Bit Error Rate Patents (Class 398/27)
  • Publication number: 20140161443
    Abstract: A system to provide carrier frequency control in an optical network includes a first network element monitoring performance information and a second network element coupled to the first network element by the optical network. The second network element receives performance information from the first network element using an administration channel bandwidth, and modifies a carrier frequency associated with the second network element based on the performance information such that the carrier frequency is aligned to a center of a signal channel bandwidth. A method of providing carrier frequency control includes transmitting performance information by the first network element to the second network element using an administration channel bandwidth, and modifying the carrier frequency by the second network element based on the performance information such that the carrier frequency is aligned to the center of the signal channel bandwidth.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventor: Xiang Zhou
  • Patent number: 8750713
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8713402
    Abstract: A transmission system carrying out sending and receiving of OTU frames has a first transmission device carrying out the sending of an OTU frame, and a second transmission device carrying out the receiving of the OTU frame. The first transmission device calculates BIP-8 for an objective calculation range preset in the OTU frame, inserts the calculation result into the OTU frame, and sends the same. The second transmission device calculates BIP-8 from the received OTU frame for the same objective calculation range as the first transmission device, compares the calculation result with the BIP-8 sent from the first transmission device, and detects any presence of transmission error. The calculation range is set in terms of one of an area including OPU only and an area at least including an arbitrary byte of OTU/ODU overhead.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 29, 2014
    Assignee: NEC Corporation
    Inventor: Kazunori Shinya
  • Patent number: 8699585
    Abstract: Transmitters for data communication can include a pattern generator configured to generate parallel data stream composed of k bits, k being a natural number greater than 2, a serializer configured to convert the parallel data stream into a serial data stream, a pre-emphasis circuit configured to pre-emphasize the serial data stream based on a pre-emphasis control value, to transmit the pre-emphasized serial data stream to a receiver via a first transmission line, and a pre-emphasis controller configured to receive measured values of transmission errors of the pre-emphasized serial data stream from the receiver via a second transmission line, and configured to set the pre-emphasis control value corresponding to a minimum measured value of the transmission errors, to an optimum pre-emphasis control value.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hitoshi Okamura
  • Patent number: 8687504
    Abstract: A system and method provide enhanced link loss forwarding in an Ethernet system to determine link degradation and to selectively block and re-establish transport between a near end device and far end device based on a SONET connection between end devices and link status detection using local packets. When an excessive number of errors are detected in an Ethernet port, a device enters a Links Off mode from a Transport mode where Ethernet ports are turned off at both ends of a circuit associated with the errors. A Block Transport mode is then entered where local packets (e.g., OAM packets) are monitored to evaluate link quality (e.g., SONET bit error rate). Transport mode is re-established when acceptable link quality is achieved for a selected period of time.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 1, 2014
    Assignee: Hubbell Incorporated
    Inventors: Gary Michael Miller, David Owen Corp
  • Patent number: 8682175
    Abstract: For an optical network link, a receiving node monitors optical performance and upon determination of lowered optical performance for an extended period of time, the node can signal a transmitting node to lower bit transfer rate from a nominal bit transfer rate. The receiving node has a transponder which has a digital electronic variable bandwidth filter to process the digitized signals at the lowered bit transfer rate to increase the SNR of the signals. Optical performance of the link is optimized although at the lowered bit transfer rate.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 25, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Fabrizio Forghieri, Luca Della Chiesa
  • Patent number: 8655169
    Abstract: Consistent with the present disclosure, based on system requirements or in response to an increase in optical signal-to-noise level of an optical channel, such as a WDM channel, additional FEC bits are inserted into and replace selected data payload bits in each frame carried by the channel. The replaced data payload bits may then be transmitted in subsequent frames on the same channel. As a result, the transmitted frames have a reduced data payload rate, but a higher coding gain. Alternatively, the replaced data payload bits may be included in frames transmitted on another optical channel. In that case, the frames carried by the two channels typically have the same bit length or number of bits and may thus be compliant with the frame length requirements of G.709, for example. Preferably, the number of coding bits may be changed dynamically to obtain different coding gains.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: February 18, 2014
