Electro-optic Patents (Class 385/8)
  • Patent number: 7580596
    Abstract: A non-volatile programmable electro-optical element alters absorption characteristics of an optical medium that comprises a transition metal oxide material by electrostatically moving oxygen vacancies into or out of the regions containing a wavefunction of an optical beam. A specific oxygen vacancy profile in the transition metal oxide material may be programmed into the optical medium. The oxygen vacancy profile alters an absorption profile within the optical medium. Once the absorption profile is set by an electrical signal, the optical element maintains its state even when the electrical signal is turned off. Thus, the programming node may be disconnected from a power supply network, thereby enabling a low power operation of the electro-optical element. Amorphous transition-metal oxides enable integration into back-end-of-line (BEOL) interconnect structures and do not have birefringence. The inventive electro-optical element may be employed for both the visible and the infrared wavelength spectrum.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gerhard I. Meijer, Thilo H. C. Stöferle
  • Patent number: 7570320
    Abstract: A waveguide having an adjustable index of refraction (or an adjustable optical path length, or for providing an adjustable optical phase delay) based in part on thermal effects in the waveguide. In one example, the waveguide may include a core for guiding a light beam through the waveguide; at least one cladding; liquid crystal material disposed within the waveguide; and at least one temperature control element, such as resistive heater, for receiving at least one control signal to control a temperature of at least a portion of the liquid crystal material; wherein the index of refraction (or the optical path length, or the optical phase delay of the light beam) of the waveguide is altered by an amount that is controlled by the control signal.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Vescent Photonics, Inc.
    Inventors: Michael H. Anderson, Scott D. Rommel, Scott R. Davis
  • Patent number: 7565039
    Abstract: Resistive heaters formed in two mask counts on a surface of a grating of a thermo optic device thereby eliminating one mask count from prior art manufacturing methods. The resistive heater is comprised of a heater region and a conductive path region formed together in a first mask count from a relatively high resistance material. A conductor formed from a relatively low resistance material is formed directly on the conductive path region in a second mask count. Thermo optic devices formed by these two mask count methods are also described.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 21, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Guy T. Blalock
  • Patent number: 7559486
    Abstract: Apparatuses and methods for forming wireless RF labels are claimed. In one embodiment, a flexible layer may be made to receive an array of integrated circuit chips The integrated circuit chips may be powered by a signal from a transmitter which beams the information to the wireless RF labels. The method includes coupling a plurality of integrated circuit chips to a flexible web material and advancing the flexible web material through a web processing apparatus. A metallization material is patterned on the flexible web material. The flexible web material can be coupled to a second web material.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 14, 2009
    Assignee: Alien Technology Corporation
    Inventor: Jeffrey Jay Jacobsen
  • Patent number: 7561760
    Abstract: An apparatus and a method for steering optical frequency beams using nanowire. A method includes providing one or more nanowire waveguide arrays, generating an optical frequency beam, wherein the optical frequency beam is incident on the one or more nanowire waveguide arrays, controlling the one or more nanowire waveguide arrays to produce a phase delay in the optical frequency beam as it traverses the nanowire waveguide array, wherein the phase delay causes the optical frequency beam to deflect upon exiting the one or more nanowire waveguide arrays, and steering the optical frequency beam exiting the one or more nanowire waveguide arrays by increasing or decreasing the phase delay, wherein the angle of deflection of the exiting optical frequency beam is determined by the amount of phase delay.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: July 14, 2009
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Aaron Anthony Pesetski, Silai V. Krishnaswamy
  • Patent number: 7561761
    Abstract: Various embodiments of the present invention are related to photonic systems and methods that can be used to encode data in carrier electromagnetic waves. In one embodiment of the present invention, a photonic system comprises a first waveguide configured to transmit a number of electromagnetic waves. The photonic system includes a photonic crystal with a resonant cavity and is configured to selectively and evanescently couple one or more of the electromagnetic waves from the first waveguide into the resonant cavity. The photonic system also includes a second waveguide positioned to transmit and extract one or more electromagnetic waves from the resonant cavity via evanescent coupling.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: July 14, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mihail Sigalas, Shih-Yuan Wang
  • Patent number: 7557978
    Abstract: An optical waveguide is formed of a stack of electro-optic effect films. A stress-relief layer is formed between a substrate and the optical waveguide. The stress-relief layer is comprised of a metal material having a thermal expansion coefficient of 10×10?6/° C. or higher, for example, a metal material whose major component is one of Au, Ag, and an alloy thereof, and has a function of relieving a binding force to the optical waveguide ascribable to the substrate.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: July 7, 2009
    Assignee: Fujitsu Limited
    Inventors: Keisuke Sato, Masao Kondo
  • Publication number: 20090154868
    Abstract: Provided are semiconductor opto-electronic integrated circuits and methods of forming the same. The semiconductor opto-electronic integrated circuit includes: an optical waveguide disposed on a substrate and including an input terminal and an output terminal; an optical grating formed on the optical waveguide; and an optical active device disposed on the optical grating and receiving an optical signal from the optical waveguide through the optical grating to modulate the optical signal.
