Transceiver Patents (Class 398/22)
  • Patent number: 7687763
    Abstract: A light-powered data acquisition and control system immune to electromagnetic interference employs smart sensors in a network configuration capable of decentralized communication. A smart sensor with integral transducer encloses a microprocessor, fiber optic transceiver, and photovoltaic converter within a Faraday cage. Optical fibers link plural sensors for duplex communication with a fiber optic splitter, which transmits high intensity light to the converter for powering the sensors. The sensor converts analog input from the transducer into bit packets for fiber optic transmission to the network via the splitter. Firmware in the splitter converts the bit packets to network protocol and vice versa enabling data communication among sensors, splitters, and control receivers. Verification algorithms for testing sensors are run automatically by the microprocessor or through commands issued via the network. Mnemonics stored in the sensors provide automatic updating of system configuration.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 30, 2010
    Assignee: Northrop Grumman Corporation
    Inventors: Johannes F. Nyffenegger, Robert E. Redmer
  • Patent number: 7684700
    Abstract: The invention relates to an optical transmitting device. Particularly, the invention provides a loss-of-signal detecting device that detects a loss of an optical signal received by a terminal station or a relay station, in the order of an SD and an SF.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Limited
    Inventors: Yoshihiro Onoda, Takashi Sekiguchi, Takao Sumiya, Yoshihiro Kaneda
  • Patent number: 7684699
    Abstract: The invention concerns a transceiver module for an optical data network, comprising an optical interface for connection with an optical transmission line and an electrical interface for connection with a host board, wherein the electrical interface is suitable for providing the transceiver module with payload data to be sent on the optical transmission line and for providing the host board with payload data read from the optical transmission line, and further comprising monitoring means for monitoring the optical transmission line, which the transceiver module comprises an analyzing means for processing measuring data provided by the monitoring means in a statistical manner, and where the analyzing means is connected to the electrical interface for providing processed measuring data to the electrical interface. The inventive transceiver module is easy to install, and only a small amount of monitoring data needs to be transferred.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: March 23, 2010
    Assignee: Alcatel Lucent
    Inventors: Harald Schmuck, Thomas Pfeiffer, Jörg Hehmann
  • Patent number: 7668512
    Abstract: A system comprising a host and a transceiver coupled to the host is provided where the transceiver is configured to receive a request from a host and cause a test mode of operation to be entered in response to receiving the request.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: February 23, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Kevin Reid Woolf, Angeline Young Rodriguez, Peter H. Mahowald
  • Patent number: 7660532
    Abstract: A calibration method of an optical transceiver module includes the steps of receiving an input voltage, detecting an optical signal for generating an input power based on the optical signal, generating a compensating power based on the input voltage, and generating a calibrating power based on the compensating power and the input power.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: February 9, 2010
    Assignee: Delta Electronics Inc.
    Inventors: Chien-Shu Chiu, Yung-Yuan Cheng, Chiung-Hung Wang, Chih-Hsiao Chen
  • Patent number: 7657175
    Abstract: An optical communication device for detecting a defect in a standby optical fiber. An active optical output unit converts an electrical signal to an optical signal, and a standby optical output unit is provided as a substitute for the active optical output unit. An optical router is connected to the active optical output unit by an active optical fiber, and is also connected to the standby optical output unit by a standby optical fiber. The optical router outputs the optical signal received from the active optical output unit to the subsequent stage, and also outputs part of the optical signal to the standby optical output unit. A defect detector detects a defect in the standby optical fiber on the basis of the light level of the optical signal output from the optical router to the standby optical output unit through the standby optical fiber.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Yuichi Nagaki, Yoshiaki Shibayama
  • Patent number: 7653314
    Abstract: An optical transceiver that custom logs information based on input from a host computing system (hereinafter referred to as a “host”). The optical transceiver receives input from the host concerning which operational information to log; the operational information may include statistical data about system operation, or measured parameters, or any other measurable system characteristic. The input from the host may also specify one or more storage locations corresponding to the identified operational information. If one or more storage locations are specified, the optical transceiver logs the information to the corresponding storage locations, which may be an on-transceiver persistent memory, the memory of the host or any other accessible logging location. Additionally, the input from the host may specify one or more actions to be performed when the identified information is logged. If one or more actions are specified, the optical transceiver performs the specified actions when the information is logged.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: January 26, 2010
    Assignee: Finisar Corporation
    Inventors: Gerald L. Dybsetter, Luke M. Ekkizogloy, Jayne C. Hahin
  • Patent number: 7650070