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, David F. Welch
  • Patent number: 8649678
    Abstract: The technique for improving the efficiency in use of power resources while maintaining the received signal quality that satisfies the requirement during a system operation is disclosed. The frame processing apparatus disclosed in the present case includes: a frame processing unit which performs frame processing on an input signal in the designated error processing mode; and a controlling unit which receives the monitoring result relating to the signal quality of the input signal and performs switching control of the designation of the above error processing mode in the frame processing unit based on the received monitoring result.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: February 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Takeshi Hoshida, Katsumi Fukumitsu
  • Patent number: 8644704
    Abstract: In accordance with an embodiment of the present disclosure a method for adaptively spacing channels of an optical network comprises determining a first desired power level of a first channel of an optical network. The method further comprises determining a second desired power level of a second channel of the optical network, the second desired power level being less than the first desired power level. Additionally, the method comprises determining a first spectral space between the first channel and one or more channels neighboring the first channel based at least on the first desired power level. The method also comprises determining a second spectral space between the second channel and one or more channels neighboring the second channel based at least on the second desired power level, the second spectral space less than the first spectral space.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Motoyoshi Sekiya, Martin Bouda
  • Publication number: 20140023362
    Abstract: An apparatus including a polarization controller is described. The polarizer controller is communicatively coupled via a feedback loop to an evaluation module located near an optical receiver. The evaluation module is configured to measure polarization dependent loss (PDL) of an optical signal received at the optical receiver. The polarization controller is configured to receive feedback control data regarding the PDL from the evaluation module. Additionally, the polarization controller is configured to modify a state of polarization of the optical signal at an optical transmitter, which is communicatively coupled to the optical receiver, based on the feedback control data.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Olga VASSILIEVA, Inwoong KIM, Motoyoshi SEKIYA
  • Publication number: 20130336649
    Abstract: An optical transport system in which (i) an optical transmitter is configured to adaptively change an operative constellation to use a constellation that provides optimal performance characteristics for the present optical-link conditions and/or (ii) an optical receiver is configured to change shapes of the decision regions corresponding to an operative constellation to adapt them to the type of signal distortions experienced by a transmitted optical signal in the optical link between the transmitter and receiver. Under some optical-link conditions, the optical receiver might use a decision-region configuration in which a decision region corresponding to a first constellation point includes an area that is closer in distance to a different second constellation point than to the first constellation point.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: René-Jean Essiambre, Chongjin Xie
  • Publication number: 20130308937
    Abstract: In one embodiment, a media access controller includes first and second optical line terminals with a receiver for adjacent first and second wavelength ranges, respectively, and an optical network unit with a transmitter having a transmitter wavelength which drifts between the first and the second wavelength range. The media access controller is configured to assign the optical network unit to the first and the second optical line terminals, such that an optical burst transmitted by the optical network unit is received by the first optical line terminal and the second optical line terminal. The media access controller is configured to determine first and second qualities of the optical burst received by the first and second optical line terminals, respectively, and to determine an estimate of the transmitter wavelength based on the first quality and the second quality.
    Type: Application
    Filed: January 31, 2012
    Publication date: November 21, 2013
    Applicant: ALCATEL-LUCENT
    Inventors: Wolfgang Pöhlmann, Thomas Pfeiffer, Ronald Heron
  • Publication number: 20130294767
    Abstract: Embodiments of the present invention provide a method and device for optimizing performance of an optical module. The optical module includes: an optical receiver, configured to receive an optical signal from an optical network, convert the optical signal into a first electrical signal, and process the first electrical signal according to a set control parameter for performance optimization, so as to obtain a second electrical signal; a connector, configured to send the second electrical signal obtained by the optical receiver to a host connected to the optical module, so that the host obtains bit error information according to the second electrical signal, and configured to receive the bit error information delivered by the host; and a processor, configured to adjust, according to the bit error information of the connector, the control parameter for performance optimization of the optical receiver.
