Amplifier Or Repeater Operation Patents (Class 398/37)
  • Patent number: 8275269
    Abstract: The distributed Raman amplifier monitors an OSNR of each channel in a WDM light which has been propagated through a transmission path to be Raman amplified, and thereafter, is amplified by an optical amplifier in an optical repeating node; judges whether a monitor value of the OSNR is larger or smaller than a previously set target value thereof; and feedback controls a driving state of a pumping light source which supplies a Raman pumping light to the transmission path, based on the judgment result. The optical communication system comprises the above distributed Raman amplifier in each repeating span thereof, and performs a pumping light control of the distributed Raman amplifier corresponding to the repeating span selected based on the OSNR in each distributed Raman amplifier and the monitor result of span loss. As a result, it becomes possible to effectively improve the OSNR of each channel in the WDM light, and also, to reduce the power consumption.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 25, 2012
    Assignee: Fujitsu Limited
    Inventor: Miki Onaka
  • Publication number: 20120237215
    Abstract: An optical communication system comprising an optical fiber connected to a first signal regeneration node located at a first end of the optical fiber and a second signal regeneration node located at a second end of the optical fiber; intermediary nodes located between the first and second signal regeneration nodes, wherein one or more pairs of adjacent intermediary nodes each define a span distance along the optical fiber; and one or more Raman amplifiers located within each span distance along the optical fiber, wherein at least one of the one or more Raman amplifiers comprises a case that encases one or more lasers and a temperature controller comprising a temperature sensor to monitor a temperature of the one or more lasers; and a temperature regulator to control a temperature of the one or more lasers.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8265481
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20120177367
    Abstract: An open loop gain adjustment method and apparatus are provided for adjusting the gain of a TIA of an optical RX module based on measurements of the BER of the optical link in which the optical RX module is employed. The gain of the TIA is adjusted until a determination is made that a satisfactory or optimum link BER has been achieved.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: AVAGO TECHNOLOGIES FIBER IP (SINGAPORE) PTE. LTD.
    Inventor: Frederick W. Miller
  • Patent number: 8213798
    Abstract: An optical transmission apparatus for suppressing deterioration of transmission quality due to XPM in a wavelength division multiplexing optical communication system in which an intensity modulation optical signal and a phase modulation optical signal exist in a mixed form. The apparatus has an intensity inversion signal light output section which outputs light having an intensity pattern obtained by inverting intensity changes of the intensity modulation optical signal near a wavelength of the intensity modulation optical signal in arrangement on wavelength axis of optical wavelengths that can be multiplexed as a wavelength division multiplexed signal as intensity inversion signal light, and a wavelength division multiplexed optical signal output unit which wavelength-division-multiplexes the intensity modulation optical signal, the phase modulation optical signal and light from the intensity inversion signal light output section and outputs a wavelength division multiplexed optical signal.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 3, 2012
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Hiroshi Onaka, George Ishikawa
  • Patent number: 8208812
    Abstract: A control-target-value setting unit sets a control target value corresponding to the number of multiplexed wavelengths measured by a number-of-multiplexed-wavelengths measuring unit. A controller controls the variable optical attenuator based on the control target value. An optical amplifier performs an optical amplification with a constant gain regardless of power of a wavelength-multiplexed light. The controller performs feedback control of the variable optical attenuator such that a result of measurement of the total power of the wavelength-multiplexed light coincides with the control target value.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: June 26, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Toshiyuki Tokura, Katsuhiro Shimizu, Kazuyuki Ishida, Kuniaki Motoshima
  • Publication number: 20120155864
    Abstract: Systems and methods for processing an optical signal are disclosed. The optical signal is converted to a voltage signal and the voltage signal is amplified. In addition, a signal strength and/or a signal quality parameter is monitored and an indication of the signal strength and/or a signal quality parameter is generated. Further, a gain and/or an operating bandwidth on the conversion or the amplification can be adjusted based on the indication to reduce power consumption of an optical receiver.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Petar K. Pepeljugoski, Alexander V. Rylyakov, Clint L. Schow, Mehmet Soyuer
  • Publication number: 20120148237
    Abstract: A method is provided of creating an end-to-end entanglement (87) between qubits in first and second end nodes (81, 82) of a chain of optically-coupled nodes whose intermediate nodes (80) are quantum repeaters. Local entanglements (85) are created on an on-going basis between qubits in neighbouring pairs in the chain through interaction of the qubits with light fields transmitted between the nodes. The quantum repeaters (80) are cyclically operated with their top-level operating cycles being synchronized. Once every top-level operating cycle, each repeater (80) initiates a merging of two entanglements involving respective repeater qubits that are at least expected to be entangled with qubits in nodes disposed in opposite directions along the chain from the repeater. A quantum repeater (80) adapted for implementing this method is also provided.