    Abstract: An operational optical transceiver microcontroller configured to initiate a self-test using internalized loop backs. The microcontroller includes a memory, at least one processor and a number of input and output terminals. The output terminals are coupled to internally corresponding input terminals by a configurable switch. The memory receives microcode that, when executed by the processor, causes the microcontroller to close the switches so as to internally connect the output and input terminals. A signal is then asserted on the output terminal. This signal loops back and is received by the input terminal. The processor may then detect the microcontroller's response to the signal.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: January 19, 2010
    Assignee: Finisar Corporation
    Inventors: Jayne C. Hahin, Gerald L. Dybsetter, Luke M. Ekkizogloy
  • Patent number: 7639952
    Abstract: Systems and methods are provided for determining and compensating for the laser slope efficiency of a light source positioned in an optical transmitter in order to properly set a modulation current for the light source. In one embodiment, a method for setting a modulation current for the laser of an optical transmitter is disclosed, wherein data relating to the laser transmit power and laser bias current at a plurality of laser bias current levels are sensed. A processor is then employed to calculate a slope efficiency of the laser using the data. The processor then determines a desired modulation current for the laser using the slope efficiency. Then if needed, the modulation current of the laser is modified to match the desired modulation current.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: December 29, 2009
    Assignee: Finisar Corporation
    Inventor: Stephen T. Nelson
  • Patent number: 7630632
    Abstract: A method for measuring the high speed behavior of fiber optic transceivers and transceiver modules. The method includes providing a fiber optic transceiver, performing one or more low speed performance tests on the fiber optic transceiver at each of a plurality of temperatures across transceiver operating temperature range, and performing a high speed performance test suite on the fiber optic transceiver at a single temperature within the testing temperature range. Based on the low speed performance tests and the high speed performance test suite at the single temperature, the method can determine, via calculation, approximation or prediction, the high speed behavior of the transceiver over temperature. The basis for determining the high speed behavior of the transceiver also can include the measured or available modeled relationships of high speed performance characteristics of at least a portion of the transceiver to the temperature-dependent parameters measured in the low speed performance tests.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: December 8, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: David W. Dolfi
  • Patent number: 7630631
    Abstract: Out-of-band data communication of diagnostic or other data is performed using transceivers in a data or communication network. A light beam or other carrier is modulated with high-speed data and out-of-band data to create a double modulated data signal. A physical layer signal is created that includes modulations of the double modulated signal. The physical layer signal is transmitted onto a physical link. The diagnostic or other data can be transmitted in the out-of-band signal without substantially reducing or otherwise interfering with the transmission rate of the high-speed data.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: December 8, 2009
    Assignee: Finisar Corporation
    Inventors: Lew Aronson, Lucy Hosking, Marcin Matuszkiewicz, Beck Mason
  • Patent number: 7620317
    Abstract: A loss of signal assert and de-assert level programming mechanism in an optical transceiver coupled to a host computing system. A control module is connected to the host so as to receive the programmable loss of signal level. A post-amplifier detects when the receive power drops below a loss of signal level. However, in this case, instead of the loss of signal level being static, a loss of signal level adjustment mechanism changes the loss of signal level detected by the post-amplifier as directed by the programmable loss of signal level received from the host. The loss of signal assert and de-assert levels may be calibrated by comparing receive power to the threshold for assertion and de-assertion of the loss of signal.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: November 17, 2009
    Assignee: Finisar Corporation
    Inventors: James Stewart, Anthony Ho, Lucy G. Hosking
  • Patent number: 7613393
    Abstract: A transceiver module having integrated eye diagram opening functionality for reducing jitter is described. The transceiver module may include a transmitter eye opener and a receiver eye opener integrated in single circuit. The transceiver module may also include serial control and various other integrated components. Other functionalities that may be integrated on the transceiver module include loopback modules, bypass features, bit error rate testing, and power down modes.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 3, 2009
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Rudy Hofmeister, Christopher Madden, Mark Farley, Dan Case, Tom Lenosky
  • Patent number: 7613392
    Abstract: A communication network comprising at least one first terminal, at least one second terminal, a plurality of links, and at least first and second nodes. The first node is bidirectionally coupled to the first terminal through at least a first one of the links, and also is bidirectionally coupled to the second terminal through at least a second link and the second node. Preferably, the first node comprises a plurality of communication paths, each of which is coupled at a first end thereof to at least one corresponding first link. Second ends of the communication paths are all coupled to the second link, through a multiplexing device, and route signals between the first and second links. The first node also preferably comprises at least one alternate communication path having a first end coupled through the multiplexing device to the second link, at least one switch that is coupled to the alternate communication path, and a detector for detecting a failure in at least one of the communication paths.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: November 3, 2009
    Assignee: Tellabs Operations, Inc.