    Type: Application
    Filed: April 17, 2013
    Publication date: November 7, 2013
    Inventors: Changjun ZHANG, Bo WANG, Jianmin TANG, Leiying PAN
  • Patent number: 8548320
    Abstract: A method for monitoring wavelength-division multiplexed (WDM) signal for detecting signal drift of objective signals, including generation of one or more objective signals and a guard signal. The guard signal has a wavelength that is within a range defined by a guard channel. The first and second objective signals and the guard signal are wavelength-division multiplexed to generate a wavelength-division multiplexed signal. The first objective signal, the second objective signal, and the guard signal are assigned to a first multiplexed objective channel, a second multiplexed objective channel, and a multiplexed guard channel, respectively. The wavelength-division multiplexed signal is received by a monitor and then the error rate of the multiplexed guard channel is determined.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 1, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Howard J. Schantz, Brian L. Uhlhorn
  • Patent number: 8526812
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 3, 2013
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8521020
    Abstract: A forward error correction (FEC) communication device that includes a transmitter photonic integrated circuit (TxPIC) or a receiver photonic integrated circuit (RxPIC) and a FEC device for FEC coding at least one channel with a first error rate and at least one additional channel with a second error rate, wherein the first error rate is greater than the second error rate. The TxPIC chip is a monolithic multi-channel chip having an array of modulated sources integrated on the chip, each operating at a different wavelength, wherein at least one of the modulated sources is modulated with a respective FEC encoded signal. The TxPIC also includes an integrated wavelength selective combiner for combining the channels for transport over an optical link.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: August 27, 2013
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Drew D. Perkins, Fred A. Kish, Jr., Ting-Kuang Chiang
  • Publication number: 20130216219
    Abstract: An optical receiving device includes: an optical amplifier configured to amplify a wavelength multiplexed optical signal; a demultiplexer configured to demultiplex the amplified wavelength multiplexed signal into optical signals of a plurality of wavelengths; optical receivers configured to regenerate the demultiplexed optical signals; error correction units configured to correct a bit error in the regenerated optical signals; and main control unit. The control unit adjusts RXDTV of the optical receiver for receiving optical signals of a given wavelength to the optimal value in the state where the gain of the optical amplifier is lowered from that of a normal operation such that the occurrence of bit errors in the optical signals of the other wavelengths does not exceed the correction capability of the error correction unit.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 22, 2013
    Applicants: FUJITSU LIMITED, FUJITSU TELECOM NETWORKS LIMITED
    Inventors: FUJITSU TELECOM NETWORKS LIMITED, FUJITSU LIMITED
  • Publication number: 20130209092
    Abstract: An apparatus has frame loss detecting unit 14 for detecting frame loss of a data frame; dispersion amount control request transmission device for transmitting, when the frame loss detecting device 14 detects the frame loss in an undetected state of an input break of an optical signal by optical input break detecting unit 13, an optical signal of a dispersion amount control request pattern to the opposite apparatus at a bit rate lower than that for transmitting the optical signal of the data frame until the frame loss becomes undetected state; and dispersion amount control request receiving device for receiving the optical signal of the dispersion amount control request pattern transmitted from the opposite apparatus, wherein dispersion compensator 21 controls the dispersion amount of transmission line between the apparatus and the opposite apparatus when the dispersion amount control request receiving device receives the optical signal of a specific pattern.
    Type: Application
    Filed: December 24, 2010
    Publication date: August 15, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Shoichi Sato
  • Publication number: 20130202287
    Abstract: A correlation system, such as a correlation optical time domain reflectometer (OTDR) system, transmits a correlation sequence, such as an M-sequence, and measures the returns of the correlation sequence over time. The system correlates the transmitted sequence with the returns to provide correlation measurement values that respectively correspond to different distances from the point of transmission. A correlation error compensation element estimates a correlation error floor based on at least one correlation measurement value corresponding to a point along the fiber beyond a finite impulse response (FIR) length from the transmitter. The correlation error compensation element adjusts each correlation measurement value estimate in order to cancel the contribution of the correlation error floor from the measurements to provide compensated measurement values that are substantially free of the effects of the correlation error floor.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Inventor: Daniel M. Joffe
  • Patent number: 8483580
    Abstract: An open loop gain adjustment method and apparatus are provided for adjusting the gain of a TIA of an optical RX module based on measurements of the BER of the optical link in which the optical RX module is employed. The gain of the TIA is adjusted until a determination is made that a satisfactory or optimum link BER has been achieved.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: July 9, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Frederick W. Miller
  • Publication number: 20130170829
    Abstract: Coherent optical receiver performance is optimized and made adaptable to changing optical channel conditions by providing feedback loops to adjust receiver parameters based on measured receiver performance.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: OPNEXT SUBSYSTEMS, INC.
