Alloying Occurs During Sintering Patents (Class 419/46)
  • Patent number: 6506338
    Abstract: A pressureless sintering process for producing FeAl wherein the heating rate is controlled in a manner which minimizes expansion of a mixture of elemental powders of iron and aluminum. During the process, the heating rate is maintained below 1° C./min to minimize the volume expansion during the formation of the intermediate phase Fe2Al5. As a result of the process, the final density can be increased up to 95% of the theoretical density. The sequence of phases formed during the heating of Fe+Al mixture were identified by X-ray diffraction, optical microscopy, SEM and along with DSC data were correlated to the expansion and shrinkage behavior of the samples.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: January 14, 2003
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Shalva Gedevanishvili, Seetharama C. Deevi
  • Patent number: 6475262
    Abstract: The method comprises preparing an iron-based powder mixture, and compressing and sintering the mixture to form the component. Said mixture comprises a first powder which forms 40 to 60 wt % of the mixture and which is an atomised pre-alloy comprising nickel, cobalt and iron, a second powder which forms 30 to 50 wt % of the mixture and essentially consists of iron, a third powder which essentially consists of ferromolybdenum, a fourth powder which essentially consists of graphite, and optionally a fifth powder which consists essentially of ferrotungsten. The component has a composition comprising 5 to 11 wt % of nickel, 5 to 11 wt % of cobalt, 5 to 8 wt % molybdenum, up to 1 wt % tungsten, 0.25 to 0.9 wt % carbon, and a balance which essentially consists of iron.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: November 5, 2002
    Assignee: Federal-Mogul Sintered Products Limited
    Inventors: Paritosh Maulik, Stephen Mcarthur
  • Patent number: 6458317
    Abstract: A plating material mainly consisting of nickel-titanium is hot pressed onto a surface.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: October 1, 2002
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Jari Koskinen, Eero Haimi
  • Publication number: 20020114723
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Application
    Filed: July 24, 2001
    Publication date: August 22, 2002
    Inventors: Arun Prasad, Gregg Daskalon
  • Publication number: 20020068004
    Abstract: The present invention relates to a method of controlling the microstructures of Cu—Cr-based contact materials for vacuum interrupters, in which a heat-resistant element is added to the Cu—Cr-based contact materials to obtain an excellent current interrupting characteristic and voltage withstanding capability, and contact materials manufactured thereby. The method of controlling the microstructures of Cu—Cr-based contact materials includes the steps of mixing a copper powder used as a matrix material, a chromium powder improving an electrical characteristic of the contact material and a heat-resistant element powder making the chromium particles in the matrix material fine to thereby obtain mixed powder, and subjecting the mixed powder to one treatment selected from sintering, infiltration and hot pressing to thereby obtain a sintered product.
    Type: Application
    Filed: April 10, 2001
    Publication date: June 6, 2002
    Inventors: Jung Mann Doh, Jong Ku Park, Mi Jin Kim
  • Publication number: 20020064475
    Abstract: A valve seat made of an Fe-based sintered alloy excellent in wear resistance and having a reduced counterpart valve attack property is disclosed, which comprises a base comprising 15-40% by weight of Cu, 0.3-12% by weight of Ni and 0.0005-3.0% by weight of C, and further comprising 0.1-10% by weight of Co and 0.1-10% by weight of Cr when necessary, with the balance being Fe and inevitable impurities, the base having a structure which comprises an Fe-based alloy phase 1 composed of Fe as a main component combined by a Cu-based alloy phase 2 composed of Cu as a main component, wherein hard particles phase 3 having MHV of 500-1700 is dispersed in the base. The Fe-based alloy phase 1 is an Fe alloy phase which comprises Ni, Cu and C with Fe having more than 50% by weight, while the Cu-based alloy phase 2 is a Cu alloy phase which comprises Ni, Fe and C with Cu having more than 50% by weight.
    Type: Application
    Filed: November 15, 2001
    Publication date: May 30, 2002
    Applicant: Mitsubishi Materials Corporation
    Inventors: Kinya Kawase, Koichiro Morimoto
  • Patent number: 6348080
    Abstract: The present invention concerns a method of preparing a sintered product having a tensile strength 750 MPa comprising the steps of compacting a water-atomised, annealed iron-based powder comprising, by weight %, Cr 2.5-3.5, Mo 0.3-0.7, Mn 0.09-0.3, O <0.2, C<0.01 the balance being iron and, an amount of not more than 1%, inevitable impurities, at a pressure of at least 600 MPa and subjecting the compacted body to sintering at a temperature of at most 1220° C. The invention also concerns the annealed powder used in the method as well as the sintered products.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: February 19, 2002
    Assignee: Höganäs AB
    Inventors: Johan Arvidsson, Ola Eriksson
  • Publication number: 20020004141
    Abstract: The magnet has hard magnetic grains (K), with the hard magnetic grains (K) separated from one another in a surface layer of the magnet by a first phase (P1), while the hard magnetic grains (K) in the remaining part of the magnet are separated from one another through a nonmagnetic second phase (P2). The first phase (P1) is more corrosion resistant than the second phase (P2), so that the surface layer serves as corrosion protection. The first phase (P1) has, in addition to elements of which the second phase (P2) consists, at least one further element.
