Includes Adding A Binder Material Patents (Class 419/65)
  • Patent number: 7220380
    Abstract: A method for solid free-form fabrication of a three-dimensional metal object includes depositing a particulate blend in a defined region, the particulate blend including a number of metal or metal alloy particulates and a peroxide, and selectively ink-jetting a binder system onto a predetermined area of the particulate blend to form a green part, wherein the liquid phase binder includes a water soluble monofunctional acrylate-based monomer, a water soluble difunctional acrylate-based monomer, an amine, and water.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: May 22, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Isaac Farr, Terry M. Lambright, Daniel A. Kearl
  • Patent number: 7211158
    Abstract: The present invention provides a production method for a powdered core, including steps of preparing a mixture including a soft magnetic powder and a resin powder to obtain a mixture, compacting the mixture into a predetermined shape to obtain a green compact and heating the green compact, and wherein the resin powder has a median size of not more than 50 ?m, and the resin powder amount is 0.01 to 5 vol %. The method reduces production cost, and decreases eddy-current loss We and hysteresis loss Wh, whereby a powdered core in which a durability is improved and the technical advantages are expanded can be provided.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 1, 2007
    Assignees: Hitachi Powdered Metals Co., Ltd., Denso Corporation
    Inventors: Chio Ishihara, Kazuo Asaka, Kei Ishii, Tamio Takada, Tsuyoshi Akao, Isao Makino
  • Patent number: 7160502
    Abstract: The present invention relates to a method for readily producing an anode for rechargeable batteries having conflicting properties in good balance, including the corrosion resistance and the activities such as the initial activity and the high rate discharge performance, and having excellent recyclability. The method includes the steps of mixing and molding anode materials containing an electrically conductive material and at least two kinds of AB5 type hydrogen storage alloys, wherein said alloys have substantially single phase structures and the same composition, wherein each of the alloys have an average crystal long axis diameter of 30 to 350 ?m, and wherein the alloys have different ratios (D1/D2) of the average crystal long axis diameter (D1) to the average short axis diameter (D2).
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 9, 2007
    Assignee: Santoku Corporation
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Patent number: 7137443
    Abstract: A capillary structure for a heat transfer device, such as a heat pipe is provided having a plurality of particles joined together by a brazing compound such that fillets of the brazing compound are formed between adjacent ones of the plurality of particles. In this way, a network of capillary passageways are formed between the particles to aid in the transfer of working fluid by capillary action, while the plurality of fillets provide enhanced thermal transfer properties between the plurality of particles so as to greatly improve over all heat transfer efficiency of the device. A method of making the capillary structure according to the invention is also presented.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 21, 2006
    Assignee: Thermal Corp.
    Inventors: John H. Rosenfeld, Kenneth G. Minnerly
  • Patent number: 7083760
    Abstract: This invention provides a method of forming a powder compact which can produce a high density compact under a high pressure and at the same time can reduce pressure for ejecting the compact from a die. This method comprises the application step of applying a higher fatty acid lubricant to an inner surface of a heated die, and the compaction step of filling metal powder into the die and compacting the metal powder under such a pressure as to force the higher fatty acid lubricant to be chemically bonded with the metal powder and form a metallic soap coating. Since the metallic soap coating is formed between the die and a compact, friction force between the die and the compact is decreased and ejecting pressure can be remarkably decreased despite of compaction with high pressure. Besides, a high density compact can be obtained owing to the compaction with high pressure.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: August 1, 2006
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Kondo, Yoji Awano, Masatoshi Sawamura, Hiroshi Okajima, Shigehide Takemoto
  • Patent number: 7074254
    Abstract: The invention aims to provide a binder for powder metallurgy, the binder containing an epoxy resin which is liquid at room temperature and a curing agent having at least one functional group selected from the group consisting of amino, mercapto and carboxyl groups. The binder involves few problems in point of workability and safety, suppress the scattering of graphite, and is superior in powder characteristics. The invention also provides a mixed powder for powder metallurgy using the binder and a method for producing the mixed powder.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 11, 2006
    Assignee: Kobe Steel Ltd.