    Inventor: Ornan A. Gerstel
  • Publication number: 20090269053
    Abstract: A method and apparatus for detecting Passive Optical Network (PON) failures, and a PON system are provided to obtain the monitoring information of a peer device before a PON system failure occurs. The method includes: obtaining monitoring information of an Optical Line Terminal (OLT) and an Optical Network Unit (ONU); and determining a failure of a passive ONU according to the obtained monitoring information of the OLT and the ONU. The monitoring information of the peer device is obtained before a PON system failure occurs. Thus the failure is discovered in time, quick troubleshooting is ensured, and the costs of system maintenance are reduced.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 29, 2009
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Sulin Yang
  • Publication number: 20090257744
    Abstract: A transceiver system includes a transceiver; and a transceiver control apparatus. In the transceiver, a determining circuit determines whether a reception signal group including a transmission data is in a normal state or in an abnormal state. A control circuit reads the transmission data from a buffer section when a determination result indicates that the reception signal group is in the normal state, to generate a transmission instruction, and discards the transmission data when the determination result indicates that the reception signal group is in the abnormal state. A transmitting circuit generate a transmission signal based on the transmission instruction.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 15, 2009
    Inventor: Hiroshi YAMAMOTO
  • Patent number: 7567758
    Abstract: A transceiver module having intergrated eye diagram opening functionality for reducing jitter is describe. The transceiver module may transmitter eye opener and a receiver eye opener integrated in a single circuit. The transceiver module may also include serial control and various other integrated components. Other functionalities that may be integrated on the transceiver module include loopback modes, bypass features, bit error rate testing, and power down mode.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 28, 2009
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Rudy Hofmeister, Christopher Madden, Mark Farley, Dan Case, Tom Lenosky
  • Patent number: 7551850
    Abstract: A method is disclosed for providing highly available, redundant optical modules using a single network connection in a data processing system. An embedded network interface or network adapter card that occupies one network slot is included and includes a plurality of optical modules. The embedded network interface or network adapter card is used to communicate with a network utilizing one of the optical modules. One of the optical modules is currently designated as an active module. A redundancy controller is included on the network adapter card. The redundancy controller detects a failure of the optical module that is currently designated as the active module and changes the active module designation from the failed optical module to a remaining one of the optical modules such that the remaining one of the optical modules becomes designated as the active module. The embedded network interface or network adapter card then begins utilizing the newly designated optical module to communicate with the network.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Mark Gregory Alana, Barry S. Barnett, Binh Thanh Chu, Casimer Maurice DeCusatis
  • Patent number: 7534054
    Abstract: An optoelectronic module for converting and coupling an information-containing electrical signal with an optical fiber including a housing having an electrical input for coupling with an external electrical cable or information system device and for transmitting and receiving information-containing electrical signals over such input, and a fiber optic connector adapted for coupling with an external optical fiber for transmitting and receiving an optical signal; an electro-optic subassembly coupled to the information containing electrical signal and converting it to and/or from a modulated optical signal corresponding to the electrical signal; and parametric storage means disposed in said housing for storing environmental and/or operational data associated with the module.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 19, 2009
    Assignee: Emcore Corporation
    Inventor: Clay E. Hudgins
  • Patent number: 7533254
