises: a polymer waveguide (112), a micromirror (114, 116), and an optical coupler (120). The polymer waveguide (112) is disposed in a via (110) formed through at least one die layer (102, 104, 106) of the integrated circuit (100) comprising an active circuit (210). The micromirror (114) is disposed adjacent to the via (110) and optically coupled to the polymer waveguide (112). The optical coupler (120) is connected to the polymer waveguide (112) to couple the active circuit (210) to the optical bus (130). A stacked integrated circuit (100) is described comprising such an optical bus (130). A method (800) of fabricating a rear 45° micromirror on a silicon substrate that can be used in the optical bus (130) is also described. Furthermore, alignment/lock mechanisms for use in a stacked integrated circuit comprising first and second silicon substrates are described.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: February 17, 2015
    Inventors: Chee Yee Kwok, Aron Michael, Yiwei Xu
  • Patent number: 8948561
    Abstract: A waveguide is provided on which an electromagnetic wave impinges, the electromagnetic wave having a wavelength ? included in a given interval ?? of interest centered on a ?centr. The waveguide comprises a film defining a surface on a plane on which the electromagnetic waves are apt to impinge, having a thickness in a direction substantially perpendicular to the surface, the film being realized in a material having a first refractive index; a plurality of scatterers being randomly distributed in two directions in at least a portion of the surface of the film, the scatterers having a substantially constant cross section along said substantially perpendicular direction. The scatterers are realized in a material having a second refractive index lower than the first refractive index, wherein the wavelength of the incident electromagnetic waves is comprised between 0.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 3, 2015
    Assignee: CNR—Consiglio Nazionale Delle Ricerche
    Inventors: Diederik Sybolt Wiersma, Francesco Riboli, Kevin Vynck, Matteo Burresi
  • Patent number: 8928883
    Abstract: In certain embodiments, a system for detecting an agent includes a resonator device configured to receive an agent. The resonator device is also configured to transmit light received from a light source, the transmitted light having an altered peak wavelength due to the presence of the received agent. The system further includes a filter device configured to filter the transmitted light having the altered peak wavelength such that the transmitted light having the altered peak wavelength does not reach one or more detectors of a detector array configured to receive transmitted light not filtered by the filter device. The system further includes a processing system operable to determine that the one or more detectors of the detector array are not generating a signal, the absence of the signal being generated by the one or more detectors of the detector array indicating the presence of the agent.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Raytheon Company
    Inventors: Frank B. Jaworski, Justin Gordon Adams Wehner, Adam M. Kennedy, Darin S. Williams, Anuradha Murthy Agarwal, Juejun Hu
  • Patent number: 8909009
    Abstract: Lightguides, devices incorporating lightguides, processes for making lightguides, and tools used to make lightguides are described. A lightguide includes light extractors arranged in a plurality of regions on a surface of the lightguide. The orientation of light extractors in each region is arranged to enhance uniformity and brightness across a surface of the lightguide and to provide enhanced defect hiding. The efficiency of the light extractors is controlled by the angle of a given light extractor face with respect to a light source illuminating the light guide.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: December 9, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Tzu-Chen Lee, David A. Ender, Guoping Mao, Jun-Ying Zhang, Jaime B. Willoughby
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8891920
    Abstract: An optical assembly comprising (10) an optical coupler (12) defining a coupler first end section (18), a substantially opposed coupler second end section (20) and a coupler intermediate section (22) therebetween; a coupler passageway (24) extending in the coupler intermediate section (22) and also through at least a portion of the coupler second end section (20) and defining a passageway second end aperture (30) leading into the coupler passageway (24); a coupler peripheral surface (26) extending peripherally to the coupler passageway (24) in the coupler intermediate section (22); and a coupler lateral aperture (28) extending between the coupler passageway (24) and the coupler peripheral surface (26) in the coupler intermediate section (22). A first end optical fiber (14) is optically coupled to the optical coupler (12) in the coupler first end section (18) for allowing propagation of light between the optical coupler (12) and the first end optical fiber (14).
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 18, 2014
    Assignee: Genia Photononics Inc.