    Inventors: Kazuhisa Fujisawa, Hironori Suzuki
  • Patent number: 6887295
    Abstract: The present invention relates to improved metallurgical powder compositions that incorporate solid lubricants, methods for preparing and using the same, and methods of making compacted parts. Ejection properties, such as stripping pressure and sliding pressure, of compacted parts can be improved by using the solid lubricants. The solid lubricants contain functionalized polyalkylene glycol lubricants that contain a phosphate group, phosphite group, hypophosphate group, hypophosphite group, polyphosphate group, thiophosphate group, dithiophosphate group, thiocarbamate group, dithiocarbamate group, borate group, thiosulfate group, sulfate group, a sulfonate group or combinations thereof.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: May 3, 2005
    Assignee: Hoeganaes Corporation
    Inventors: George Poszmik, Sydney Luk
  • Patent number: 6849229
    Abstract: A method of preparing an article made of a metallic material having its constituent elements includes the steps of furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively include the constituent elements of the metallic material in their respective constituent-element proportions, and thereafter utilizing the nonmetallic precursor compound to produce a metallic injection molded brown article. The nonmetallic precursor compounds may be processed into the metallic material by first chemically reducing them to the metallic material, and then injection molding the metallic material, or first injection molding the nonmetallic precursor compounds and then chemically reducing them to the metallic material.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Publication number: 20040258553
    Abstract: The invention relates to powder metallurgy and can be used for producing porous materials having high thermal and sound insulation and energy absorption combined with light mass, incombustibility and the ecological cleanness thereof. According to said invention, during mixing a powder of an aluminum alloy with porophores, the powders of aluminum oxide and aluminum hydroxide ranging from 1 to 10% and crushed particles of secondary aluminum alloys of the dimensions ranging from 0.5 to 4.5 mm are added to the powder mixture. The particles are mixed in an atrittor until a mechanically alloyed powder alloy is obtained. The powder mixture being heated, it is poured in a vertical container which vibrocompacts the mixture and maintains the temperature thereof. Afterwards, said mixture is transferred to the rectangular groove of a rolling mill in order to carry out a continuous hot compaction in a dead groove of horizontal rollers at a temperature ranging from 430 to 500° C.
    Type: Application
    Filed: January 16, 2004
    Publication date: December 23, 2004
    Inventors: Alexander Ivanovich Litvintsey, Sergei Alexandrovich Litvintsev, Boris Alexandrovich Litvintsev
  • Patent number: 6814776
    Abstract: An iron-based rare-earth alloy powder includes: a first iron-based rare-earth alloy powder, which has a mean particle size of 10 &mgr;m to 70 &mgr;m and of which the powder particles have aspect ratios of 0.4 to 1.0; and a second iron-based rare-earth alloy powder, which has a mean particle size of 70 &mgr;m to 300 &mgr;m and of which the powder particles have aspect ratios of less than 0.3. The first and second iron-based rare-earth alloy powders are mixed at a volume ratio of 1:49 to 4:1. In this manner, an iron-based rare-earth alloy powder with increased flowability and a compound to make a magnet are provided.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: November 9, 2004
    Assignee: Neomax Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Hirokazu Kitayama, Satoshi Hirosawa, Toshio Miyoshi
  • Patent number: 6797220
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: September 28, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 6749802
    Abstract: A manufacturing process for articles that are formed from powders containing tungsten and at least one binder. The manufacturing process includes compacting the mixture of powders under a first pressure to yield a desired intermediate structure, then reshaping the structure under a second pressure that is lower than the first pressure to yield the desired article. The binder utilized in the manufacturing process may include a metallic binder or a non-metallic binder, or both. The process is particularly suited for the manufacture of lead substitutes, including firearms projectiles, such as a bullet or shot. Such projectiles may be ferromagnetic or non-ferromagnetic, frangible or infrangible, and jacketed or unjacketed.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: June 15, 2004
    Inventor: Darryl D. Amick
  • Patent number: 6740289