    Type: Application
    Filed: May 8, 2008
    Publication date: June 18, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Mi-Ran PARK, O-Kyun Kwon, Jeong-Woo Park, Gyung-Ock Kim
  • Patent number: 7546005
    Abstract: An optical switch not having waveguide crossings, as in a matrix switch, enabling input/output path switching of N×N, and not increasing the optical loss or the size when the number of channels increases. The optical switch includes plural input ports 10 and plural output ports 17 and has a path switching function of the planar waveguide type. The input ports are connected to one ends of respective different sub-slab optical waveguides 12. The opposite side ends of the sub-slab optical waveguides 12 are optically coupled to one end of a common main slab optical waveguide 15 via arrayed optical waveguides 14. To the opposite side end of the main slab optical waveguide 15 are connected plural output ports 17. On the top of the arrayed optical waveguides 14, there are respectively arranged electrodes 13, each causing the difference in the refractive index of the respective optical waveguide.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: June 9, 2009
    Assignee: NEC Corporation
    Inventor: Masashige Ishizaka
  • Patent number: 7542631
    Abstract: An optical transmission system which provides bandwidth restricted optical signal comprises an input terminal (10) for accepting an electrical binary signal, an amplifier (12) for amplifying said electrical binary signal to the level requested for operating an electrical-optical converter (16) such as a Mach Zehnder light modulator, a bandwidth restriction means (14) which is for instance a low pass filter for restricting bandwidth of said electrical binary signal, and an electrical-optical conversion means (16) such as a Mach Zehnder light modulator for converting electrical signal to optical signal. Because of the location of the low pass filter (14) between an output of the amplifier (12) and the Mach Zehnder light modulator (16), the amplifier (12) may operate in saturation region to provide high level output signal enough for operating the Mach Zehnder light modulator, and a signal shaped by the low pass filter (14) is applied to the Mach Zehnder light modulator (16) with excellent waveform.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 2, 2009
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kazushige Yonenaga, Yutaka Miyamoto, Akihiko Matsuura
  • Patent number: 7542633
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 2, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7539374
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 26, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7536066
    Abstract: In a semiconductor chip module, a transmission optical waveguide device to be mounted in the proximity of the side face of a semiconductor chip on a circuit board includes an input optical waveguide to which light from an external light source is inputted, an output optical waveguide provided at a position displaced in a vertical direction to the surface of the circuit board in a mounted state on the circuit with respect to the input optical waveguide for outputting an optical signal to a different device, an optical path changeover structure for guiding light guided through the input optical waveguide to the output optical waveguide, and an optical modulator provided on the input optical waveguide or the output optical waveguide for modulating light from the external light source based on an electric signal from the semiconductor chip.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 19, 2009
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kato, Shigenori Aoki
  • Patent number: 7536065
    Abstract: The present invention provides an electro-optic gap-cell for waveguide deployment, including a first optical transmission medium formed in at least a portion of a device layer, a second optical transmission medium formed in at least a portion of the device layer, and a slot formed in at least a portion of the device layer, wherein the slot has at least one curved edge, and wherein the slot is disposed adjacent to the first and second transmission media.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: May 19, 2009
    Assignee: Dow Corning Corporation, Inc.