    Abstract: An operational optical transceiver configured to preserve a portion of volatile memory during a warm reboot process. The optical transceiver includes a persistent memory, a processor, and a system memory. The system memory includes a preserved memory space. The optical transceiver loads microcode from the persistent memory to the system memory without writing into the preserved memory space. The processor processes the microcode and writes certain information into the preserved memory space that will be preserved during a warm reboot. The optical transceiver may then initiate a warm reboot and load microcode from the persistent memory to the system memory that overwrites the existing microcode. However, the information written in the preserved memory space is not overwritten by the microcode loaded from the persistent memory. In this way, a portion of the information contained in the system memory prior to the warm reboot is preserved.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: May 12, 2009
    Assignee: Finisar Corporation
    Inventors: Gerald L Dybsetter, Jayne C Hahin
  • Patent number: 7526200
    Abstract: An optical transmission apparatus includes optical transmitters for transmitting optical signals and first monitor units for monitoring optical signals from the optical transmitters. A multiplexer is provided for multiplexing the optical signals from the optical transmitters into a multiplexed signal. A second monitor unit is provided for monitoring each optical signal which is multiplexed in the multiplexed signal from the multiplexer. A processing unit is provided for comparing a first number of optical signals detected by the first monitor units and a second number of optical signals detected by the second monitor unit.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: April 28, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Hiroyuki Nakano, Yasuyuki Fukashiro
  • Patent number: 7522835
    Abstract: In a wavelength division multiplexed (WDM) optical communication system having optical transmitters and receivers communicating via a optical channels, the bit error rate (BER) for the optical channels is tested simultaneously by performing a BER measurement for the cascaded chain. A BER test signal is supplied from a BER tester to a first optical transmitter. The BER test signal passes through the optical channels. The last optical receiver in the cascaded chain supplies the test signal to the BER tester measure the BER. The measured BER is compared to a predetermined system BER threshold to determine if the optical channels meet their specified BER values. Each optical transmitter and receiver includes a performance monitoring circuit that monitors the quality of the BER signal supplied to the optical transmitter/receiver for identifying one or more optical channels that the measured BER exceeds a predetermined system BER threshold.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: April 21, 2009
    Assignee: Ciena Corporation
    Inventors: Jarod Guertin, Michael J. Ransford
  • Patent number: 7511259
    Abstract: A light-powered data acquisition and control system immune to electromagnetic interference employs smart sensors in a network configuration capable of decentralized communication. A smart sensor with integral transducer encloses a microprocessor, fiber optic transceiver, and photovoltaic converter within a Faraday cage. Optical fibers link plural sensors for duplex communication with a fiber optic splitter, which transmits high intensity light to the converter for powering the sensors. The sensor converts analog input from the transducer into bit packets for fiber optic transmission to the network via the splitter. Firmware in the splitter converts the bit packets to network protocol and vice versa enabling data communication among sensors, splitters, and control receivers. Verification algorithms for testing sensors are run automatically by the microprocessor or through commands issued via the network. Mnemonics stored in the sensors provide automatic updating of system configuration.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: March 31, 2009
    Assignee: Northrop Grumman Corporation
    Inventors: Johannes F. Nyffenegger, Robert E. Redmer
  • Publication number: 20090074405
    Abstract: In embodiments of the present invention, an optical device tester performs stressed eye testing on several optical receivers and transmission and dispersion penalty testing on optical transmitters at a variety of data rates wavelengths using single mode optical signals and multimode optical signals using a variety of supply voltages and temperatures.