    Abstract: An atomized mixture of flat soft magnetic powder and an organic binding agent is rolled by mutually confronting two rolling rolls so as to easily produce a composite magnetic sheet excellent in electromagnetic wave absorption characteristic. A plurality of the composite magnetic sheets are stacked by forming unevenness on joining surfaces thereof and rolled so as to realize a desired thickness. By sandwiching a mesh metal layer between the foregoing two composite magnetic sheets and joining them by applying rolling thereto, a mechanically strong electromagnetic interference suppressing sheet can be easily obtained. For reducing reflection and transmittance of electromagnetic waves of the composite magnetic sheet, embossing is applied to obverse and reverse surfaces thereof.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: May 25, 2004
    Assignee: NEC Tokin Corporation
    Inventors: Norihiko Ono, Shigeyoshi Yoshida, Osamu Ito, Mitsuharu Sato
  • Patent number: 6733703
    Abstract: Precise control of the shrinkage upon sintering of bodies made from mixtures of particulate materials and organic binders is achieved through precision pycnometry of the particulate materials and of the resulting sintered bodies, thus allowing a single molding tool to be used to produce parts in different sizes and from different materials and to tight manufacturing tolerances.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: May 11, 2004
    Inventors: Romain L. Billiet, Hanh Thi Nguyen
  • Publication number: 20040038066
    Abstract: A material has a mass of powder particles. The mass of powder particles includes controlled binary macrosegregated powder particles made of at least two constituent elements. Each controlled binary macrosegregated powder particle has a chemically binary structure wherein the chemical composition varies from one side to the other side of the powder particle. The controlled binary macrosegregated powder particles may be used in applications which conventionally employ homogeneous powder particles, such as paints, solar cells, and the like. A paint uses as its pigment the controlled binary macrosegregated powder particles whose compositions are within the chemical system Zn(Al,Ga)2O4, and an inorganic or organic binder. The controlled binary macrosegregated powder particles are made by chemical synthesis at temperatures below those conventionally used to prepare homogeneous particles.
    Type: Application
    Filed: August 20, 2002
    Publication date: February 26, 2004
    Inventor: James F. Cordaro
  • Patent number: 6689183
    Abstract: A composition of metal powder for powder metallurgy applications comprising an iron-based powder metal admixed with a minority fraction of a ferrite powder having a lesser particle-size distribution. The ferrite particles are associated with an exterior surface of the iron-based particles and, after compression molding by a powder metallurgy technique, are incorporated into the microstructural pores between adjacent particles of iron-based powder. A composite structure formed from the composition of the present invention has an improved overall permeability and overall resistivity. A binder, such as a thermoplastic polyacrylate, may be added to the admixture of iron-based and ferrite powders for promoting the association of the ferrite powder with the iron-based powder.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: David Earl Gay
  • Patent number: 6656290
    Abstract: A soldering paste for hard-soldering and coating working parts made of aluminum or aluminum alloys, which contains 25 to 35 percent in weight of a water-miscible organic binding agent on the basis of aliphatic glycols, 25 to 45 percent in weight of an aluminum hard-soldering powder, 25 to 45 percent in weight of an aluminum fluxing agent and, as an additive to influence the rheological properties, 0.01 to 0.2 percent by weight with respect to the total amount of one or several fatty acids with 10 to 20 C atoms and/or their ammonium salts.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: December 2, 2003
    Assignee: Degussa Aktiengesellschaft
    Inventors: Jürgen Koch, Leander Staab, Wolfgang Kohlweiler, Karl-Anton Starz
  • Patent number: 6639787
    Abstract: Pressed material such as anodes are described and formed from oxygen reduced oxide powders using additives, such as binders and/or lubricants. Methods to form the pressed material are also described, such as with the use of atomizing, spray drying, fluid bed processing, microencapsulation, and/or coacervation.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 28, 2003
    Assignee: Cabot Corporation
    Inventors: Jonathon L. Kimmel, Randall V. Redd
  • Publication number: 20030161752
    Abstract: The present invention relates to improved metallurgical powder compositions that incorporate solid lubricants, methods for preparing and using the same, and methods of making compacted parts. Ejection properties, such as stripping pressure and sliding pressure, of compacted parts can be improved by using the solid lubricants. The solid lubricants contain polyalkylene-polyalkylene oxide block copolymer lubricants or a combination of polyalkylene-polyalkylene oxide block copolymer lubricants and at least one additional lubricant. The polyalkylene-polyalkylene oxide block copolymer lubricants include at least one block A of a linear or branched polyalkylene chain having from about 5 to about 500 carbon atoms, and at least one block B of an alkylene oxide chain having a formula —[O(CH2)r]m—, or —[(CH2)rO]m—. The polyalkylene block copolymer lubricants can have a formula represented as A—B or A—B—A.