    Inventor: Sunil Kumar Singh Khatana
  • Publication number: 20130156420
    Abstract: A method for an adaptive forward error correction (FEC) in a passive optical network. The method comprises selecting an initial downstream FEC code to be applied on downstream data transmitted from an optical line terminal (OLT) to a plurality of optical network units (ONUs) of the PON; communicating the selected downstream FEC code to the plurality of ONUs; receiving at least one downstream bit error ratio (BER) value from at least one ONU of the plurality of ONUs, wherein the downstream BER value is measured respective to downstream data received at the at least one ONU; changing the selected downstream FEC code to a new downstream FEC code based on a plurality of downstream BER values measured by the at least one ONU; and communicating the new downstream FEC code to the plurality of ONUs.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: BROADLIGHT, LTD
    Inventors: Assaf Amitai, David Avishai, Eli Elmoalem
  • Patent number: 8463122
    Abstract: A method and apparatus for performing a path based quality check for a specified bit rate in a wavelength division multiplexing optical network is described. According to one embodiment of the invention, a method selects from a database one of the available paths as a currently selected path. The database stores a representation of the available paths from an access node of the optical network to other access nodes of the optical network. The method further determines a cumulative noise, cumulative chromatic dispersion, and a maximum allowable chromatic dispersion for the currently selected path. In addition, the method determines whether the currently selected path passes the path based quality check based on whether the cumulative noise is less than the maximum allowable noise at a specific bit rate and whether the chromatic dispersion is less than the maximum allowable chromatic dispersion at the specified bit rate.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 11, 2013
    Assignee: Dynamic Method Enterprise Limited
    Inventors: Santosh Kumar Sadananda, Christopher M. Look, Jeffery J. Maki
  • Patent number: 8463121
    Abstract: Methods and systems for receiving an optical signal using cascaded frequency offset estimation. Coherently detecting an optical signal includes compensating for a coarse laser frequency offset between a transmitting laser and a local oscillator laser by determining a maximum phase error (MPE) in the optical signal, compensating for a residual laser frequency offset between the transmitting laser and the local oscillator laser, and decoding data stored in the optical signal.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: June 11, 2013
    Assignee: NEC Laboratories America, Inc.
    Inventors: Lei Xu, Shaoliang Zhang, Jianjun Yu, Ting Wang
  • Publication number: 20130129348
    Abstract: A method of controlling a multiple sub-carrier optical channel of an optical communications system. The multiple sub-carrier optical channel includes at least two sub-carriers modulated with respective sub-channel data streams within a spectral range allocated to a single optical channel of the optical communications system. A transmitter modem of the optical communications system applies a respective dither signal to each sub-carrier. A receiver modem of the optical communications system detects a respective quality metric of each sub-carrier. A respective optimum power level of each sub-carrier is estimated based on the applied dither signals and the detected quality metrics. A respective power level of each sub-carrier is then adjusted in accordance with the estimated respective optimum power level of each sub-carrier.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 23, 2013
    Applicant: CIENA CORPORATION
    Inventors: Gary MAK, Mohammad SOTOODEH
  • Publication number: 20130089323
    Abstract: A method for optimal combined 2R/3R regenerators placement for optical transmission includes determining an optimal placement of multiple 2R and 3R regenerators that minimizes bit error rate BER at a destination node, determining an optimal number of the 2R and 3R regenerators that minimizes a total cost while satisfying the BER at the destination node, and determining an optimal placement of the 2R and 3R regenerators along a route in the optical transmission.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicant: NEC LABORATORIES AMERICA, INC.
    Inventor: NEC Laboratories America, Inc.