    Inventor: Terry Victor Clapp
  • Patent number: 7532776
    Abstract: A core layer of an optical waveguide is grown as a film comprised of an electro-optic material with a rhombohedral structure and grown above a substrate with (100) crystal orientation on a major face.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: May 12, 2009
    Assignee: Fujitsu Limited
    Inventors: Keisuke Sato, Masao Kondo, Masatoshi Ishii
  • Patent number: 7532379
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 12, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David A. B. Miller, Jonathan E. Roth
  • Patent number: 7532785
    Abstract: Various embodiments of the present invention are directed to photonic interconnects that can be used for on-chip as well as off-chip communications between computer system components. In one embodiment of the present invention, a photonic interconnect comprises a plurality of on-chip waveguides. Additionally, the photonic interconnect may include a plurality of off-chip waveguides, and at least one optoelectronic converter. The at least one optoelectronic converter can be photonically coupled to a portion of the plurality of on-chip waveguides, can be photonically coupled to a portion of the plurality of off-chip waveguides, and is in electronic communication with at least one computer system component.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 12, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Marco Fiorentino, Norman Paul Jouppi, Nathan Lorenzo Binkert, Robert Samuel Schreiber, Qianfan Xu
  • Publication number: 20090115957
    Abstract: A blue phase liquid crystalline material comprising a mixture comprising at least one bimesogenic compound and at least one chiral compound, wherein the material is capable of stable existence in the blue phase over a temperature range of at least 5° C. A process for the preparation of the above blue phase liquid crystalline material, an optical device comprising it, a process of mirrorless lasing and a slotted monolithic optical waveguide using it are also disclosed.
    Type: Application
    Filed: January 26, 2005
    Publication date: May 7, 2009
    Inventors: Harry Coles, Mykhaylo Pivnenko, Jonathan Hannington
  • Publication number: 20090116781
    Abstract: It is an object of the invention to realize an optical waveguide device having multiple functions or high performance, to improve the productivity of products, and to provide an optical waveguide device capable of suppressing deterioration of an operating characteristic of the optical waveguide device. An optical waveguide device includes: a thin plate 1 having a thickness of 20 ?m or less; and at least an optical waveguide 2 formed in the thin plate. The thin plate is bonded and fixed to a supporting substrate 5 with an adhesive 4 interposed therebetween, and a film having a higher refractive index than the thin plate and the adhesive is provided on a surface of the thin plate bonded and fixed to the supporting substrate so as to be in contact with or close to at least a part of the optical waveguide. Preferably, the thin plate is formed of a material having a nonlinear optical effect or an electro-optical effect.
    Type: Application
    Filed: March 6, 2007
    Publication date: May 7, 2009
    Applicant: Sumitomo Osaka Cement Co., Ltd.
    Inventor: Junichiro Ichikawa
  • Patent number: 7529433
    Abstract: The invention relates to an electro-optic modulator structure containing an additional set of bias electrodes buried within the device for applying bias to set the operating point. Thus the RF electrodes used to modulate incoming optical signals can be operated with zero DC bias, reducing electrode corrosion by electro-migration and other effects that can be present in non-hermetic packages. The bias electrodes include an upper split portion and an optically transparent lower portion. The optically transparent lower layer improves modulation frequency and reduces optical loss.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: May 5, 2009
    Assignee: JDS Uniphase Corporation
    Inventors: Karl Kissa, William J. Minford, Jason Jiazhan Xu, Glen Drake
  • Patent number: 7522784
    Abstract: The invention relates to an electro-optic directional coupler suitable for use as a variable optical attenuator at reduced voltages compared to those known in the prior art. The present invention has found that by careful selection of an asymmetric directional coupler geometry, the transfer function of the device can be shifted so that it has an operating point between maximum and minimum transmission. Signal electrodes driven in push pull configuration advantageously use this operating point to achieve significant reduction in operating voltages for switching to maximum or minimum transmission. Asymmetry is created in the directional coupler by forming the waveguides to have different propagation constants by a difference in waveguide width, depth, index of refraction or index profile.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: April 21, 2009
    Assignee: JDS Uniphase Corporation
    Inventors: Karl Kissa, David Glassner
  • Patent number: 7519241
    Abstract: The present invention relates to an optical device including a branching unit for making branches of incident light in a first branch ratio, a phase adjusting unit for adjusting the relationship in phase among branched lights obtained by the branching unit and a combining/branching unit for combining the lights after the phase adjustment by the phase adjusting unit and for then making branches of the combined light in a second branch ratio, at least one of the first branch ratio and the second branch ratio being previously set at a branch ratio other than 1:1. This can realize an optical device capable of properly selecting output light with a different wavelength chirp quantity.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 14, 2009
    Assignee: Fujitsu Limited
    Inventor: Masaharu Doi
  • Patent number: 7519249
    Abstract: Semiconductor optical modulator devices exhibiting improved chirp characteristics are constructed from a Mach-Zehnder structure having resonators positioned within each arm and a number of phases shifters positioned within the arms, and/or resonators.