    Type: Application
    Filed: November 19, 2008
    Publication date: March 19, 2009
    Inventors: Brad L. Inman, Jan P. Peeters Weem, Rob J. Hensel
  • Patent number: 7505684
    Abstract: A method for dynamically updating an optical transceiver (or optical transmitter or optical receiver) that has at least one processor and persistent memory that includes one or more write-protected memory locations. The write-protected memory locations of the persistent memory includes loader microcode that, when executed by the at least one processor, causes the optical transceiver to have access to a first set of functionality. In order to implement the invention, the optical transceiver first processes received microcode. Then, the processed representation of the received microcode is written to the persistent memory outside of the one or more write-protected memory locations. The optical transceiver then determines that all of the microcode that is to be written to the persistent memory during the update has been written to the persistent memory. Finally, the persistent memory is altered to reflect that the update is complete.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 17, 2009
    Assignee: Finisar Corporation
    Inventors: Gerald L Dybsetter, Luke M Ekkizogloy, Jayne C Hahin
  • Patent number: 7486889
    Abstract: A transceiver test module and method for testing an optical transceiver. An optical wrap interconnects the optical transmitter and optical receiver of an optical transceiver. A processor system reads information from an optical transceiver; provides a signal to the optical transceiver to operate the optical transceiver to transmit a signal at the optical transmitter, which is received via the optical wrap; detects diagnostic information from the optical transceiver for errors of the optical transceiver; and determines the rated speed of the optical transceiver from the read information. Operation of the optical transceiver at the rated speed is verified by the diagnostic information.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Wade Ain, Craig Anthony Klein
  • Patent number: 7474851
    Abstract: In embodiments of the present invention, an optical device tester performs stressed eye testing on several optical receivers and transmission and dispersion penalty testing on optical transmitters at a variety of data rates wavelengths using single mode optical signals and multimode optical signals using a variety of supply voltages and temperatures.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: January 6, 2009
    Assignee: Intel Corporation
    Inventors: Brad L. Inman, Jan P. Peeters Weem, Rob J. Hensel
  • Patent number: 7471897
    Abstract: A transceiver module having transmit data lines looped back to receive data lines that emulates faults without requiring optical subassemblies inside the module or optical test equipment external to the module. That data lines can be buffered for transparent probing of signals. One or more values directing emulation of a fault are received, such as over a two wire serial interface, and the fault is emulated. The values can be values for electronic pins of the transceiver module, values for operation status of the transceiver module or values for characteristics of signals within the transceiver module.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: December 30, 2008
    Assignee: Cisco Technology, Inc.
    Inventors: James T. Theodoras, II, Mattew L. Heston, Clinton D. McKnight
  • Publication number: 20080247752
    Abstract: An electro-optical transceiver module having at least one parallel optical transmit lane and at least one parallel optical receiver lane, the module comprising optical receiver lane signal detection circuitry to detect a loss of signal on one or more of the receive lanes, and optical transmit lane control circuitry to control a optical transmit lane corresponding to the receive lane, on which a loss of signal was detected to transmit a signaling mode optical signal indicating the loss of signal on the receive lane. In a multiple lane parallel optic embodiment, and by signaling a loss of a signal on a per lane basis, a break or fault in a sub-set of fibers of a parallel optical link will not result in the entire parallel optic link being lost.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 9, 2008
    Inventor: Xiaozhong Wang
  • Publication number: 20080240714
    Abstract: To shorten the service downtime as a communication system and to provide improved performance in communication by only checking if a device, in which the continuation of communication has become impossible, has recovered, a station terminating device includes: a connection management unit for maintaining without stopping a bandwidth allocation to a connected subscriber terminating device even when receiving a communication inability message from the subscriber terminating device; and a signal existence detection unit for detecting existence of a signal from the subscriber terminating device after receiving the communication inability message from the subscriber terminating device.
    Type: Application
    Filed: March 13, 2008
    Publication date: October 2, 2008
    Inventor: Yoshinori Tsukahara
  • Patent number: 7427164
    Abstract: The invention relates to an optical connector arrangement wherein the connector and the converter are connected by short plastic fiber sections. The aim of the invention is to provide one such connector arrangement which can be produced in a simple and cost-effective manner, can be easily and economically mounted on a circuit carrier and reliably and efficiently soldered to the conductors thereof, enables a modular assembly, and is at least partially heat-resistant during the assembly in such a way that, for example, a vibration-resistant reflow soldering can be carried out. To this end, the fiber sections are connected to a double ferrule which is fixed to the converters by means of a clamp. A false cover can be used for the transport and soldering.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 23, 2008
    Assignee: Molex Incorporated
    Inventor: Otto Schempp
  • Patent number: 7424221
    Abstract: An optical network terminal, which includes an optical transmitter, monitors the status of the optical transmitter, such as the output or the power consumption of the optical transmitter, to determine when the optical transmitter is illegally transmitting. When an illegal transmission is detected, the optical network terminal removes power from the optical transmitter.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: September 9, 2008
    Assignee: Tellabs Petaluma, Inc.
    Inventors: Clayton J. Emery, Richard B. Joerger
  • Publication number: 20080170852
    Abstract: An optical transponder, system, method, and program wherein the transponder monitors for at least one of a failure or an alarm signal. In response to detecting a failure or alarm signal (communication), the transponder performs at least one of a predetermined action and propagating an alarm communication to a network, based on a configuration property. The transponder can have a configuration property specifying a predetermined action for shutting off a laser if an alarm signal indicating a network failure is detected. As an example, some transponders can be configured to either provide an alarm communication, and/or shut off a laser, depending upon which communication interface detects a network failure or receives an alarm signal. Also, other transponders can be configured to propagate existing alarm communications, without generating new alarm communications or shutting off lasers.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Applicant: TELLABS OPERATIONS, INC.