    Type: Application
    Filed: May 18, 2001
    Publication date: January 10, 2002
    Inventors: Peter Schrey, Wilhelm Fernengel, Lothar Zapf
  • Patent number: 6287433
    Abstract: An insoluble anode for sulfate electrolytes composed of, generally, from 1 to 99 wt % titanium or titanium alloy and the remainder lead or lead alloy, comprising a titanium-lead active layer, or a titanium-lead active layer covering and a core being made from titanium or lead. The anode is produced by infiltration of porous titanium with lead, either by consolidation of the mixture of titanium and lead powders. The anode formed of the active layer, or of the active layer covering and a sheet core is fabricated in the shape of a plate. The anode formed of the active layer covering and a rod or tube core is fabricated in the shape of a lattice. Advantageously, the titanium-lead active layer is dispersion-strengthened by zirconium carbide or titanium carbide particles, and it's surface is released of a portion of lead.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: September 11, 2001
    Inventor: Alla Sapozhnikova
  • Patent number: 6284191
    Abstract: A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as ≦1% Cr, ≧0.05% Zr or ZrO2 stringers extending perpendicular to an exposed surface of the heating element, ≦2% Ti, ≦2% Mo, ≦1% Zr, ≦1% C, ≦0.1% B, ≦30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, ≦1% oxygen, and/or ≦3% Cu.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: September 4, 2001
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Seetharama C. Deevi, A. Clifton Lilly, Jr., Vinod K. Sikka, Mohammed R. Hajaligol
  • Patent number: 6280684
    Abstract: A sputtering target for fabricating a recording layer of a phase-change type optical recording medium contains a compound or mixture including as constituent elements Ag, In, Te and Sb with the respective atomic percent (atom. %) of &agr;, &bgr;, &ggr; and &dgr; thereof being in the relationship of 2≦&agr;≦30, 3≦&bgr;≦30, 10≦&ggr;≦50, 15≦&dgr;≦83 and &agr;+&bgr;+&ggr;+&dgr;=100, and a method of producing the above sputtering target is provided. A phase-change type optical recording medium includes a recording layer containing as constituent elements Ag, In, Te and Sb with the respective atomic percent of &agr;, &bgr;, &ggr; and &dgr; thereof being in the relationship of 0<&agr;≦30, 0<&bgr;≦30, 10≦&ggr;≦50, 10≦&dgr;≦80, and &agr;+&bgr;+&ggr;+&dgr;=100, and is capable of recording and erasing information by utilizing the phase changes of a recording material in the recording layer.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: August 28, 2001
    Assignee: Ricoh Company, Ltd.
    Inventors: Katsuyuki Yamada, Hiroko Iwasaki, Yukio Ide, Makoto Harigaya, Yoshiyuki Kageyama, Hiroshi Deguchi, Masaetsu Takahashi, Yoshitaka Hayashi
  • Patent number: 6251339
    Abstract: The invention is directed to a method of forming parts having complex geometries made by coating ferrous based powders with a metallurgical coating, pressing the powder to make the parts, and using a low temperature heating step to diffuse the coating into the ferrous based powders.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: June 26, 2001
    Assignee: Materials Innovation, Inc.
    Inventors: Glenn L. Beane, David S. Lashmore, Lev Deresh
  • Patent number: 6248291
    Abstract: A process for producing sputtering targets, which comprises molding a mixture of a powder of a high-melting substance having a melting point of 900° C. or above with a powder of a low-melting metal having a melting point of 700° C. or below at a temperature below the melting point of the low-melting metal under heat and pressure.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: June 19, 2001
    Assignee: Asahi Glass Company Ltd.