    Type: Grant
    Filed: March 11, 2007
    Date of Patent: April 14, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Douglas Gill, Mahmoud Rasras
  • Patent number: 7519240
    Abstract: A wavelength independent multi-section optical coupler having at least three optical couplers, and at least two differential phase cells. Each optical coupler has two waveguides forming a coupling region having a net coupling value. The coupling value for each coupling region of the at least three optical couplers is different than the coupling values of the other two coupling regions. Each differential phase cell connects adjacent ones of said optical couplers. Each differential phase cell causes a differential phase shift in light signals traversing between the optical couplers, wherein the differential phase shifts of the differential phase cells, and the coupling value for each coupling region are chosen so as to minimize wavelength, and fabrication sensitivity of said wavelength independent multi-section optical coupler for a designed power splitting ratio.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: April 14, 2009
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, Wei Chen
  • Patent number: 7515774
    Abstract: Single fiber optical telemetry systems and methods are disclosed. The methods and systems facilitate input and output via a single fiber optic interface. The optical telemetry systems and methods also facilitate faster data transmission rates between surface and downhole equipment in oilfield applications.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: April 7, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Stephane Vannuffelen, Tsutomu Yamate, Bruno Gayral, Soon Seong Chee, Colin Wilson
  • Patent number: 7515779
    Abstract: An optical semiconductor device has a heater, an optical waveguide layer, a first electrode and a second electrode. The heater is provided on a first semiconductor region and has more than one heater segment coupled or separated to each other. The optical waveguide layer is provided in the first semiconductor region and receives heat from the heater. The first electrode is coupled to a connecting point of the heater segments adjacent to each other. The second electrodes are electrically common and are coupled to other ends of the heater segments in opposite side of the connecting point respectively.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 7, 2009
    Assignee: Eudyna Devices Inc.
    Inventor: Tsutomu Ishikawa
  • Patent number: 7515777
    Abstract: SiGe quantum wells where the well material has a lowest conduction band energy minimum at k=0 (the ? point of the first Brillouin zone) are provided. Quantum well structures that satisfy this condition have “Kane-like” bands at and near k=0 which can provide physical effects useful for various device applications, especially optical modulators. In the Si1-xGex material system, this condition on the band structure is satisfied for x greater than about 0.7. The quantum well barrier composition may or may not have Kane-like bands. Optical modulators and/or detectors according to the invention are suitable for inclusion in waveguide-based optical interconnects. Such interconnects can be on-chip interconnects or chip to chip interconnects.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: April 7, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yu-Hsuan Kuo, James S. Harris, Jr., David A. B. Miller
  • Publication number: 20090086302
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Application
    Filed: September 19, 2006
    Publication date: April 2, 2009
    Inventors: David A.B. Miller, Jonathan E. Roth
  • Patent number: 7509006
    Abstract: An optical device wherein an optical waveguide is formed on a dielectric substrate, the optical device includes an input part and an output part where the optical waveguide and corresponding optical fibers are connected. A stress layer is provided for at least one of the input part and the output part. The stress layer applies a stress to the optical waveguide so that an index of refraction of the optical waveguide is reduced.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: March 24, 2009
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Publication number: 20090074346
    Abstract: A hybrid EO polymer/sol-gel modulator in which the sol-gel core waveguide does not lie below the active EO polymer waveguide increases the higher electric field/optical field overlap factor ? and reduces inter-electrode separation d thereby lowering the modulator's half-wave drive voltage V?, reducing insertion loss and improving extinction.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 19, 2009
    Inventors: Nasser N. Peyghambarian, Robert A. Norwood, Yasufumi Enami, Christopher T. DeRose
  • Patent number: 7505649