    Inventor: Francois Gonthier
  • Patent number: 8891913
    Abstract: Embodiments of the invention describe heterogeneous photonic integrated circuits (PIC) wherein a first silicon region is separated from the heterogeneous semiconductor material by a first distance, and a second silicon region is separated from the heterogeneous semiconductor material by a second distance greater than the first distance. Thus embodiments of the invention may be described as, in heterogeneous regions of a heterogeneous PIC, silicon waveguides using multiple heights of the silicon waveguide, or other structures with multiple offset heights between silicon and heterogeneous materials (as described herein).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: November 18, 2014
    Assignee: Aurrion, Inc.
    Inventors: Jonathan E. Roth, Jae Shin, Gregory A. Fish
  • Patent number: 8882320
    Abstract: A connector adapted for use in an illumination system comprising at least one optical element, such as an optical fiber. is disclosed. The connector comprises a housing dimensioned so that internally it retains at least one end portion of at least one optical element, and externally substantially follows the shape of the end portion(s) of the optical element(s). This forms a join between the ends of the optical element(s). A light source is also contained within the housing and positioned so as to illuminate the end portions of at least one optical element. Electrical connection means adapted to connect the light source to an external power supply are provided. The electrical connection means being moveable relative to the housing. The electrical connection means may be carried by a flexible substrate, or may be formed by slideable contacts within a light guide rail.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: November 11, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Joerg Roberto Purfuerst, Norbert Schumann, Thomas Keller, Werner Schwarz, David M. Rudek, Eric Schmuck
  • Patent number: 8870858
    Abstract: An apparatus may include an optical fiber having an angled grating aligned along a plane non-normal to a longitudinal axis of a distal end portion of the optical fiber. The angled grating may be configured to redirect a first laser energy propagated within the optical fiber and incident on the angled grating to a direction offset from the longitudinal axis. The apparatus may also include a metallic cap coupled to the optical fiber. The metallic cap may have an inner surface configured to redirect a second laser energy incident on the inner surface along the direction offset from the longitudinal axis. The second laser energy being different than the first laser energy.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 28, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jeffrey W. Zerfas
  • Patent number: 8867874
    Abstract: Method for modifying the splitting or combining ratio of a first multimode interference (MMI) coupler (100), which first coupler is arranged to convey light from one or several input waveguides to one or several output waveguides, wherein a film (103a) of a material is arranged over the first coupler, wherein the film is strained so that a force is applied by the film to the surface of the first coupler, and so that the refractive index profile in the material of the first coupler changes as a consequence of the force, and wherein the splitting or combining ratio is modified as a consequence of the changed refractive index profile.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Finisar Sweden AB
    Inventors: Dave Adams, Jan-Olof Wesstrom
  • Patent number: 8861907
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 14, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8861899
    Abstract: An optical fiber current transformer includes a broadband light source, a depolarizer, a beam splitter, a temperature acquisition unit, a current acquisition unit, a modulation waveform generating unit, a data processing unit and a calculating compensation unit. The broadband light source is connected with the beam splitter by the depolarizer. A first output of the beam splitter is connected with the calculating compensation unit by the temperature acquisition unit. A second output of the beam splitter is connected with the data processing unit by the current acquisition unit. The data processing unit is connected with the calculating compensation unit. The calculating compensation unit is connected with the current acquisition unit by the modulation waveform generating unit.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 14, 2014
    Assignee: Beijing Qi-Red Electric Power Technology Co., Ltd.
    Inventors: Shudong Wu, Wenbo Wang
  • Patent number: 8861906
    Abstract: A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip in a photonic transceiver, wherein photonic, electronic, or optoelectronic devices may be integrated in a front surface of the CMOS photonic chip. Optical couplers, such as grating couplers, may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Luxtera, Inc.