    Inventors: Philip J. Santoro, Robert D. Gatze, Gregory V. Degnan, Eric L. Chan, Weiying Cheng
  • Patent number: 7400829
    Abstract: A transmission apparatus that receives an optical signal by selecting any one of a plurality of provided optical signal transmission paths through protection control is configured to include a plurality of optical signal outputting sections that output the optical signals transmitted through said optical signal transmission paths respectively as optical signals having wavelengths that are different from each other, a wavelength selective optical switch capable of selectively outputting light of a wavelength corresponding to any one of the optical signals coming from the optical signal outputting sections on the basis of the frequency of a controlling frequency signal, and an optical switch controlling section that supplies said controlling frequency signal to the wavelength selective optical switch so as to output the optical signal coming from the optical signal transmission path side that is selected by said protection control among the optical signals coming from the optical signal outputting sections.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 15, 2008
    Assignee: Fujitsu Limited
    Inventor: Kenji Watanabe
  • Patent number: 7394980
    Abstract: A channel transponder tests a circuit in a communication network. The channel transponder includes short reach receiver circuitry, long reach transmitter circuitry, long reach receiver circuitry, generator circuitry, short reach transmitter circuitry, and a connector. The short reach receiver circuitry receives a first short reach signal. The long reach transmitter circuitry transmits a first long reach signal based on the first short reach signal. The long reach receiver circuitry receives a second long reach signal. The generator circuitry generates a test signal. The short reach transmitter circuitry transmits a second short reach signal based on the second long reach signal and transmits the test signal from the generator circuitry to the circuit wherein the test signal is monitored over the circuit to determine performance of the circuit. The connector connects the generator circuitry to the short reach transmitter circuitry.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: July 1, 2008
    Assignee: Sprint Communications Company L.P.
    Inventor: Douglas Lew Richards
  • Patent number: 7346278
    Abstract: Circuitry for monitoring the operation of an optoelectronic transceiver includes a sequence of interconnected signal processing circuits for processing an analog input signal and producing a digital result signal, where the analog signal represents one or more operating conditions of the optoelectronic transceiver. The sequence of signal processing circuits include gain circuitry for amplifying or attenuating the analog input signal by a gain value to produce a scaled analog signal, an analog to digital converter for converting the scaled analog signal into a first digital signal, and digital adjustment circuitry for digitally adjusting the first digital signal to produce the digital result signal. The digital adjustment circuitry includes shifting circuitry configured to shift an input digital signal in accordance with a shift value so as to produce a digital shifted signal. The digital result signal is stored in memory in predefined locations accessible by a host.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: March 18, 2008
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Lucy G. Hosking, Daniel Case, Jayne Catherine Hahin, Gerald L. Dybsetter
  • Patent number: 7302190
    Abstract: In an optical transmitting or receiving apparatus, a plurality of replaceable electro-optic converters or a plurality of replaceable opto-electric converters are provided in correspondence with optical transmission lines.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: November 27, 2007
    Assignee: Nec Corporation
    Inventors: Masataka Goto, Kenji Sato
  • Patent number: 7295776
    Abstract: An ring type optical LAN device includes a master node and a plurality of slave nodes that are interconnected by an optical fiber cable. A plurality of optical bypass transmission lines are provided in correspondence with each one of the slave nodes. Each of the optical bypass transmission lines bypasses the corresponding one of the slave nodes. Each slave node includes an E/O converter and an optical cutoff circuit. Each of the E/O converters is controlled to flash for generating an optical signal, which is transmitted to a network. When any one of the slave nodes fails such that the corresponding E/O converter is maintained in a turned on state, the associated optical cutoff circuit forcibly switches the E/O converter to a turned off state. This suppresses a network crash caused by the failure maintaining the E/O converter in the turned on state.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 13, 2007
    Assignee: Pacific Industrial Co., Ltd.