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for routing.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: March 17, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7502530
    Abstract: A device 4 has a substrate 5, an optical waveguide 2 and modulation electrodes 1A, 1B, 1C. The substrate 5 is made of an electro-optic material and has a thickness of ?30 ?m at least in a region where the modulation electrode applies an electric field. The device has a ridge generated when the optical waveguide is formed, and the ridge has a height H (angstrom) and a width “W” (?m) whose product (H×W) is 7150 angstrom·?m or smaller to realize single mode propagation of light in the optical waveguide. The wave guide has branched parts in the region where the modulation electrode applied an electric field. The deviation of positions of peaks and bottoms in the extinction ratio curve can be reduced, by increasing the distance of the branched parts of the optical waveguide to ?46 ?m.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: March 10, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Jungo Kondo, Atsuo Kondo, Kenji Aoki, Osamu Mitomi
  • Publication number: 20090060409
    Abstract: Systems are disclosed that utilize electrical signals from detectors of an imaging focal plane array or antenna elements of an antenna array to modulate optical signals. Antenna or focal plane array elements are coupled to optical waveguides by way of whispering gallery mode resonators made of electro-optic material. The resonators modulate optical signals in the waveguides based on the electrical signals from the detectors/antenna elements. The signals received by the array are converted into the optical domain, allowing subsequent optical processing and/or distribution. Each detector/antenna element involved can be identified by the specific wavelength and waveguide through which its signal is coupled, enabling subsequent optical processing of the signals such as by wavelength division multiplexing systems. Additionally disclosed are imaging sensor photonic systems that include WDM components and other optical components such one or more optical narrow-band amplifiers and/or filters.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 5, 2009
    Applicant: Lockheed Martin Corporation
    Inventor: Thomas W. KARRAS
  • Patent number: 7499603
    Abstract: Methods, systems, and devices are provided for an electrooptical modulator. One method embodiment includes receiving an optical input signal to an electrooptical modulator. A first voltage input is applied to a first drive electrode associated with a first optical path in the electrooptical modulator. A second voltage input is applied to a second drive electrode associated with a second optical path in the electrooptical modulator at times alternative to applying the first voltage input to the first drive electrode.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: March 3, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: John A. Krawczak, Raymond J. Johnson
  • Patent number: 7499604
    Abstract: A process for fabricating an optically coupled resonant pressure sensor includes the steps of forming a sensor die including at least one optically coupled resonator from a first semiconductor substrate and forming a cap die including a fiber hole from a second semiconductor substrate. The sensor die and the cap die are aligned and bonded to form a resonant pressure sensor capsule. The fiber hole in the cap die is aligned with at least one resonator on the sensor die. Also disclosed is an optically coupled resonant pressure sensor formed from steps thereof.
    Type: Grant
    Filed: December 10, 2005
    Date of Patent: March 3, 2009
    Inventor: David W. Burns
  • Patent number: 7495822
    Abstract: The present invention relates to a frequency shifter in an optical path containing a continuous laser source, and it comprises at least two frequency shift modules placed in parallel and each containing an optical propagation medium, the optical path length of which is modified according to the desired frequency shift, each of these modules being controlled separately, this shifter comprising a switch (14) which is connected to the outputs of these modules and is controlled so as to choose, at each instant, the module providing the desired frequency shift, the switch delivering, at its output, a continuous optical beam whose frequency is adjusted by contiguous sections.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: February 24, 2009
    Assignee: Thales
    Inventors: Bertrand Baillon, Jean-Pierre Schlotterbeck, Alain Renard
  • Publication number: 20090046976
    Abstract: An electromagnetically responsive element includes sets of arrangements of self-resonant bodies, such as atoms or quantum dots that form an effective dielectric constant, typically at or near a resonance.