  • Patent number: 8417115
    Abstract: In one example embodiment, an optoelectronic module includes an optical receiver and a post-amplifier. The optical receiver is configured to receive an optical signal and generate an electrical data signal corresponding to the optical signal. The post-amplifier is electrically connected to the optical receiver and is configured to amplify the electrical data signal. The optoelectronic module further includes means for quantifying a quality of the optical signal from which the amplified electrical data signal is derived.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: April 9, 2013
    Assignee: Finisar Corporation
    Inventor: The′ Linh Nguyen
  • Patent number: 8412054
    Abstract: An optical receiver includes a first interferometer having a plurality of arms. The optical receiver further includes first tunable optical filters connected in series with the arms of the first interferometer, where each first tunable optical filter is tuned to filter a region of overlap in the optical frequency spectrum between adjacent optical channels.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 2, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: David Zhi Chen, E. Evert Basch
  • Publication number: 20130071108
    Abstract: A scheme is described for remote control of the wavelength of a tunable transmitter in a smart SFP transceiver, a smart SFP+ transceiver, a smart XFP transceiver, a smart duplex transceiver, a smart BiDi transceiver, or a smart SWF BiDi transceiver in a communication system using an operating system with OAM and PP functions; an OAM, PP & Payload Processor; a transceiver; an optical spectrum analyzer; a BERT; and an optical link in the field.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Inventors: Kwang Soo PARK, Moon Soo PARK
  • Patent number: 8396366
    Abstract: Optical safety functions are incorporated into protection switching modules which maintain redundant pathways to avoid interruptions in optical network connections. The optical safety functions which lower optical power levels upon interruptions of optical connections are effectively combined with protection switching procedures which are also triggered by interruptions in optical network connections. The interoperation of protection and safety processes keep optical power levels below hazardous levels at system points which might be accessible to human operators.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: March 12, 2013
    Assignee: Cisco Technology, Inc.
    Inventors: Cinzia Ferrari, Alberto Tanzi
  • Publication number: 20130039652
    Abstract: A scheme is described of remote control of the slicing level of a receiver in a smart SFP (or SFP+, or XFP) duplex (or BiDi, or SWBiDi) transceiver in a communication system using an operating system with OAM and PP functions, an OAM, PP & Payload Processor, a transceiver, a BERT, and an optical link in the field.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Inventors: Kwang Soo PARK, Moon Soo Park
  • Patent number: 8374513
    Abstract: An optical receiver includes an optical device that receives input light and converts the input light to an electric signal; an equalizer that carries out waveform shaping on the electric signal; an amplifier that amplifies the electric signal; a discrimination part that discriminates data of the electric signal; an input optical power detecting part that detects input optical power of the input light; and a control part that makes an error rate in the electric signal with respect to the input optical power worse when the input optical power detected by the input optical power detecting part is equal to or less than a value corresponding to minimum receiver sensitivity.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 12, 2013
    Assignee: Fujitsu Optical Component Limited
    Inventor: Yasushi Koiwai
  • Patent number: 8364033
    Abstract: Changes in a signal are detected. The signal is repeatedly sampled in a synchronous manner during a predetermined interval to generate a captured eye diagram. At least one of a positive differential eye diagram or a negative differential eye diagram is generated from the captured eye diagram and a baseline eye diagram. The at least one positive or negative differential eye diagram is analyzed to determine whether a change in signal conditions is present.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 29, 2013
    Assignee: Telcordia Technologies, Inc.
    Inventors: Ronald A. Skoog, Marcus Pang, Paul Toliver
  • Patent number: 8331778
    Abstract: A WDM transmission apparatus to receive or relay WDM light in a WDM transmission system, includes a measuring unit configured to measure an optical level of each channel transmitted by the WDM light; an adjusting unit configured to adjust a resolution of the measuring unit; and a processing unit configured to obtain, for each channel, optical level information which represents an optical level respectively measured with a resolution corresponding to a bit rate of a transmission signal of each channel.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: December 11, 2012
    Assignee: Fujitsu Limited
    Inventor: Yoshihiro Shimizu
  • Publication number: 20120308230
    Abstract: A control apparatus for controlling an optical receiver having delay paths comprises an optical variable attenuator configured to generate a variable signal and provide the variable signal to the optical receiver; a fine control voltage controller configured to generate a variable fine control voltage and input the variable fine control voltage to one path of the delay paths of the optical receiver; a photo-diode voltage monitor configured to detect a first voltage value and a second voltage value; a bit error rate (BER) checker configured to estimate a bit error rate (BER) according to a signal output from the optical receiver; and a controller configured to set a value of the variable signal and a value of the variable fine control voltage and to estimate the fine control voltage that makes the bit error rate a minimum according to the first voltage value and the second voltage value.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Jyung-Chan LEE
  • Patent number: 8320758
    Abstract: A method for estimating optical power in an optical channel includes determining a tunable filter full-width, FWF, by measuring a response of the tunable filter to a known signal and mapping the response to frequency. A portion of an optical channel is coupled to an input of the tunable optical filter. A peak power response, PR, and a full width tunable filter response, FWR, to the optical channel are determined by measuring a response of the tunable filter to the optical channel and mapping the response to frequency. A signal power, PS, is then calculated from the peak power response, PR, and a ratio of the full width tunable filter response, FWR, to the tunable filter full-width, FWF.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 27, 2012
    Assignee: Aegis Lightwave, Inc.