    Inventors: Susumu Nakagama, Masao Higeta, Atsushi Hayashi
  • Patent number: 6214080
    Abstract: A powdered metal blend mixture for making a powdered metal part especially a valve seat insert. The mixture includes 15 to 30 wt. % of a valve steel powder, 0 to 10 wt. % nickel, 0 to 5 wt. % copper, 5 to 15 wt. % of a ferro-alloy powder, 0 to 15 wt. % of a tool steel powder, 0.5 to 5 wt. % of a solid lubricant, 0.5 to 2 wt. % graphite, 0.3 to 1.0% of a temporary lubricant, and the balance being substantially a low alloy steel powder containing 0.6 to 2.0 wt. % molybdenum, 0 to 5 wt. % nickel, and 0 to 3.0 wt. % copper. The present invention provides improved high temperature wear and corrosion resistance over prior art materials as well as improved machinability. The blend of the present invention provides a relatively high density material that allows for a single press and sinter technique.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: April 10, 2001
    Assignee: Eaton Corporation
    Inventors: Sundaram L. Narasimhan, Heron Rodrigues, Yushu Wang
  • Patent number: 6168755
    Abstract: Disclosed is a high nitrogen stainless steel alloy and alloy powder comprising chromium (Cr), molybdenum (Mo), manganese (Mn), nickel (Ni), nitrogen (N) and iron (Fe). The composition of the stainless steel alloy and powder comprises between about 27 and about 30% by weight Cr, between about 1.5 and about 4.0% by weight Mo, Mn present and is present in an amount up to 15% by weight, at least about 8% by weight Ni, and about 0.8 to about 0.97% by weight N with the balance being iron. It has been discovered that forming an alloy of this chemistry using nitrogen gas atomization process, followed by a consolidation process, the alloy is less likely to form detrimental ferrite, stable nitride and sigma (&sgr;) phases, without the need for further processing, such as solution treating and quenching. This allows for the formation of stainless steel articles having a thicker cross-section with reduced processing cost.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: January 2, 2001
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Francis S. Biancaniello, Stephen D. Ridder, Rodney D. Jiggetts
  • Patent number: 6045601
    Abstract: A high density, non-magnetic alloy is described along with a process for manufacturing it. The preferred composition for the alloy is approximately 95% by weight of tungsten and 5% of austenitic stainless steel. The process for manufacturing the alloy begins with blending tungsten and stainless steel powders which are then mixed with an organic binder to form a feedstock. The latter is then molded into the form of compacted items, such as a hard drive counterweight balance, and then sintered in either vacuum or a hydrogen atmosphere. The tungsten heavy alloys of the present invention can be easily manufactured in large volume economically in many intricate shapes with excellent control of weight and dimensions.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: April 4, 2000
    Assignee: Advanced Materials Technologies, Pte, Ltd.
    Inventor: Lye King Tan
  • Patent number: 5980812
    Abstract: Solid objects are formed in an imagewise layering process in which components of a dispersion are homogenized to form an alloy. Imagewise exposure of the layers to radiation to form an alloy permits separation of the exposed, homogenized regions from non-exposed, non-homogenized regions. As each layer is formed and imagewise homogenized, contiguous layer regions are bonded together to form a homogenized, three-dimensional object which may be separated from surrounding dispersion.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: November 9, 1999
    Inventor: John A. Lawton
  • Patent number: 5963771
    Abstract: In the present invention, nickel and phosphorous are simultaneously plated onto the surface of iron powder, mixed iron and nickel powder, or iron-nickel pre-alloyed powder, to form iron-nickel-phosphorous ternary alloy powders with very uniform distribution of phosphorous, with concentrations ranging between 2.0 and 6.0 wt%. When mixed with an appropriate amount of organic binder, these powders may be used as raw materials for injection molding. Intricate parts thus formed can be sintered at relatively low temperatures to attain high sintered density, large grain size, and isotropic shrinkage. The sintered microstructure thus obtained is characterized by spheroidal grains embedded in continuous intergranular insulating phosphide phase. The magnetic properties of the resulting material are substantially improved as compared to those of powder processed products.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: October 5, 1999
    Inventors: Tien-Yin Chan, Shun-Tian Lin
  • Patent number: 5930583
    Abstract: This invention relates to a method for forming a titanium alloy by powder metallurgy, which comprises the processes of mixing uniformly a powder of titanium or an alloy thereof with a low-melting point metal or alloy powder, injecting the mixture into a press forming die, then press forming them under heating to a temperature near and over the melting point of the low-melting point metal, or to a temperature between the liquidus and the solidus of the low-melting point alloy, or to a temperature near and over the liquidus to obtain the targeted compact, and holding this compact in the pressurized state to cause the molten low-melting point metal or alloy to infiltrate the powder grain boundary of the titanium or alloy thereof, and then sintering the compact thus obtained in an inert atmosphere or a vacuum to diffuse the titanium or alloy thereof and the low-melting point metal or alloy into each other and to make alloys of them.