    Type: Application
    Filed: October 26, 2009
    Publication date: June 14, 2012
    Inventors: Keith Harrison, William Munro, Kae Nemoto
  • Publication number: 20120141122
    Abstract: An optical receiver includes a photodetector for detecting incoming optical data signals and an amplifier for providing signal gain and current to voltage conversion. The detection signal generated by the photodetector may include a distortion component caused by an operating characteristic of the photodetector. A signal compensating circuit may reconstruct the received optical data signal by effectively canceling the distortion component. For this purpose, the signal compensating circuit may include a decision feedback equalizer implemented using at least one feedback filter matched to the operating characteristic of the photodetector causing the signal distortion so as to reproduce the distortion component for cancellation. Use of a control module may also configure the optical receiver in real time to account for other operating and environmental conditions of the optical receiver.
    Type: Application
    Filed: June 3, 2011
    Publication date: June 7, 2012
    Inventors: Anthony Chan Carusone, Tony Shuo-Chun Kao, Hemesh Yasotharan
  • Publication number: 20120121258
    Abstract: A method, an apparatus, and a system for transmitting information in a passive optical network are provided. The method mainly includes: obtaining OAM information that an RE device needs to report to an OLT device, performing modulation processing, according to the OAM information, on a downlink optical signal sent by the OLT device, and returning the downlink optical signal after the modulation processing to the OLT device; or, obtaining OAM information that an OLT device needs to deliver to an RE device, performing modulation processing, according to the OAM information, on a downlink optical signal sent by the OLT device to the RE device, and sending the downlink optical signal after the modulation processing to the RE device.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 17, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Kun Li, Shiyi Cao, Jianlin Zhou, Min Ye
  • Patent number: 8139951
    Abstract: An ultra-long fiber-optic transmission system is configured in accordance with the current telecom standards and particularly advantageous for transmission data at a long distance which may exceed 400 km between adjacent nodes. The disclosed system has at least one intermediate amplifying node provided with a supervisory optical channel (SOC) which carries information between spaced nodes about the multi-wavelength optical signal as well as remote conditions at the optical terminal or regeneration site. The SOC comprises a transponder operative to select the direction in which an optical supervisory signal OSS, carrying information about the fiber break and malfunction of WDM channels, is transmitted along the SOC. The transponder further includes a receiver operative to measure the power of incoming OSS signal, which is indicative of the power of the transmitted and amplified WDM signal, and a Raman controller.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 20, 2012
    Inventors: Igor Samartsev, Vladimir Antonenko
  • Publication number: 20120002963
    Abstract: Provided is an optical relay system (10) which is capable of suppressing wasteful power consumption of an entire system to a low level. The optical relay system (10) includes a plurality of relay devices (30) and a network control device (20). The network control device (20) causes an optical signal to be regenerated by a regenerative repeater (35) within the relay device (30) existing at an upstream of the relay device (30) reporting that the optical signal has deteriorated by a degree exceeding a predetermined level. Further, the network control device (20) causes the regenerative repeater (35) to stop regenerating the signal in a case where deterioration of the signal remains within an allowable range even when the regenerative repeater (35) stops regenerating the signal.