    Inventors: Youichi Okubo, Michiya Katou, Shinichi Kawase
  • Patent number: 7283739
    Abstract: An optical network includes an optical ring and at least three subnets. Each subnet includes a plurality of add/drop nodes coupled to the optical ring. The add/drop nodes are operable to passively add a first traffic stream in a first direction on the optical ring and a second traffic stream in a second direction on the optical ring. The first traffic stream comprises different content than the second traffic stream, and the first traffic stream and the second traffic stream are transmitted on the same wavelength. The network also includes a plurality of gateway nodes. The gateway nodes are each coupled to the optical ring at a boundary between neighboring subnets and are operable to selectively pass and terminate wavelengths between subnets to allow wavelength reuse in the subnets.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Ashwin Anil Gumaste
  • Patent number: 7283740
    Abstract: An optical network includes a plurality of subnets. The subnets each include a plurality of add/drop nodes coupled to the optical ring and operable to passively add and drop traffic to and from the optical ring. The network further includes a plurality of gateway nodes. The gateway nodes are each coupled to the optical ring at a boundary between neighboring subnets and operable to selectively pass and terminate wavelengths between subnets to allow wavelength reuse in the subnets and to provide protection switching.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Ashwin Anil Gumaste
  • Patent number: 7263286
    Abstract: The present invention provides a fast testing system and method for optical transceiver, which integrates multiple testing machines in the testing environment for the optical transceiver, so that the user can employ the testing system for optical transceiver for rapid and simultaneous measurement of multiple products, and further improving the production efficiency. Moreover, with a combination of optical channel selector with a set of digital communication analyzer and spectrum analyzer, a plurality of products to be tested can be switched for parametric inspection, and by combining a tree coupler to synchronously transmit the measurement signals of the standard sample to the product to be tested in a multi-port transmission to further measure the bit error ratio. Thus, the product analysis report for the user is in real-time, so as to effectively improve the competitiveness of the industry.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: August 28, 2007
    Assignee: Faztec Optronics Corp.
    Inventor: Jack Peng
  • Patent number: 7242860
    Abstract: A network is protected against interruption of service while one or more faulty switches or optical fiber transmission lines are repaired or replaced, by an interconnecting configuration of small N×N optical input/output switches, where N is 2 or greater than 2. The switches are configured among protection and working transmission lines. The small number of fibers for each switch improves repair and installation connection reliability and permits configurations that flexibly meet differing requirements. Also the fault is monitored with a fault check signal.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 10, 2007
    Assignee: Hitachi America, Ltd
    Inventors: Hiroki Ikeda, Shigeki Kitajima, Shoichi Hanatani
  • Patent number: 7212740
    Abstract: The invention concerns a transmitter-receiver device (A, B) which comprises a receiver unit (RXA) for receiving optical signals and transmitter unit (TXA) for transmitting optical signals. Furthermore, the transmitter-receiver device (A, B) comprises a supervising unit (CUA) which supervises the functions of the receiver unit (RXA) and the transmitter unit (TXA). Furthermore, the transmitter-receiver device (A, B) comprises a transmitter circuit which transmits optical communication signals in response to a balanced electric input signal. The invention also concerns a communication system comprising two transmitter-receiver devices (A, B). Through the structure of the invention is by relatively simple means a well functioning device achieved, which, inter alia, makes it possible to supervise the status of the two transmitter-receiver devices (A, B) in an advantageous manner.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: May 1, 2007
    Assignee: Transmode Systems AB
    Inventor: Gunnar Forsberg
  • Patent number: 7162160
    Abstract: A single-chip integrated circuit, sometimes called a controller, controls operation of a transceiver having a laser transmitter and a photodiode receiver. The controller includes memory for storing information related to the transceiver, and analog to digital conversion circuitry for receiving a plurality of analog signals from the laser transmitter and photodiode receiver, converting the received analog signals into digital values, and storing the digital values in predefined locations within the memory. Comparison logic compares one or more of these digital values with predetermined setpoints, generates flag values based on the comparisons, and stores the flag values in predefined locations within the memory. Control circuitry in the controller shuts off the laser transmitter in response to comparisons of signals with predetermined setpoints that indicate potential eye safety hazards.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: January 9, 2007
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Lucy G. Hosking
  • Patent number: 7151894
    Abstract: A system (50) includes a communication path (170) and transmits data on a network (103, 106). A transmitter (101) transmits data on the network and a receiver (112) receives data from the network. A component (102, 114) in the communication path has a transfer characteristic (C1, C2, C3) adjusted in response to errors in data transmitted over and received from the network in order to reduce the error rate.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: December 19, 2006
    Assignee: Broadcom Corporation
    Inventors: Nong Fan, Tuan Hoang, Hongtao Jiang, Keh-Chee Jen
  • Patent number: 7099578
    Abstract: A communication network includes first and second terminals, nodes, and links. The first node is coupled to the first terminal through the first link, and coupled to the second terminal through the second link and the second node. The first node preferably includes communication paths, each coupled to one corresponding first link and to the second link, through a multiplexing device, and routing signals between the links. The first node also preferably includes an alternate communication path coupled through the multiplexing device to the second link, a switch coupled to the alternate path, and a detector detecting failure of a communication path. A controller is responsive to the detector detecting a failure in a communication path and controls the switch to couple the alternate path to a corresponding first link, thereby enabling a signal to be routed between that first and second links through the alternate path.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 29, 2006
    Assignee: Tellabs Operations Inc.