    Type: Grant
    Filed: August 25, 1997
    Date of Patent: July 27, 1999
    Assignee: Japan as represented by Director General of Agency of Industrial Science and Technology
    Inventors: Kazuo Yasue, Gongli Yu
  • Patent number: 5926686
    Abstract: The present invention concerns low allow PM materials which after single pressing and sintering utilizing traditional powder metallurgy processes and equipment combine high mechanical strength and high density with maintained precision of tolerance. As base material is used an iron powder having at least one alloying element diffusion-bonded to the outer surfaces of unalloyed iron particle is provided.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: July 20, 1999
    Assignee: Hoganas AB
    Inventors: Ulf Engstrom, Bjorn Johansson
  • Patent number: 5918104
    Abstract: Powder metallurgy production of Ta10W alloy affording properties comparable to melt derived Ta10W, but at higher yields and lower costs, is enabled by blending component powders of minus 325 mesh and sintering at 2,400.degree. C. in three sinter steps and utilizing a slow ramp up in the first sinter step and cold isostatic pressing prior to the first sinter step and isostatic press densification in conjunction with at least the first sinter step.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: June 29, 1999
    Assignee: H.C. Starck, Inc.
    Inventors: Robert W. Balliett, Trung Luong
  • Patent number: 5876481
    Abstract: A steel powder consisting of a combination of purified steel and prealloyed manganese, chromium, molybdenum and nickel. The steel powder is used in the production of metal parts using powder metallurgy. The addition of the prealloyed elements results in a metal part having greater strength and hardness with a low oxygen content and good compressibility.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: March 2, 1999
    Assignee: Quebec Metal Powders Limited
    Inventors: Fran.cedilla.ois Chagnon, Yves Trudel
  • Patent number: 5872322
    Abstract: A method of making a structural iron-based article comprising: (a) blending a compressible base iron powder (max. particle size of 100 microns) a graphite powder to provide carbon in mixture, and a single master alloy powder (average particle size of 10 microns) meltable within the range of 900.degree.-1200.degree. C. (1690.degree.-2220 .degree.F.) to form a mixture, the master alloy powder being present in an amount of 1-5% by weight of the mixture and consisting of (i) hardenability enhancing alloying ingredients selected from Mn, Mo, Ni, Cr, Cu and Fe, with Fe being present only if Cr or Mo is selected and (ii) wetting agents selected from the group of B, Y, Si and rare earth misch metal, the master alloy being devoid of carbon and being proportioned to provide a desired amount of hardenability in the base powder; (b) compacting the mixture to a green density 7.1-7.4 g/cm.sup.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: February 16, 1999
    Assignee: Ford Global Technologies, Inc.
    Inventors: Stanislaw Mocarski, Charles Oliver Mchugh, Russell A. Chernenkoff, David Alan Yeager
  • Patent number: 5848349
    Abstract: The present invention relates to modifying the properties of a metal matrix composite body by a post formation process treatment and/or a substantially contiguous modification treatment. The post formation process treatment may be applicable to a variety of metal matrix composite bodies produced by various techniques, and is particularly applicable to modifying the properties of a metal matrix composite body produced by a spontaneous infiltration technique. The substantially contiguous modification process may also be used primarily in conjunction with metal matrix composite bodies produced according to a spontaneous infiltration technique. Particularly, at least a portion of the matrix metal of the metal matrix composite body and/or the filler material of the metal matrix composite body is modified or altered during and/or after the formation process.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: December 8, 1998
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc Stevens Newkirk, Andrew Willard Urquhart, Michael Kevork Aghajanian, Mark Gordon Mortenson, Vilupanur Alwar Ravi, Alan Scott Nagelberg
  • Patent number: 5822674
    Abstract: A material for electric contacts based on silver-tin oxide is obtained by mixing a powder of silver or an alloy mainly containing silver with a powder consisting mainly of tin oxide and 0.01 to 10 wt. % (in relation to the quantity of tin oxide) of an additive consisting of one or more compounds containing silver, oxygen and a metal from sub-groups II to VI of the periodic system and/or antimony, bismuth, germanium, indium and gallium, compacting the mixture and sintering it. The tin oxide may be replaced by zinc oxide.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: October 13, 1998
    Assignee: Doduco GmbH + Co. Dr. Eugen Durrwachter
    Inventors: Volker Behrens, Thomas Honig
  • Patent number: 5802437