    Type: Application
    Filed: January 25, 2002
    Publication date: August 28, 2003
    Inventors: Sydney Luk, George Poszmik
  • Patent number: 6607692
    Abstract: A first metal powder having a density greater than the density of lead is mixed with a second metal powder having a density not greater than the density of lead and a matrix micronized polymeric powder which is itself a poor electrical conductor but susceptible to accumulation of an electrostatic charge thereon during handling and/or transportation thereof. The mixing of these metal powders and the micronized polymeric powder is performed under conditions which maintain, promote or enhance the electrostatic environment within a mixing vessel with the result that the metal and nonmetal powders become substantially uniformly distributed throughout the mixture, and retain their uniform distribution after removal from the mixing vessel, and carry forward such uniform distribution into and throughout subsequent conversion of the mixture into ammunition projectiles without the heavy and light metal powder particulates separating, according to their respective densities, into semi-layers or strata.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: August 19, 2003
    Assignee: Doris Nebel Beal Intervivos Patent Trust
    Inventor: Harold F. Beal
  • Publication number: 20030143099
    Abstract: A manufacturing process for articles that are formed from powders containing tungsten and at least one binder. The manufacturing process includes compacting the mixture of powders under a first pressure to yield a desired intermediate structure, then reshaping the structure under a second pressure that is lower than the first pressure to yield the desired article. The binder utilized in the manufacturing process may include a metallic binder or a non-metallic binder, or both. The process is particularly suited for the manufacture of lead substitutes, including firearms projectiles, such as a bullet or shot. Such projectiles may be ferromagnetic or non-ferromagnetic, frangible or infrangible, and jacketed or unjacketed.
    Type: Application
    Filed: January 30, 2002
    Publication date: July 31, 2003
    Inventor: Darryl D. Amick
  • Publication number: 20030140730
    Abstract: The present invention relates to improved metallurgical powder compositions that incorporate solid lubricants, methods for preparing and using the same, and methods of making compacted parts. Ejection properties, such as stripping pressure and sliding pressure, of compacted parts can be improved by using the solid lubricants. The solid lubricants contain functionalized polyalkylene lubricants have the formula: R1—Q—R2 where Q is a linear or branched, polyalkylene containing from about 10 to about 200 carbon atoms, and R1 and R2 are each independently a hydroxyl group, a carboxylic acid group or a metal salt thereof, an amine group, a mono- or di-C1 to C25 alkyl substituted amine group, or an alkylene oxide group having the formula: —[(CH2)qO]nH where q is from about 1 to about 7, n is from about 1 to about 100.