    Type: Application
    Filed: June 6, 2011
    Publication date: January 5, 2012
    Inventors: Takuya Iwasawa, Kenta Noda, Takayuki Suzuki
  • Publication number: 20110293269
    Abstract: A method for arranging relay stations in an optical transmission system including relay stations arranged so that optical signals at a first transmission speed can be transmitted from a transmission end to a reception end, includes: judging whether a transmission of optical signals at a second transmission speed different from the first transmission speed in a section connecting arbitrary two of the relay stations where a regenerative repeater station capable of regenerating optical signals can be arranged is possible; determining a combination of sections judged to be capable of performing transmission that enables a transmission of optical signals from the transmission end to the reception end; and making both ends of respective sections of the determined combination be the relay stations where the regenerative repeater station is arranged, wherein the judging includes a judgment condition which is satisfied in a section including sections but unsatisfied in one of the sections.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Takuya MIYASHITA
  • Patent number: 8055129
    Abstract: An algorithm is disclosed for performing alien-wavelength channel balancing on channels between optical network elements within an optic-fiber communications system. The algorithm determines initial values of various optimization parameters for each of the channels, such as the input launch power and operating conditions of optical amplifiers in the optical path, and calculates an initial total optimization offset for the channels based on the initial values of the optimization parameters for each of the channels. The algorithm then adjusts the optimization parameters to new values and calculates a new total optimization offset based on the new optimization parameter values. The algorithm repeats this process until the relative channel launch powers and optical amplifiers are optimized.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: November 8, 2011
    Assignee: Alcatel Lucent
    Inventors: David Butler, Lev B. Sofman
  • Patent number: 8055127
    Abstract: A wavelength division multiplex optical ring network comprises optical fibre (1-4) arranged in a ring configuration and a plurality of doped fibre optical amplifiers (17-20) arranged in the ring. The spectral response in the ring is configured such in use amplified spontaneous emission (ASE) noise circulates around the ring in a lasing mode to clamp the gain of each doped fibre optical amplifier. Each optical amplifier (17-20) includes respective control means (28) which in use control the optical amplifier to produce a substantially constant output power or to maintain a substantially constant pump power. In the event of loss of the lasing peak, detection means switches the doped fibre optical amplifiers to a different mode of gain control, for example, a mode to produce constant gain at the value before the loss of the lasing peak. Optionally, after a predetermined delay, the optical amplifiers may revert to constant output power or pump power mode.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: November 8, 2011
    Assignee: Ericsson AB
    Inventors: Roberto Magri, Cornelius Furst
  • Patent number: 8055130
    Abstract: Systems and devices for use as optical transceivers and amplifiers in optical networks. An optical transceiver/amplifier has two optical signal circulators, each of which receives one incoming signal and transmits one outgoing optical signal. Each circulator combines its incoming and outgoing signals on to a bidirectional optical connection internal to the transceiver amplifier. Between the two circulators are a pump laser, an optical coupler to couple the pump laser's power into the bidirectional connection, and an amplifying medium for amplifying the bidirectional signals internal to the transceiver amplifier. The amplifying medium may be an Erbium doped fiber which would amplify any optical signal passing through it. In one embodiment, the transceiver amplifier is in a self-contained package that is pluggable into existing equipment using pre-existing ports and interfaces.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: November 8, 2011
    Assignee: Dowslake Microsystems Corp.