    Abstract: Metallic shaped bodies are produced from an injection-molding composition comprising at least one carbonyl metal powder and at least one element powder of metals from the group Cr, Mn, V, Si, Ti or of other metals which are at least as oxidation-sensitive by shaping, removing the binder and sintering. In place of an element powder, it is also possible to use an alloy powder comprising the corresponding metals.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: September 1, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Wohlfromm, Dieter Weinand, Martin Blomacher, Manfred Schwarz, Eva-Maria Langer
  • Patent number: 5744734
    Abstract: A method for fabricating articles of high-temperature aluminum alloys having a compressional strength of at least 20 kg/mm.sup.2 at temperatures of 300.degree. C. or greater, is disclosed. The method comprises the steps of: (a) forming a porous preform from particles of a first aluminum alloy via cold-pressing, the preform having the shape and dimension of the aluminum alloy article to be fabricated; (b) squeeze-casting a molten second aluminum alloy into void spaces of the porous preform to form an aluminum composite containing the first aluminum alloy, which serves as a reinforcement phase, dispersed in the second aluminum alloy, which serves as a matrix phase; (c) wherein the molten second aluminum alloy is cast at such temperatures so as to cause a surface of the first aluminum alloy particles to melt and thereby form a strong bonding with the second aluminum alloy.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: April 28, 1998
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chao Yang, Edward Chang
  • Patent number: 5734959
    Abstract: The invention is directed to a method of forming an implant having a porous surface using an organic binder compound to enhance the bonding between the porous surface layer and implant. Preferably, the binder is formed from a water-soluble protein that carbonizes during the sintering process to alloy with the metal of the porous surface layer. The porous surface layer may be in the form of beads or of fiber metal and can be preformed to fit with an implant or formed over the surface of the implant.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: March 31, 1998
    Assignee: Zimmer, Inc.
    Inventors: Steve Krebs, Clarence Panchison, H. Ravindranath Shetty
  • Patent number: 5733427
    Abstract: A sputtering target formed of a refractory metallic silicide having a composition MSi.sub.x including a mixture composition of an MSi.sub.2 phase in the form of particles (M: at least one refractory metal selected from a group consisting of W, Mo, Ti, Zr, Hf, Ni and Ta), and an Si phase provided as a matrix phase. Interface layers having a predetermined thickness are formed at the interfaces between the MSi.sub.2 phase and the Si phase. The value X in the composition formula MSi.sub.x is set to a range of 2.0 to 4.0, and the thickness of the interface layers formed between the MSi.sub.2 phase and the Si phase, the dispersion of the composition, the density ratio of the target, the electrical resistivity of the Si phase and the surface roughness are set to predetermined values. An uniform high-quality thin film in which a composition distribution is uniform can be manufactured stably by using this target.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: March 31, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Mitsuo Kawai, Tatsuzo Kawaguchi, Kazuhiko Mitsuhashi, Toshiaki Mizutani
  • Patent number: 5703304
    Abstract: The invention concerns an iron-based powder for powder-metallurgically producing components by powder compacting and sintering. The powder which essentially consists of 0.7-2.0% of Mo, 0.2-2.5% by weight of Cr and 0-3.0% by weight of Cu, 0.05-0.25% by weight of Mn and 0.3-1.0% by weight of C, wherein Fe, Mo and Mn are present as a prealloyed, water atomised FeMoMn base powder, Cr is present as FeCr, Cu is present as a metal or partially prealloyed powder and C is present as a graphite, exhibits very interesting properties. The invention also includes a method for preparing sintered components from this iron powder.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: December 30, 1997
    Assignee: Hoganas AB
    Inventors: Caroline Lindberg, Per Engdahl
  • Patent number: 5701575
    Abstract: An article essentially consisting of one or more of Ti--Al intermetallic compounds is fabricated so as to have a volume ratio of voids no more than 3.5%, by preparing a mixture of materials selected from a group consisting of Ti, Ti alloys, Al, Al alloys, and Ti--Al compounds, having a composition suitable for forming a desired Ti--Al intermetallic compound, and heating said mixture so that said mixture may be sintered. Typically, the temperature and pressure for the heating or sintering process is appropriately selected so that the desired porosity may be obtained. The mechanical strength of an article according to the present invention is not only improved but is highly predictable, or, in other word, highly reliable. The fabrication costs can be reduced because the fabrication process involves only relatively low temperatures when pressing and heating the work at the same time.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: December 23, 1997
    Assignee: NHK Spring Co., Ltd.