    Inventor: Michael Cahill
  • Publication number: 20120294606
    Abstract: A system and method provide enhanced link loss forwarding in an Ethernet system to determine link degradation and to selectively block and re-establish transport between a near end device and far end device based on a SONET connection between end devices and link status detection using local packets. When an excessive number of errors are detected in an Ethernet port, a device enters a Links Off mode from a Transport mode where Ethernet ports are turned off at both ends of a circuit associated with the errors. A Block Transport mode is then entered where local packets (e.g., OAM packets) are monitored to evaluate link quality (e.g., SONET bit error rate). Transport mode is re-established when acceptable link quality is achieved for a selected period of time.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Inventors: Gary Michael Miller, David Owen Corp
  • Publication number: 20120288276
    Abstract: A WDM optical transmission system includes a plurality of optical transmission devices, each of which include a first memory that stores a first control program that controls a dispersion compensation amount in a host device; a processor to execute the first control program; a notification frame transmission circuit that transmits an information indicating a setting value of the dispersion compensation amount and a detection result corresponding to the setting value to another device; a third memory that stores a second control program that calculates a control value of the dispersion compensation amount in the another device; and a control frame transmission circuit that transmits the control value to the another device, wherein the processor executes the second control program when a problem occurs in the another device, and controls the dispersion compensation amount in the host device when a problem occurs in the host device.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 15, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Makoto YOSHIMI, Yoshiyuki MAEDA
  • Publication number: 20120275783
    Abstract: An optical packet switching apparatus includes an optical packet switching apparatus, an optical transmitting apparatus, and an optical packet receiving apparatus. The optical packet transmitting apparatus includes a packet generator for generating a packet signal by adding the routing information to a received client signal, a BIP adding unit for adding BIP to the generated packet signal, and an electrical-to-optical converter for converting the packet signal, to which the BIP has been added, into an optical packet signal so as to be sent out. The optical packet receiving apparatus includes an electrical-to-optical converter for converting the received optical packet signal into an electrical packet signal, and a BIP comparison unit for detecting the error occurrence in the packet signal, based on the BIP added to the packet signal.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 1, 2012
    Inventors: Koshi KITAJIMA, Satoshi FUKUTOMI, Wataru KAWASAKI
  • Publication number: 20120269506
    Abstract: In accordance with an embodiment of the present disclosure a method for adaptively spacing channels of an optical network comprises determining a first desired power level of a first channel of an optical network. The method further comprises determining a second desired power level of a second channel of the optical network, the second desired power level being less than the first desired power level. Additionally, the method comprises determining a first spectral space between the first channel and one or more channels neighboring the first channel based at least on the first desired power level. The method also comprises determining a second spectral space between the second channel and one or more channels neighboring the second channel based at least on the second desired power level, the second spectral space less than the first spectral space.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Olga I. Vassilieva, Motoyoshi Sekiya, Martin Bouda
  • Patent number: 8290362
    Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: October 16, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: David Mayo, Meei-Ling Chen
  • Patent number: 8290365
    Abstract: An optical communication apparatus that includes multiple optically communicative components positioned optically in series. Some of the optically communicative components may be optical fiber segments of perhaps different types. The optical channel represented by the series of optically communicative components and approximates a transfer function of an optical channel of a longer optical fiber. Accordingly, rather than deal with a lengthy optical fiber, an apparatus having a shorter optical channel may be used instead. The construction of the optical communicative components may be calculating an input transfer function. The construction would include an ordering of discrete optically communicative components that, when placed optically in series, simulates an estimation of a particular transfer function. Testing may then occur by actually passing an optical signal through the series construction of optically communicative components, rather than through the longer optical fiber.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 16, 2012
    Assignee: Finisar Corporation
    Inventors: Gayle L. Noble, Lucy G. Hosking, Luke M. Ekkizogloy
  • Publication number: 20120251099
    Abstract: Patterns detected by a low-speed receiver at the output of a high-speed multiplexer are used to determine when multiplexer input lanes are deskewed.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Applicant: OPNEXT SUBSYSTEMS, INC.