    Inventor: Dan Yang
  • Patent number: 8045853
    Abstract: In one embodiment, techniques provide a mechanism for tracking wavelengths in a DWDM network. In particular, embodiments of the present invention also provide for connection tracking using a slowly modulated pilot tone in a DWDM network without dedicated hardware for the generation and the diction of the tone.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: October 25, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Ornan Gerstel, Stefano Piciaccia, Mauro Rudy Casanova, Valerio Viscardi, Gabriele Galimberti
  • Patent number: 8036526
    Abstract: A method and apparatus for restoration of operating conditions of a WDM optical ring network comprising a plurality of amplifiers linked together in a ring after a break or fault has occurred in the network. The method comprises in response to repair of the break or other fault, increasing output power or/and pump power of an amplifier in the network such that the output power or/and pump power increases substantially in accordance with a ramp function.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: October 11, 2011
    Assignee: Ericsson AB
    Inventors: Antonella Bogoni, Roberto Magri, Riccardo Ceccatelli
  • Patent number: 8009983
    Abstract: Various high loss loop back (HLLB) repeater architectures are disclosed that enable selectively monitoring (e.g., measuring, analyzing, etc) of Rayleigh signals from both inbound and outbound directions of an optical communication system. In one such embodiment, first and second optical test signal frequencies (or ranges) are used, in conjunction with selective filtering, for monitoring the outbound and inbound paths, respectively. The repeater architectures allow optical time domain reflectometry (OTDR) monitoring techniques to be employed, for example, in particularly long repeater spans, such as those in excess of 90 km in length.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 30, 2011
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventor: Hongbin Zhang
  • Patent number: 7982865
    Abstract: The invention relates to a method for monitoring an optical amplifier, in particular, an optical fiber amplifier which has an optical input port and an optical output port. The optical pumping power of the amplifier is presumed to be directly proportional to the electrical pumping current, with a proportionality constant that decreases over time due to degradation. The functional dependence of the optical pumping power on the optical input signal power or the optical output signal power is determined at least for the predetermined nominal value of the optical gain. These relationships may be combined with certain measured values to determine the instantaneous optical pumping power, the instantaneous proportionality constant, and the maximum values for the optical input and output signal powers. These calculated parameters may be used to ensure that an increase of input power will not reduce the optical gain.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: July 19, 2011
    Assignee: ADVA AG Optical Networking
    Inventor: Michael Eiselt
  • Patent number: 7970282
    Abstract: A bridge controller, which controls relay between terminals including emission units and addresses assigned to the terminals, acquires coordinates of a light-received element in an light receiving unit at which light emitted from an emission unit is received, and stores the acquired coordinates in a location information table memory in association with a logical location on the network. Thereafter, it is determined whether or not the stored coordinates differ from newly acquired coordinates. When it is determined that the stored coordinates differ from the newly acquired coordinates, the logical location associated with the coordinates stored in the storage unit is controlled to be changed and stored.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 28, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventors: Shoichi Nagatomo, Nobuo Iizuka
  • Patent number: 7953321
    Abstract: An optical transmission equipment includes an optical amplifier that is coupled to an optical transmission path and amplifies a first optical signal which is received from the optical transmission path, a first controller that controls the optical amplifier depending on a first optical power of output light from the optical amplifier and a second optical power of reflecting light to the optical amplifier, an optical coupler that branches a second optical signal from the optical amplifier into a first output and a second output, an optical demultiplexer that demultiplexes the first output of the optical coupler, an optical switch or attenuator that receives the second output of the optical coupler, and a second controller that controls the optical switch or attenuator depending on a third optical power of output light from the optical switch or attenuator and a fourth optical power of reflecting light to the optical switch or attenuator.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 31, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Uchiyama, Hiroyuki Nakano
  • Patent number: 7941047