    Inventors: Thierry Pinguet, Attila Mekis, Steffen Gloeckner
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8855450
    Abstract: A system for measuring properties of a thin film coated glass having a light source, a spectrometer, at least one pair of probes, a first optical fiber switch and a second optical fiber switch. The pair of probes includes a first probe located on one side of a glass sheet and a second probe located on the opposite side of the glass sheet, directly across from the first probe. The first and second optical fiber switches are adapted to couple either probe to the light source and/or the spectrometer. Because the design of the system is optically symmetrical, calibration may be performed without the use of a reference material such as a tile or mirror. Each of the first and second probes has a first leg and a second leg that are separated from each other by a distance n so that angled reflections may be detected.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 7, 2014
    Assignee: Cardinal CG Company
    Inventors: Jordan B. Lagerman, Keith J. Burrows, Kyle R. Thering
  • Patent number: 8842950
    Abstract: A component for an optical probe, the component comprising: a tubular body defining an internal channel and an opening; a mounting ring which is mounted within the internal channel and configured to define an aperture aligned with the opening; and a window disposed across the aperture and bonded to the mounting ring around the aperture, wherein the window is diamond, wherein the mounting ring comprises a material having a coefficient of linear thermal expansion a of 14×10?6 K?1 or less at 20° C. and a thermal conductivity of 60 Wm?1K?1 or more at 20° C., and wherein the tubular body is made of a chemically inert material.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: September 23, 2014
    Assignee: Element Six N.V.
    Inventors: Hendrikus Gerardus Maria DeWit, Gerrit Jan Pels, Berdinus Christianus Maria Vrolijk
  • Patent number: 8842949
    Abstract: An embodiment of the invention relates to a single photon emission system having a proximal end, a distal end, and a single photon emitter located between the proximal end and the distal end; wherein the single photon emission system is adapted to guide optical pump radiation, which is inputted at the proximal end to optically excite the single photon emitter, along a predefined direction that runs from the proximal end to the distal end; and wherein single photons emitted by said single photon emitter, are guided along said predefined direction to the distal end.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 23, 2014
    Assignees: Technische Universitat Darmstadt, Humbolt-Universitat zu Berlin
    Inventors: Tim Schröder, Oliver Benson, Andreas Schell, Philip Engel, Moritz Julian Banholzer, Friedemann Gädeke, Gerhard Birkl
  • Patent number: 8842943
    Abstract: An electro-optic modulator includes a substrate comprising a surface, a pair of transmission lines formed in the surface and extending substantially in parallel with each other, a pair of first strip electrodes formed on the surface and covering the respective transmission lines, and a pair of second strip electrodes positioned at two sides of the first strip electrodes and parallel with the first strip electrodes.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsin-Shun Huang
  • Patent number: 8837881
    Abstract: An optical connector includes a jumper, optical fibers and an optical-electric coupling element. The jumper includes a lower surface and an upper surface. The jumper defines a first receiving hole and a second receiving hole. A flange perpendicularly extends upward from a periphery of the upper surface. The flange defines a locating opening. The optical-electric coupling element includes a bottom surface and a top surface. The bottom surface forms at least two first coupling lenses. The bottom surface defines a cutout spatially corresponds with the flange of the jumper. The cutout includes a bottom portion. A locating projector extends upward from the bottom portion. The locating projector is inserted into the locating opening to attach the jumper into the optical-electric coupling element, with each of the first coupling lens being received in the first receiving hole or the second receiving hole. The flange being received in the cutout.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi Hung
  • Patent number: 8837885
    Abstract: The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hong Seok Seo, Bong Je Park, Joon Tae Ahn, Jung-Ho Song
  • Patent number: 8837884
    Abstract: The optical semiconductor device includes a spot-size converter formed on a semiconductor substrate. The spot-size converter has a multilayer structure including a light transition region. The multilayer structure includes a lower core layer, and an upper core layer having a refractive index higher than that of the lower core layer. The width of the upper core layer is gradually decreased and the width of the lower core layer is gradually increased in the light transition region. Both sides and an upper side of the multilayer structure are buried by a semi-insulating semiconductor layer in the light transition region. Light incident from one end section of the spot-size converter is propagated to the upper core layer. The light transits from the upper core layer to the lower core layer in the light transition region, is propagated to the lower core layer, and exits from the other end section thereof.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: September 16, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Takanori Suzuki, Takafumi Taniguchi
  • Patent number: 8831396
    Abstract: A beam homogenizing apparatus includes at least one flexible optical fiber for receiving light, the flexible optical fiber including a homogenizing output portion having a tileable cross-section, the output portion for producing a substantially homogenized intensity profile for light emitted therefrom.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 9, 2014
    Assignee: nLIGHT Photonics Corporation
    Inventors: Kirk Price, Scott Lerner
  • Patent number: 8827572
    Abstract: A side-coupling optical fiber assembly comprises a first substrate (200), on a surface of which at least one concave groove is provided; an optical fiber (210) disposed in the concave groove; and a second substrate (220) disposed on the first substrate (200) and pressed on the optical fiber (210). The end of the optical fiber (210) between the first substrate (200) and the second substrate (220) is set as a slant surface (240), which is used for performing total reflection for the light beam transmitted in the optical fiber (210). A method for making the side-coupling optical fiber assembly is provided.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: September 9, 2014
    Assignee: Wuhan Telecommunication Devices Co., Ltd.