    Type: Application
    Filed: September 29, 2008
    Publication date: February 19, 2009
    Inventors: Daniel W. Hillis, Roderick A. Hyde, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Patent number: 7489836
    Abstract: A microchip includes optical layers with integrated waveguides and modulators. A continuous wave light beam coupled to incoming waveguide(s) is modulated and transmitted off-chip by outgoing waveguides coupled to optical interconnects.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: February 10, 2009
    Assignee: Intel Corporation
    Inventors: Brandon C. Barnett, Bruce A. Block
  • Publication number: 20090027758
    Abstract: A reversible coloring and deccoloring solid-state device includes a solid-state electrolyte film and a coloring and decoloring film which colors or decolors the coloring and decoloring film reversibly by applying an electric field. A barrier thin film is inserted between the solid-state electrolyte film and the coloring and decoloring film. The barrier thin film comprises at least one layer which is formed by a material having a band gap energy, functions as a barrier for the carrier movement, and has a thickness of 7 nm to 7±2 nm which does not prevent ion conduction. The coloring and decoloring speed is 0.1 seconds to 0.3 seconds by a voltage driving.
    Type: Application
    Filed: March 20, 2006
    Publication date: January 29, 2009
    Applicant: NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Nobuyoshi Koshida, Hideo Yoshimura
  • Patent number: 7474825
    Abstract: A method of forming an optical structure includes forming a circular grating resonator (CGR) on a substrate, the CGR including a center disc and a plurality of concentric rings spaced from one another; forming an input planar waveguide and an output planar waveguide on the substrate, the input planar waveguide and the output planar waveguide optically coupled to the CGR; and forming an electrode pair on the substrate, coplanar with the input and output planar waveguides, the electrode pair comprising an electrically conductive material in contact with opposing ends of the center disc of the CGR so as to render the CGR capable of electro-optical control.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Folkert Horst, Nikolaj Moll
  • Patent number: 7471852
    Abstract: An optical modulator has a waveguide on which propagation light is incident, a metal layer located adjacent to the waveguide and having a periodic structure which periodically extends along at least in a propagation direction of the waveguide, and a dielectric layer located adjacent to a surface of the metal layer which is opposite a surface to which the waveguide is adjacent, the dielectric layer having an electrooptical effect.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: December 30, 2008
    Assignee: Panasonic Corporation
    Inventor: Hidenobu Hamada
  • Patent number: 7471853
    Abstract: In an optical modulator according to the invention, with respect to two MZ type optical modulators connected to each other in tandem by a curved folded waveguide on an identical substrate, a longitudinal direction of an MZ type optical waveguide unit on an optical input port side is obliquely arranged to a longitudinal direction of an MZ type optical waveguide unit on an optical output port side, and a curvature radius of the curved folded waveguide is made larger than a half of an interval between the optical input/output ports to decrease a length of a feeder portion of a signal electrode corresponding to the MZ type optical waveguide unit on the input side. Therefore, a loss of an electric signal propagated through the signal electrode can be reduced.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 30, 2008
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7466878
    Abstract: A polarization controller includes a phase retarder having a rotation about an {1,0,0} axis that receives an optical signal from a waveguide structure. At least one nanoelectromechanical dielectric perturber produces ±45° birefringent axes by placing the at least one nanoelectromechanical dielectric perturber at selective positions around the phase retarder to produce dynamic change in the effective index in one of the modes existent in an extraordinary axial direction.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 16, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Poh-Boon Phua, Chee Wei Wong, Erich P. Ippen
  • Patent number: 7460739
    Abstract: An optical modulator comprises a Z-cut lithium niobate substrate (21) on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides (23, 25) lying beneath a buffer layer of dielectric material (27). First and second ground electrodes (29, 33) and a hot electrode (31) are disposed on the buffer layer (27), the first and second ground electrodes (29, 33) being spaced either side of the hot electrode (31), the hot electrode (31) and the first ground electrode (29) being proximate to at least apart of the respective waveguides (25, 23). The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: December 2, 2008
    Assignee: Avanex Corporation
    Inventors: Giovanni Gilardi, Paolo Milanese, Simone Pensa
  • Publication number: 20080279498
    Abstract: Methods of fabricating a microelectromechanical systems (MEMS) device with reduced masking and MEMS devices formed by the same are disclosed. In one embodiment, a MEMS device is fabricated by laminating a front substrate and a carrier, each of which has components preformed thereon. The front substrate is provided with stationary electrodes formed thereover. A carrier including movable electrodes formed thereover is attached to the front substrate. The carrier of some embodiments is released after transferring the movable electrodes to the front substrate. In other embodiments, the carrier stays over the front substrate, and serves as a backplate for the MEMS device. Features are formed by deposition and patterning, by embossing, or by patterning and etching. In some embodiments in which the MEMS device serves as an interferometric modulator, the front substrate is also provided with black masks to prevent or mitigate bright areas in the actuated state of the MEMS device.