    Abstract: A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 10, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Jingyu Zhou, Alan Glen Solheim, Robert Au-Yang, Mark Stephen Wight, Christian Scheerer
  • Publication number: 20110103793
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Application
    Filed: December 10, 2010
    Publication date: May 5, 2011
    Inventors: Brandon C. COLLINGS, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 7936749
    Abstract: A node device receives supervisory control information on a dedicated wavelength different from a wavelength of signal light, which is input from an input port together with the signal light, and extracts, from signal light to be output from an output port, information superposed on an optical main signal of the signal light. Then, it is confirmed whether or not the signal light to be output and the supervisory control information correspond by using the extracted information, and supervisory control information corresponding to the signal light to be output is transmitted on the dedicated wavelength from the output port.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: May 3, 2011
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Takao Naito
  • Publication number: 20110085799
    Abstract: In the communication system, a master station is coupled to slave stations by a fiber network comprising a splitter and a reach extender, the master station includes a first bandwidth control section which determines, based on a request from each slave station, a first data amount of a signal transmitted in a first cycle, the reach extender includes: a distance measurement section which measures a distance or a time between the reach extender and each slave station; and a second bandwidth control section which determines a second data amount and transmission timing of a signal based on a request from each slave station and the first data amount, and each slave station transmits a signal with a data amount, which the first bandwidth control section determined based on a data amount and transmission timing determined in second cycles, to the master station in the first cycle.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Inventor: MASAHIKO MIZUTANI
  • Patent number: 7917030
    Abstract: A WDM fiber optic communication system is operative to transmit WDM signals between multiple nodes. Each node has a booster EDFA, and in-band and out-of-band supervisory channels monitoring the integrity of a link by generating and detecting respective in-band and out-of-band control signals. The booster EDFA receives the multiplexed WDM and IB signals and generates an output signal carried by fibers between the nodes. The booster EDFA switches from an automatic gain control regime upon detecting of at least one of the IB and OB control signals to an automatic power control regime upon loss of both IB and OB control signals. The output signal of the EDFA in the AGC regime has a high power sufficient for transmitting the WDM and IB signals, and has a low power in the APC regime sufficient for transmitting only the IB control signal.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: March 29, 2011
    Inventors: George BuAbbud, Cristiano Mornatta, Peter Reeves-Hall, Igor Samartsev
  • Publication number: 20110069952
    Abstract: A circuit for end-of-burst detection in a portion of a received bit stream is disclosed. The circuit comprises: a first counter for counting the number of bits in the portion, a second counter for counting the number of bit value transitions in the portion, and a circuit for comparing the counted number of bits in the portion and the counted number of bit value transitions therein with preset values, the circuit for comparing is further arranged for generating a signal indicative of end-of-burst detection based on the result of the comparison.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 24, 2011
    Applicants: IMEC, UNIVERSITEIT GENT
    Inventors: Cedric Mélange, Johan Bauwelinck, Xing Zhi Qiu, Jan Vandewege
  • Patent number: 7873274
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: January 18, 2011
    Assignee: Ciena Corporation
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 7822055
    Abstract: The Fibre Channel Credit Extender (FCCE) (600) is a network device that is disposed between and connected to an end node (210) and an optical repeater (220). The FCCE (600) contains as many buffer credits as necessary, to solve bandwidth problems in a network. In a situation where maximum bandwidth is required in both directions of a link, the FCCE (600) breaks a single logical link into three physically separated “linklets.” The short-distance linklets attain maximum bandwidth by use of the existing buffer credits of the end nodes. The long-distance linklet attains maximum bandwidth by use of very high receive buffer credits in the FCCEs (600). In this way, only those links that need maximum bandwidth over distances not covered by end-node credit counts need be attached to an FCCE (600). The FCCE (600) contains the optical repeater to gain distance on that link, and contains high credit count receive buffers to gain bandwidth on the link.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 26, 2010
    Assignee: QLogic Switch Products, Inc.