    Inventors: Kohei Taguchi, Michihiko Ayada, Hideo Shingu
  • Patent number: 5682590
    Abstract: A titanium-based carbonitride grade for finishing and semi-finishing turning operations with excellent properties is obtained starting from a titanium-based carbonitride grade used for milling operations. The carbon content of a conventional titanium-based carbonitride grade used for milling operations is optimized in such a way that it is close to the point where .eta.-phase or other substoichiometric phases are formed. The improved titanium-based carbonitride is also provided with a thin wear resistant Ti-containing coating deposited preferably by PVD technique.
    Type: Grant
    Filed: January 23, 1996
    Date of Patent: October 28, 1997
    Assignee: Sandvik AB
    Inventor: Gerold Weinl
  • Patent number: 5682588
    Abstract: The present invention relates to a method for producing, without quench-hardening process, a ferrous sintered alloy having satisfactory strength which is equal to that of the conventional ferrous sintered quenched material, and the method comprises the steps of: preparing a powder mixture by adding, in weight ratios, 1 to 2% of copper powder, 1 to 3% of Ni powder, and graphite to a ferrous alloy powder consisting of 3 to 5% of Ni, 0.4 to 0.7% of Mo, and the remainder Fe, the quantity of said graphite being determined such that the C-content after sintering is 0.2 to 0.7%; compacting said powder mixture in a tool to form a green compact; sintering said green compact in a non-oxidizing atmosphere at a temperature in the range of 1130.degree. to 1230.degree. C.; and cooling the sintered product in the sintering furnace at a rate of 5.degree. C./min. to 20.degree. C./min.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 28, 1997
    Assignees: Hitachi Powdered Metals Co., Ltd., Hitachi Koki Co., Ltd.
    Inventors: Tadayuki Tsutsui, Kei Ishii, Hideo Shikata, Sumihisa Kotani
  • Patent number: 5659876
    Abstract: A method for producing a washer having a boss comprises the following steps in the sequence set forth: (a) sprinkling powder of a bearing alloy onto a backing metal made of an iron-based alloy to form a composite material; (b) sintering the composite material to obtain a bimetal material so as to accomplish a primary sintering; (c) fabricating the bimetal material into a shape of the washer having the boss; and (d) simultaneously accomplishing a secondary sintering and carburizing of the washer having the boss. By virtue of simultaneously conducting the secondary sintering and the carburizing for the washer, the number of steps in producing method (particularly, during a heat treatment) is reduced thereby improving the productivity of the washer having the boss while reducing thermal energy required for the heat treatment.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: August 19, 1997
    Assignee: Jatco Corporation
    Inventor: Muneo Mizuta
  • Patent number: 5628044
    Abstract: High purity iron-zinc intermetallic calibration standards are produced using a slow diffusion technique. The alloys are pure to greater than 99.5 wt % and are homogenous to greater than 98%. The alloys can be used to calibrate instrumentation used to monitor and measure galvanneal and galvanized coatings. The alloy calibration standards for each of the iron-zinc phases allows instrumentation correction factors to be determined for iron-zinc coating analysis.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 6, 1997
    Assignee: Old Dominion University
    Inventors: Desmond C. Cook, Richard G. Grant, Patricia S. Cook
  • Patent number: 5613184
    Abstract: An aluminium alloy made by a powder metallurgy route and a method for its production are described. The method comprises the steps of producing a first powder of a near-eutectic aluminium-silicon based alloy; producing a second powder of a hypereutectic aluminium-silicon based alloy; mixing desired proportions of the two powders together; compacting the powder mixture and sintering the compacted powder.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: March 18, 1997
    Assignees: The Aluminium Powder Company Limited, Brico Engineering Limited
    Inventors: Charles G. Purnell, Paul Smith, Mohammad S. Mahmoud
  • Patent number: 5594930
    Abstract: A brazeable aluminum material is composed of an aluminum core and a brazing agent layer consisting of a brazing agent thermally sprayed onto covering a surface of the core. A number of unmolten minute particles of the brazing agent are present in the brazing agent layer, which contains at least an aluminum-silicon alloy and/or a mixture of aluminum and silicon. Characteristic features of a method of producing the brazeable aluminum material are the steps of: preparing a powder composed of minute particles; and thermally spraying the powder onto the aluminum core in such a state that only a surface of each minute particle is molten, with a pith of the particle remaining unmolten. The powder is an Al-Si alloy and/or a mixture of Al powder and Si powder.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: January 14, 1997
    Assignee: Showa Aluminum Corporation
    Inventors: Takashi Terada, Masahiro Kojima, Taizo Morita, Katsuyuki Arakawa, Ichiro Iwai, Masakazu Furuta
  • Patent number: 5590383
    Abstract: A porous membrane produced by preparing a slurry made from at least one micropyretic substance and at least one liquid carrier. The slurry is dried into a green form having a desired geometric configuration. Combustion of the green form produces the porous membrane.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: December 31, 1996
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Jainagesh A. Sekhar, James J. Liu, Naiping Zhu
  • Patent number: 5579533