    Type: Application
    Filed: September 27, 2007
    Publication date: November 13, 2008
    Applicant: QUALCOMM Incorporated
    Inventors: Jeffrey Brian Sampsell, Brian James Gally, Philip Don Floyd
  • Patent number: 7447389
    Abstract: An optical modulator includes a signal electrode for application of modulation signals whereby light propagated over an optical waveguide is modulated, and bias electrodes for application of a bias voltage for controlling an operating point for the modulation signals. A buffer layer is provided between a substrate exhibiting electro-optical effect and the bias electrodes, but at regions where no optical waveguide is formed beneath the bias electrodes, no buffer layer is provided, and the bias electrodes are provided directly upon the substrate. This configuration enables bias voltage to be reduced.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: November 4, 2008
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7447395
    Abstract: A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which then transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 4, 2008
    Assignee: SiOptical, Inc.
    Inventors: Robert Keith Montgomery, Margaret Ghiron, Prakash Gothoskar, Paulius Mindaugas Mosinskis, Vipulkumar Patel, Kalpendu Shastri, Mark Webster
  • Patent number: 7440643
    Abstract: A variable light controlling device comprising a substrate, an optical waveguide disposed on the substrate, a first heater and a second heater to change the optical waveguide's temperature is fabricated. And a total amount of the power supplied to the first and the second heater, or a total amount of heat emitted from both of the first and second heater, is maintained substantially constant. Then, the substrate is protected from temperature changes, thereby, stable and quick wavelength tuning operations are realized.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 21, 2008
    Assignee: NEC Corporation
    Inventor: Hiroyuki Yamazaki
  • Patent number: 7440642
    Abstract: An integrated optical modulator and method for manufacturing thereof are disclosed. The integrated optical modulator comprises a carrier wave band modulator using a double sideband modulation method and an intermediate frequency band modulator using a single sideband modulation method. The carrier wave band modulator and the intermediate frequency band modulator are connected in series. A method for manufacturing an integrated optical modulator comprises preparing a substrate having at least one polarization reversed section, forming a first optical waveguide part and a second optical waveguide part on the substrate, forming a buffer layer over the first and second optical waveguide parts, forming sequentially a first electrode part and a second electrode part over the first optical waveguide part, and forming a third electrode part over the second optical waveguide part.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 21, 2008
    Assignee: Korea Electronics Technology Institute
    Inventors: Woo Kyung Kim, Woo Seok Yang, Han Young Lee, Hyung Man Lee
  • Patent number: 7437026
    Abstract: A device with optical switching between multiple layers of a semiconductor die is disclosed. In one aspect of the present invention, the disclosed apparatus includes a first semiconductor material layer of a semiconductor die. The first semiconductor material layer has a first optical waveguide. A second semiconductor material layer is also included in the semiconductor die. The second semiconductor material layer has a second optical waveguide. An insulating layer is disposed between the first and second semiconductor material layers such that there is an evanescent coupling between the first and second semiconductor material layers. There are modulated charge layers proximate to the insulating layer such that a coupling length of the evanescent coupling is controlled in response to the modulated charge layers.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: October 14, 2008
    Assignee: Intel Corporation
    Inventors: Remus Nicolaescu, Mario J. Paniccia