    Inventors: William R. George, Steven M. Betker
  • Patent number: 7822304
    Abstract: A laser beam multiplexer capable of easily multiplexing a plurality of laser beams is provided. A laser beam multiplexer includes a multiplexing element having a hollow portion with a sectional elliptical shape, in which the multiplexing element includes: a plurality of light-incident apertures guiding laser beams from outside toward one of two focal points of the hollow portion, a reflective layer arranged on a wall surface of the hollow portion, and multiplexing a plurality of incident laser beams while reflecting the plurality of laser beams, and a light-emitting aperture guiding laser beams multiplexed by the reflective layer toward outside.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventor: Shoji Hirata
  • Patent number: 7817917
    Abstract: The present invention provides a system and method for monitoring and providing settings to nodes in a telecommunications fiber network. The method and system reviews alarm and threshold settings of nodes and in the network. If the alarm and threshold settings a node are not within set standards, the standard alarm and threshold settings may be provided to the nodes. The method and system of the invention also calculates span loss between nodes in a telecommunications fiber network and the amplification levels of nodes in the network.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 19, 2010
    Assignee: Sprint Communications Company L.P.
    Inventors: Andrew Y. Shimamoto, Doug R. Greer
  • Patent number: 7809263
    Abstract: An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 5, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuya Uda, Kenta Noda, Yasuhiro Uchiyama, Hiroshi Masuda, Hiroyuki Nakano
  • Patent number: 7792430
    Abstract: The present invention provides an automatic power restoring method capable of reliably detecting continuity by the dissolution of a line fault, to restore the optical power, even in a structure including an optical amplification medium on an optical transmission path and an optical communication system using the method. To this end, in an optical communication system to which the automatic power restoring method of the invention is applied, a pilot signal having a low transmission rate, a wavelength of which is set based on loss wavelength characteristics obtained by combining loss wavelength characteristics of an optical fiber used for the optical transmission path and loss wavelength characteristics of the optical amplification medium on the optical transmission path, is transmitted and received between an optical transmitting station and an optical receiving station when a line fault occurs, and a detection of continuity is thus performed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: September 7, 2010
    Assignees: Fujitsu Limited, Nippon Telegraph & Telephone Corporation
    Inventors: Hiroyuki Deguchi, Shinichirou Harasawa, Hideki Maeda, Akira Naka, Gentaro Funatsu
  • Patent number: 7787765
    Abstract: A method and apparatus for initializing an end-to-end link in a fiber optic communications system in which a pair of nodes interconnect a pair of end devices. A first node, upon initializing a device link segment with an end device to which the node is coupled, sends a signal to the other node over a network link segment indicating that the sending node has initialized its device link segment. The first node completes initialization of the end-to-end link upon receiving a signal from the other node over the network link segment indicating that the other node has initialized its device link segment. In an alternative initialization scheme, a node momentarily operates its data channel in a loopback mode to allow its end device to initialize the device link segment in accordance with a predetermined protocol before returning to a transparent mode.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg
  • Patent number: 7773886
    Abstract: In an optical fiber communication system, the input power to an all-optical nonlinear device in an optical regenerator is monitored and adjusted such that the regenerator operates at an optimized operation point.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: August 10, 2010
    Assignee: Fujitsu Limited
    Inventors: Rainer Hainberger, Shigeki Watanabe
  • Patent number: 7729620
    Abstract: Methods and systems for controlling optical power attenuation are provided. A method comprises periodically measuring an optical power of an optical signal received by an optical receiver and periodically measuring a first attenuation control signal voltage. When the optical power measurement is outside a target power range, the method continues with calculating a target voltage necessary to maintain the optical power measurements at a target power level; calculating a second attenuation control signal based on the target voltage, wherein the second attenuation control signal is calculated to provide an over-damped transient response that maintains the second attenuation control signal within a usable range of a variable optical power attenuator; applying a second attenuation control signal voltage based on the second attenuation control signal to the variable optical power attenuator; and adjusting attenuation of the optical signal based on the second attenuation control signal voltage.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: June 1, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Paul Schatz, Dean Zavadsky, William J. Mitchell, Steve Stuart, Ana Santos
  • Patent number: 7725034
    Abstract: An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 25, 2010
    Assignee: Hitachi Communication Technologies, Inc.