    Inventor: Dan Zhou
  • Patent number: 8824839
    Abstract: An optical coupling device includes an optical fiber holder configured to hold an optical fiber, a wavelength conversion member including a phosphor and an optical characteristic matching member and a wavelength conversion member holder configured to hold the wavelength conversion member. The optical coupling device includes a first region which is formed on an end face of the optical fiber and an end face of the wavelength conversion member, which are optically coupled, when bonding the optical fiber holder and the wavelength conversion member holder, and in which foreign bodies that shield the laser beam are removed from an optical axis of the optical fiber and an optical axis of the wavelength conversion member and a second region which is formed outside the first region when bonding the optical fiber holder and the wavelength conversion member holder, and in which the foreign bodies removed from the first region flow.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 2, 2014
    Assignee: Olympus Corporation
    Inventor: Yoshinori Tanaka
  • Patent number: 8821035
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: September 2, 2014
    Assignee: Flir Systems, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Patent number: 8824036
    Abstract: A thermally stabilized, high speed, micrometer-scale silicon electro-optic modulator is provided. Methods for maintaining desired temperatures in electro-optic modulators are also provided. The methods can be used to maintain high quality modulation in the presence of thermal variations from the surroundings. Direct current injection into the thermally stabilized electro-optic modulator is used to maintain the modulation performance of the modulator. The direct injected current changes the local temperature of the thermally stabilized electro-optic modulator to maintain its operation over a wide temperature range.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: September 2, 2014
    Assignee: Cornell University
    Inventors: Sasikanth Manipatruni, Rajeev Dokania, Alyssa B. Apsel, Michal Lipson
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 8805138
    Abstract: A method of manufacturing an optical path change optical connector, the method including: resin-molding a core part, the core part including an optical-fiber-hole-formed portion having an optical fiber hole, and a positioning structure portion for positioning the core part with respect to the circuit board; inserting an optical fiber into the optical fiber hole; and over-molding the core part with light-transmitting resin, covering a front end face of the optical-fiber-hole-formed portion and forming an inclined internal reflective surface opposite to the front end face of the optical-fiber-hole-formed portion, such that the inclined internal reflective surface is positioned to reflect light between the optical fiber inserted into the optical fiber hole and an optical element disposed on a circuit board on which the core part is mounted.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: August 12, 2014
    Assignee: Fujikura Ltd.
    Inventor: Akito Nishimura
  • Patent number: 8805128
    Abstract: A sensing device for detecting a physical parameter exemplified by pressures, strains, temperatures, indices of refraction, and combinations thereof. The sensing device comprises a probe having a housing for sealably mounting therein an optical fiber. The optical fiber is provided at its distal end with at least two spaced apart fiber Bragg gratings. The proximal end of the probe is engagable with a holder, and is in communication with fiber Bragg grating interrogation systems. Spacers and seals may be provided about the optical fiber between the fiber Bragg gratings. An orifice may be provided and sealed with a resilient membrane to provide a contained airspace around each fiber Bragg grating. The contained airspace may be optionally filled with a fluid or a gas.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: August 12, 2014
    Assignee: UVic Industry Partnerships Inc.