    Inventor: Ornan A. Gerstel
  • Patent number: 7079717
    Abstract: An On-Off control circuit between the IEEE1394a and IEEE1394b compliant physical layer (PHY) output driver circuitry and the glass fiber optical physical medium dependent (PMD) sub-layer within the architecture of the IEEE 1394b standard addresses the stability issue incurred by electronic circuit's inherent noise that interferes with the connection detecting procedure defined by the connection management protocol (CMP) of the IEEE 1394b standard. The circuit includes of a voltage divider to provide a reference voltage of about 50% of the output common mode voltage, a voltage comparator, and a feedback coupled to the positive input of the comparator to eliminate possible oscillation. The negative input of the comparator may be connected to the mid point of TPB termination network and the positive input of the comparator may be connected to the output of the voltage dividing circuit. The output of the comparator may be connected to the transmission enable bar input of the optical transceiver.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: July 18, 2006
    Inventors: Sam Liu, Yan Wang
  • Patent number: 7050720
    Abstract: A controller for controlling a transceiver having a laser transmitter and a photodiode receiver. The controller includes memory for storing information related to the transceiver, and analog to digital conversion circuitry for receiving a plurality of analog signals from the laser transmitter and photodiode receiver, converting the received analog signals into digital values, and storing the digital values in predefined locations within the memory. Comparison logic compares one or more of these digital values with limit values, generates flag values based on the comparisons, and stores the flag values in predefined locations within the memory. Control circuitry in the controller controls the operation of the laser transmitter in accordance with one or more values stored in the memory. A serial interface is provided to enable a host device to read from and write to locations within the memory.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: May 23, 2006
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Lucy G. Hosking
  • Patent number: 7044658
    Abstract: A high-speed optical transceiver for an integrated circuit (IC) includes a serializer-deserializer (SERDES) and a vertical cavity surface emitting laser (VCSEL) combined with a detector array. By covalently bonding the SERDES die to the IC, the two components can be processed simultaneously to produce a tightly aligned, high-speed data interface. The SERDES can be coupled to the VCSEL/detector array using a flex interconnect, or the VCSEL/detector array can also be covalently bonded to the IC or SERDES to maximize data bandwidth. The SERDES and VCSEL/detector array can also be produced in a single die using a process technology appropriate for both to maximize manufacturing efficiency.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 16, 2006
    Assignee: Xilinx, Inc.
    Inventors: Bernard L. Grung, Wayne L. Walters, Steven M. Baier
  • Patent number: 6999685
    Abstract: A physiological function assisting device 1 is embedded in the body, and is provided with a transmitter 11 and receiver 12 for communicating with an external controller 2. External controller 2 controls embedded physiological function assisting device 1 from the outside. External controller 2 is provided with a transmitter 21 and receiver 22 for communicating with physiological function assisting device 1. Transmitters 11,21 modulate the plane of polarization of laser light, and emit the result as a transmission signal. Receivers 12,22 selectively receive light of a specific polarization state. Receivers 12,22 respectively output electric signals corresponding to the polarization state (polarization angle or ellipticity) of the received light. As a result, full duplex communications between a strongly dispersing medium like the human body and the outside is possible, while the power consumed by the internal device can be reduced.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: February 14, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Takeo Kawase, Kazuhiko Amano, Shojiro Kitamura