    Inventors: Tetsuya Uda, Kenta Noda, Yasuhiro Uchiyama, Hiroshi Masuda, Hiroyuki Nakano
  • Patent number: 7715721
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 11, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7697845
    Abstract: An optical add-drop function part of an optical add-drop multiplexer has an output end of transmitted light signal in which an optical termination mechanism formed by an optical detector for detecting open of an optical fiber, an optical switch, and an optical terminator are mounted. Further, a reflection level calculation circuit, a reflection warning determination circuit, and an optical switch selection circuit are mounted to perform laser safety in the optical add-drop function part as well. The laser safety part in the optical add-drop function part is operated earlier than the laser safety part in an optical amplification function part.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 13, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Yasuhiro Uchiyama, Hiroyuki Nakano
  • Patent number: 7680419
    Abstract: A repeater is disclosed that transmits an optical signal using wave division multiplexing. The repeater includes a demultiplexing unit that separates plural channels contained in the optical signal, an adjusting unit that adjusts at least optical power of each of the channels according to a control signal, a multiplexing unit that outputs a multiple wavelength signal in which the channels are multiplexed, and a monitoring unit that determines a modulation scheme and a bit rate of the optical signal for each of the channels so as to generate the control signal.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 7657187
    Abstract: An optical transmission apparatus for amplifying and relaying a wavelength-division-multiplexed optical signal includes (1) a variation-detecting unit which detects varying speed of input power of the wavelength-division-multiplexed optical signal and compares the varying speed with a set value, (2) an optical amplifying unit which amplifies the wavelength-division-multiplexed optical signal at a fixed amount of amplification, (3) a variable optical attenuating unit which variably attenuates the wavelength-division-multiplexed optical signal, (4) and a controlling unit which controls attenuation amount of the variable optical attenuating unit in accordance with the varying speed.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: February 2, 2010
    Assignee: NEC Corporation
    Inventor: Katsuhiko Shimizu
  • Patent number: 7652816
    Abstract: This invention provides a method for commissioning and upgrading an optical ring network using its internal amplifiers as Automatic Spontaneous Emission sources of light that are used in making measurements. A modular segmented approach is adopted and the network is commissioned segment by segment. A flexible method is used for upgrading a commissioned network by adding or deleting a node or changing the internal configuration of a node. The method uses techniques for the correction of the Optical Signal to Noise Ratio induced error as well as the Spectral Filtering Error during the loss computation required for adjusting the gains of the amplifiers at each network node to an appropriate value. Since the method does not require an external laser source that needs to be moved manually from node to node it greatly reduces the commissioning time. Since it uses only the components of the network itself and does not deploy any additional device it also leads to a significant saving in cost.
    Type: Grant
    Filed: December 23, 2006
    Date of Patent: January 26, 2010
    Assignee: Alcatel Lucent
    Inventors: Jason Christopher De Rocher, Hamish Iain MacDonald, Walter Joseph Carpini, Eddie Kai Ho Ng, Derrick Remedios, James Benson Bacque, Ping Wai Wan
  • Patent number: 7627244
    Abstract: An optical transmission apparatus comprises a preamplifier controlling unit for controlling a preamplifier so that amplified spontaneous emission including all wavelength bands of a wavelength-multiplexed signal beam is outputted toward a wavelength demultiplexing unit, with the wavelength-multiplexed signal beam not inputted, power monitors for monitoring optical powers of the amplified spontaneous emission fed from the preamplifier and wavelength-demultiplexed by the wavelength demultiplexing unit, and a determining unit for determining the continuity state of an optical propagation path of each wavelength component on the basis of a result of monitoring by the power monitors. The optical transmission apparatus allows the continuity test on optical propagation paths of channels including a channel not used at the time of a start of the operation to be made easier than the known techniques.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: December 1, 2009
    Assignee: Fujitsu Limited
    Inventor: Takehiro Fujita
  • Publication number: 20090279888