    Inventors: Peter Martin Wild, Christopher Raymond Dennison, David Andrew Singlehurst, Chris Bueley
  • Patent number: 8805131
    Abstract: An optical module includes an optical waveguide that transmits and outputs signal light; a circuit board that transmits the signal light output from the optical waveguide, and includes a low refractive-index portion that neighbors and surrounds a transmissive portion and has a lower refractive index than the transmissive portion, which transmits the signal light; and a light-receiving element that includes, on a side toward the circuit board, a light-receiving portion that receives the signal light that has transmitted through the circuit board, where the signal light is reflected toward the light-receiving element at a boundary surface between the transmissive portion and the low refractive-index portion.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Patent number: 8798415
    Abstract: A light diffuser panel for coupling to an optical element, includes a substrate with a first surface that is diffusive to a plurality of wavelengths of light and a second surface, wherein the substrate comprises a material with a refractive index nin that is greater than a refractive index nd of a medium outside of the first surface, ?min is a minimum wavelength of the plurality of wavelengths of light, ?max is a maximum wavelength of the plurality of wavelengths of light, the first surface is a diffractive grating surface with a grating period P, the grating period P is greater than ?max/(nd+nin), and P is smaller than ?min.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Panasonic Corporation
    Inventor: Yosuke Mizuyama
  • Publication number: 20140211476
    Abstract: An optical waveguide includes a body of optically transmissive material having a width substantially greater than an overall thickness thereof and including a first side, a second side opposite the first side, a central bore extending between the first and second sides and adapted to receive a light emitting diode, and extraction features on the second side. A light diverter extends into the central bore for diverting light into and generally along the width of the body of material. The extraction features direct light out of the first side and wherein at least one extraction feature has an extraction surface dimension transverse to the thickness that is between about 5% and about 75% the overall thickness of the body of material.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Inventor: Cree, Inc.
  • Publication number: 20140211497
    Abstract: An optical waveguide includes a body of optically transmissive material defined by outer edges and having a width substantially greater than an overall thickness thereof. The body of optically transmissive material includes a first side and a second side opposite the first side. An interior coupling cavity is defined by a surface intersecting the second side and extends from the second side toward the first side. The interior coupling cavity is disposed remote from edges of the body and is configured to receive an LED element. The body of optically transmissive material further includes a first array of light mixing cavities surrounding the interior coupling cavity and an extraction feature disposed on one of the first and second sides. The light extraction feature at least partially surrounds the interior coupling cavity.
    Type: Application
    Filed: December 9, 2013
    Publication date: July 31, 2014
    Applicant: Cree, Inc.
    Inventors: Zongjie Yuan, Jiayin Ma, Kurt S. Wilcox, Eric J. Tarsa
  • Publication number: 20140211504
    Abstract: An optical waveguide assembly includes a plurality of separate body sections each having a coupling cavity for receiving an LED element and a light extraction feature spaced from the coupling cavity, and a mounting structure surrounding the plurality of body sections that maintains the plurality of body sections in assembled relationship. The waveguide assembly may be incorporated into a light engine.
    Type: Application
    Filed: December 9, 2013
    Publication date: July 31, 2014
    Applicant: Cree, Inc.
    Inventors: Zongjie Yuan, Kurt S. Wilcox, Jiayin Ma
  • Patent number: 8792754
    Abstract: A modalmetric fiber sensor comprising a multimode sensor fiber; a light source for launching light into the multimode sensor fiber to produce a multimode speckle pattern of light at an end of the multimode sensor fiber; a single mode fiber to receive light from the multimode speckle pattern; a detector connected to the single mode fiber to detect the received light from the speckle pattern; and a further multimode fiber disposed between the end of the sensor fiber and the single mode fiber such that the single mode fiber receives light from the speckle pattern by transmission through the further multimode fiber and the received light includes higher order modes regenerated in the further multimode fiber, wherein the further multimode fiber is overfilled with received light from the speckle pattern.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 29, 2014
    Assignee: Future Fibre Technologies Pty Ltd
    Inventors: Yuvaraja Visagathilagar, Jim Katsifolis, Bernhard Koziol
  • Publication number: 20140205238
    Abstract: An optical fiber coupling connector of compactness includes a main body, and first and second layers of optical fibers which are all parallel. The main body includes an upper surface, a lower surface, a front surface, and a back surface. The upper surface carries a row of light-emitting optical fibers and the lower surface carries a row of light-receiving optical fibers. The upper surface partially or entirely overlaps the lower surface perpendicularly. The light-emitting fibers are fixed in the upper surface with first glue body and any excess glue flows to and collects by a recess in the upper surface. The light-receiving fibers are fixed in the lower surface with second glue body and any excess glue flows to and collects in a recess in the lower surface.
    Type: Application
    Filed: October 29, 2013
    Publication date: July 24, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHANG-WEI KUO