    Abstract: A soldering tip comprising 50-95 weight percent uncoated copper particles and 5-50 weight percent iron particles is prepared by a method in which the particles are compacted, sintered and shaped into a soldering tip. The soldering tips are durable, resistant to pitting by molten solder, and thermally conductive.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: November 26, 1996
    Assignees: Donald Fegley, Emily I. Weller
    Inventor: Carl E. Weller
  • Patent number: 5568653
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at semifinishing operations at turning. The method relates to the use of a raw material consisting of a complex cubic carbonitride comprising the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.85.ltoreq.X.sub.IV .ltoreq.0.990.58.ltoreq.X.sub.C .ltoreq.0.69where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: October 22, 1996
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf Oskarsson
  • Patent number: 5561831
    Abstract: According to the invention there now is provided a method of producing a sintered titanium based carbonitride alloy with 3-25 weight-% binder phase with extremely good properties at fine to medium coarse milling. The method relates to the use of a raw material consisting of a complex cubic carbonitride comprising the main part of the metals from groups IV and V of the periodic system and carbon and nitrogen to be found in the finished alloy whereby said alloy has the composition0.89.ltoreq.X.sub.IV .ltoreq.0.970.52.ltoreq.X.sub.C .ltoreq.0.61where X.sub.IV is the molar ratio of the group IV elements of the alloy and X.sub.C is the molar ratio of carbon.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: October 1, 1996
    Assignee: Sandvik AB
    Inventors: Ake Ostlund, Rolf Oskarsson
  • Patent number: 5554338
    Abstract: The invention relates to a method of preparing a composite sintered body having inner and outer portions fitted with each other. The method includes the steps of: (a) preparing an inner powder compact; (b) preparing an outer powder compact; (c) fitting the inner and outer powder compacts with each other so as to prepare a composite powder compact; and (d) sintering the composite powder compact so as to prepare the composite sintered body. The inner and outer powder compacts are respectively selected such that, during the step (d), the amount of growth of the inner powder compact becomes greater than that of the outer powder compact. Each of the inner and outer composite powder compacts is made of one member selected from the group consisting of a wax-type segregation prevention powder mixture and a metal-soap-type segregation prevention powder mixture. At least one of the inner and outer composite powder compacts is made of the wax-type segregation prevention powder.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: September 10, 1996
    Assignees: Nissan Motor Co., Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Hiroshi Sugihara, Hiroyuki Ishikawa, Tsutomu Uemura, Akira Fujiki, Hiromasa Imazato, Shinichi Umino
  • Patent number: 5529745
    Abstract: By compacting in a magnetic field a mixture containing powder raw material A having a composition represented by (Tb.sub.x Dy.sub.1-x)T.sub.y wherein T is at least one metal of Fe, Co, and Ni and 0.30<x.ltoreq.x 0.50 and 1.70.ltoreq.y.ltoreq.2.00, powder raw material B having a composition represented by (Dy.sub.1-t Tb.sub.t).sub.z T.sub.1-z wherein 0.ltoreq.t.ltoreq.0.30 and 0.40.ltoreq.z.ltoreq.0.80 and optionally, powder raw material C consisting essentially of element T, and sintering the compact, there is prepared a magnetostrictive material having a composition represented by (Tb.sub.v Dy.sub.1-v)T.sub.w wherein 0.27.ltoreq.v<0.50 and 1.70.ltoreq.w.ltoreq.2.00, with grains oriented along [111] axis. The material having minimal crystalline magnetic anisotropy at room temperature and large magnetostrains is obtained at low cost by powder metallurgy.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: June 25, 1996
    Assignee: TDK Corporation
    Inventors: Teruo Mori, Tomoko Nakamura
  • Patent number: 5484490
    Abstract: A P-type thermoelectric material consists essentially of iron disilicide, metallic manganese and metallic aluminium dissolved in or alloyed with the iron disilicide, and silicon oxide and/or aluminum oxide present in the iron disilicide. The manganese is contained in an amount of from 1.67 to 4.1 atomic % with respect to a sum of atoms of iron and silicon constituting the iron disilicide, the metallic manganese and the metallic aluminum taken as 100 atomic %, and the metallic aluminum contained in an amount of from 1.33 to 3.33 atomic % with respect thereto, and a sum of the metallic manganese and the metallic aluminum in an amount of from 4.0 to 5.34 atomic % with respect thereto. The P-type thermoelectric material having such a composition produces a thermoelectromotive force equal to or greater than those of the conventional P-type thermoelectric materials comprised of iron disilicide, and it exhibits a mean resistivity equal to or smaller than that of the N-type thermoelectric material.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: January 16, 1996
    Assignees: Technova Inc., National Research Institute for Metals
    Inventors: Shigeki Tokita, Makoto Okabayashi, Takashi Amano, Isao Nishida
  • Patent number: 5466277
    Abstract: A sintered Al-alloy, which has a composition of 0.2 to 2.0% of Mg, 10.0 to 35.0% of Si, from 0.2 to 4.0% of Cu, and Al and unavoidable impurities in balance, is produced by using a mixture of the main powder (10.0-35.0% of Si, 0.2-2.0% of Cu, and Al and unavoidable impurities in balance) and at least one metal or mother-alloy powder selected from (a)-(i): (a) Mg powder; (b) Al--Mg powder; (c) Al--Cu powder; (d) Al--Mg--Si powder; (e) Al--Cu--Si powder; (f) Al--Mg--Cu powder; (g) Al--Mg--Cu--Si powder; (h) Mg--Cu powder; and, (i) Mg--Cu--Si powder.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: November 14, 1995
    Assignee: Showa Denko K.K.