    Inventors: Sunil Kumar Singh Khatana, Hong Jiang
  • Patent number: 8280247
    Abstract: The invention concerns an arrangement for supervising and/or controlling the bit rate of data pulses that are transmitted from a transmitter (16) to at least one optical conduction path (22). The transmitter (16) has an input side (18) which receives electrical pulses from an electric connection (14) and an output side (20) from which light pulses are transmitted in response to the received electrical pulses. The arrangement comprises a supervising unit (24) with at least one input (26) which is suited to be connected to said electric connection (14). The supervising unit (24) is arranged to estimate or determine the bit rate of the pulses that are received at said input (26). The arrangement is arranged to carry out at least one measure which depends on the estimated or determined bit rate.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: October 2, 2012
    Assignee: Transmode Systems AB
    Inventor: Gunnar Forsberg
  • Publication number: 20120230678
    Abstract: Embodiments of the present invention relate system and method for handling large dynamical signals in a passive optical network system and in particular for determining scheduling of bursts from a plurality of optical network units. More particularly, embodiments of the present invention relate to a system and method for determining a bit error ratio, i.e. BER in received communication data, determining, using the BER, optimized transmission scheduling of communication bursts from the optical network units, and providing a signal to the optical network units indicating the transmission scheduling of transmission bursts in accordance with the determined optimized transmission scheduling.
    Type: Application
    Filed: November 18, 2009
    Publication date: September 13, 2012
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Einar In De Betou, Stefan Dahlfort, Peter Ohlen
  • Publication number: 20120230671
    Abstract: Even in a network system including a transmission line of which dominant cause of delay is a transmission line delay, controlling communication speed of the network system as a whole efficiently and suppressing the delay is made possible.
    Type: Application
    Filed: September 21, 2010
    Publication date: September 13, 2012
    Applicant: NEC CORPORATION
    Inventors: Tatsuhiro Nakada, Yohei Hasegawa
  • Patent number: 8265481
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20120224849
    Abstract: In one embodiment, the invention provides an optical interconnect comprising a transmitter for generating and transmitting an optical signal, a receiver for receiving the optical signal from the transmitter and for converting the received optical signal to an electrical signal, and a pre-transmitter distort circuit for applying a pre-transmitter distort signal to the transmitter to adjust the shape of the optical signal generated by the transmitter. Distortions are introduced into the optical signal when the optical signal is generated, transmitted to the receiver, and converted to the electrical signal. As a result of the signal applied to the transmitter by the pre-transmitter distort circuit, the optical signal generated by the transmitter has distortions to compensate for the distortions introduced into the optical signal, wherein the electrical signal, into which the optical signal is converted, has a desired shape.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicant: International Business Machines Corporation
    Inventors: Alexander V. Rylyakov, Clint L. Schow
  • Publication number: 20120219287
    Abstract: A method and a device are provided for processing data in an optical network. The method includes the steps of events of a login scan are recorded by a first optical network element; the events are conveyed to a second optical network element; and the events are processed by the second optical network element. A communication system is described that includes the device.
    Type: Application
    Filed: November 2, 2009
    Publication date: August 30, 2012
    Applicant: NOKIA SIEMENS NETWORKS OY
    Inventors: Thomas Treyer, Karl Kloppe
  • Publication number: 20120219286
    Abstract: Optical receivers and a method for providing a diagnostic measurement of optical modulation amplitude at other than a signal output of an optical receiver are invented and disclosed. The method includes the steps of applying a representation of an output of an optical detector to a circuit that determines a difference between a first signal level and a second signal level that is different from the first signal level and buffering the difference between the first signal level and the second signal level received from the circuit. The optical receivers include an optical detector, a transimpedance amplifier that applies automatic gain control, a circuit that determines a difference between two signal values and a limiting post amplifier. The receivers provide a diagnostic measure that can be compared to certain thresholds relating to known bit error rates or applied in a calculation to generate an absolute optical modulation amplitude value.
    Type: Application
    Filed: May 11, 2012
    Publication date: August 30, 2012
    Applicant: AVAGO TECHNOLOGIES FIBER IP (SINGAPORE) PTE. LTD.
    Inventors: Jos De Langen, Tze Wei Lim, Adrianus J.P. van Haasteren