    Abstract: An algorithm is disclosed for performing alien-wavelength channel balancing on channels between optical network elements within an optic-fiber communications system. The algorithm determines initial values of various optimization parameters for each of the channels, such as the input launch power and operating conditions of optical amplifiers in the optical path, and calculates an initial total optimization offset for the channels based on the initial values of the optimization parameters for each of the channels. The algorithm then adjusts the optimization parameters to new values and calculates a new total optimization offset based on the new optimization parameter values. The algorithm repeats this process until the relative channel launch powers and optical amplifiers are optimized.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Applicant: ALCATEL LUCENT
    Inventors: David Butler, Lev B. Sofman
  • Publication number: 20090269058
    Abstract: One embodiment of the present invention sets forth a technique for determining properties of optical links using the amplified spontaneous emission (ASE) of integrated amplifiers. To calibrate the system, existing amplifiers in the nodes of the system can be operated in an ASE mode. A bypass switch at the mid-stage of each amplifier routes the ASE from the amplifier's first stage into one or more signal processing components, creating reference signals. Subsequently, the bypass switch routes the reference signals back into the mid-stage of the amplifier. After propagating through a link to the next node in the system, the optical parameters of the reference signals are measured and used to determine properties of the link, such as chromatic dispersion and attenuation. Tunable devices within the two nodes connected by the link may be set to compensate for specific properties of the link, thereby improving the quality of transmitted signals.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Inventors: Mark Summa, Martin Williams, Christopher Lin
  • Patent number: 7558480
    Abstract: An optical communication system and a communication network are disclosed herein capable of transmitting optical signals with high optical launch power over unrepeatered optical fiber links. A method of transmitting optical signals is also disclosed herein which comprises transmitting optical signals at high optical launch power over unrepeatered links.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: July 7, 2009
    Assignee: Corning Incorporated
    Inventor: Scott R. Bickham
  • Patent number: 7558284
    Abstract: A network design device includes: a division section for dividing a network having a plurality of channels and branch nodes into a plurality of linear partial networks using a predetermined terminating node or each branch node as the terminating nodes by allocating a device terminating one or more channels to be used to the terminating node and each branch node; an allocation unit for allocating a linear relay device and/or a reproduction relay device to a node constituting each partial networks to which a device has been allocated by the allocation unit; and a deletion unit for deleting a device terminating the channel allocated to the branch node for each path formed by the path formation unit according to the signal performance.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: July 7, 2009
    Assignee: Fujitsu Limited
    Inventors: Norihiko Shinomiya, Akira Chugo, Keiji Miyazaki, Masatake Miyabe
  • Patent number: 7526201
    Abstract: A system and method for loading unutilized channels of a WDM system with noise to improve system performance. A transmitter amplifier may impart noise to unutilized channels by reducing amplifier input or providing feedback of the amplifier output. Noise signals may also be looped back to the transmitter from received signals.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: April 28, 2009
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Georg H. Mohs, Stuart M. Abbott, Franklin W. Kerfoot, III, R. Brian Jander, Morten Nissov
  • Patent number: 7522835
    Abstract: In a wavelength division multiplexed (WDM) optical communication system having optical transmitters and receivers communicating via a optical channels, the bit error rate (BER) for the optical channels is tested simultaneously by performing a BER measurement for the cascaded chain. A BER test signal is supplied from a BER tester to a first optical transmitter. The BER test signal passes through the optical channels. The last optical receiver in the cascaded chain supplies the test signal to the BER tester measure the BER. The measured BER is compared to a predetermined system BER threshold to determine if the optical channels meet their specified BER values. Each optical transmitter and receiver includes a performance monitoring circuit that monitors the quality of the BER signal supplied to the optical transmitter/receiver for identifying one or more optical channels that the measured BER exceeds a predetermined system BER threshold.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: April 21, 2009
    Assignee: Ciena Corporation
    Inventors: Jarod Guertin, Michael J. Ransford