    Inventors: Shin Miura, Youichi Hirose, Mitsuaki Sato
  • Patent number: 5453243
    Abstract: A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: September 26, 1995
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Jeffrey S. Hansen, Paul C. Turner, Edward R. Argetsinger
  • Patent number: 5433917
    Abstract: Process for producing novel fluxed PZT dielectric ceramic compositions having sintering temperatures below about 1000.degree., so as to be non-reactive with electrode layers when co-fired therewith. The PZT is sintered with an effective amount of an eutectic mixture of CuO and an oxide of an alkaline earth metal, preferably barium oxide and/or strontium oxide, to reduce the sintering temperature of the PZT composition below about 1000.degree. C. Dopant such as manganese oxide may be added to reduce the dielectric losses.
    Type: Grant
    Filed: September 16, 1993
    Date of Patent: July 18, 1995
    Assignee: The Penn State Research Foundation
    Inventors: Ashvin Srivastava, Amar Bhalla, L. Eric Cross
  • Patent number: 5429793
    Abstract: A process for producing metal oxide dispersion-strengthened anodes for use in fuel cells in which a metal alloy powder comprising at least one metal powder and at least one metal oxide forming phase is formed into a "green" cohesive structure. The "green" cohesive structure is heated in a sintering furnace resulting in simultaneous sintering and internal oxidizing of the oxide forming phase within the "green" cohesive structure, forming an oxide dispersion-strengthened structure. To promote simultaneous sintering of the "green" cohesive structure and internal oxidation of the oxide forming phase within the "green" cohesive structure, an oxidizing agent is disposed within the "green" cohesive structure or is applied to the exterior of the cohesive structure.
    Type: Grant
    Filed: May 17, 1994
    Date of Patent: July 4, 1995
    Assignee: Institute of Gas Technology
    Inventors: Estela T. Ong, Nellie Burton-Gorman
  • Patent number: 5427734
    Abstract: The object of the invention is to provide a manufacturing method of a complex shaped R--Fe--B type sintered anisotropic magnet improved the moldability of injection molding and preventing the reaction between R ingredients and binder and controlled the degradation of magnetic characteristics due to residual carbon and oxygen. Utilizing the R--Fe--B type alloy powder or the resin coated said alloy powder, and methylcellulose and/or agar and water, instead of the usual thermoplastic binder, it is mixed and injection molded. The molded body is dehydrated by the freeze vacuum dry method to control the reaction between R ingredients and of the R--Fe--B alloy powder and water; furthermore, by administering the de-binder treatment in the hydrogen atmosphere, and sintering it after the dehydrogen treatment, residual oxygen and carbon in the R--Fe--B sintered body is drastically reduced, improving the moldability during the injection molding to obtain a three dimensionally complex shape sintered magnet.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 27, 1995
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Masahiro Asano, Tsunekazu Saigo
  • Patent number: RE37875
    Abstract: Solid objects are formed in an imagewise layering process in which components of a dispersion are homogenized to form an alloy. Imagewise exposure of the layers to radiation to form an alloy permits separation of the exposed, homogenized regions from non-exposed, non-homogenized regions. As each layer is formed and imagewise homogenized, contiguous layer regions are bonded together to form a homogenized, three-dimensional object which may be separated from surrounding dispersion.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 15, 2002
    Inventor: John A. Lawton