    Type: Application
    Filed: January 25, 2002
    Publication date: July 31, 2003
    Inventors: Sydney Luk, George Poszmik
  • Patent number: 6551375
    Abstract: Tungsten powder is mixed with a second powder metal and a binder to be used as small arms projectiles and shot pellets for use in shot guns which is cost effective to produce and which can perform ballistically. Ballistic performance equal to or superior to that of lead would be offered by a material having a specific gravity equal to or greater than lead. The non-toxic projectiles are manufactured in a cost-effective process; yet still produces projectiles and shot pellets that can perform ballistically. This projectile composition can perform substantially as well as lead and lead alloys or better without the need to fabricate the composition from a high temperature molten state which requires large amounts of energy input. In one particular embodiment of the invention, the tungsten powder is blended with iron powder and Portland Cement for constructing projectiles. The tungsten, iron and Portland Cement (W/Fe Portland cement) shot provides a satisfactory substitute for lead shot.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: April 22, 2003
    Assignee: Kennametal Inc.
    Inventors: David Richard Siddle, Joseph Matthew Tauber, Francois-Charles Henri Dary
  • Patent number: 6546968
    Abstract: A bond magnet comprises a molded body in which a mixture of flake of magnet material comprising rare earth element-iron-nitrogen as main component, TbCu7 type crystal phase as a principal phase and a thickness of less than 200 &mgr;m a binder is compression molded. A compression molded body constituting a bond magnet has a density of 6×103 kg/m3 or more. In the step of compression molding a mixture of magnet material and binder, pressure is applied a plurality of times, or pressure is applied while rotating a punch and die, or the binder is cured while applying pressure to obtain such a bond magnet with good reproducibility. Such a bond magnet has excellent magnetic properties and corrosion resistance.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: April 15, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Nakagawa, Fumiyuki Kawashima, Takao Sawa, Shinya Sakurada, Tomohisa Arai
  • Patent number: 6544352
    Abstract: Disclosed is a method for the compaction of a soft magnetic powder capable of manufacturing a green compact which has attained high density and high strength, is excellent in mechanical properties and magnetic properties, and does not cause a reduction in electrical resistance. Soft magnetic powder particles individually surface-coated with an insulating vitreous layer containing P, Mg, B, and Fe as essential components are used, and a lubricant is applied to the inner wall surface of a compaction die. The soft magnetic powder is subjected to compaction at from not less than room temperature to less than 50° C. without mixing the lubricant with the soft magnetic powder, followed by annealing at from 50 to 300° C.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: April 8, 2003
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Mitani, Takehiro Tsuchida, Yuichi Seki, Akihiko Kagawa, Tetsuya Sawayama, Yoshikazu Seki, Masaaki Sato
  • Patent number: 6517774
    Abstract: The present invention is related to a family of materials that may act as a replacement for lead in applications where the high density of lead is important, but where the toxicity of lead is undesirable. The present invention more particularly provides a high density material comprising tungsten, fiber and binder. Methods and compositions of such materials and applications thereof are disclosed herein.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: February 11, 2003
    Assignee: Ideas to Market, L.P.
    Inventors: Alan V. Bray, Brian A. Muskopf, Michael L. Dingus
  • Patent number: 6503445
    Abstract: A process for producing an iron-based powder composition for powder metallurgy having excellent flowability at room temperature and a warm compaction temperature, having improved compactibility enabling lowering ejection force in compaction, and to provide a process for producing a compact of a high density from the iron-based powder composition, wherein the iron-based powder composition comprises an iron-based powder, a lubricant, and an alloying powder, and at least one of the iron-based powder, the lubricant, and the alloying powder is coated with at least one surface treatment agent selected from the group of surface treatment agents of organoalkoxysilanes, organosilazanes, titanate coupling agents, fluorine-containing silicon silane coupling agents, and wherein the iron-based powder composition is compacted at a temperature not lower than the lowest melting point of the employed lubricants, but not higher than the highest melting point of the employed lubricants.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: January 7, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Yukiko Ozaki, Satoshi Uenosono, Kuniaki Ogura
  • Patent number: 6451082
    Abstract: An iron-based powder composition is provided that is greatly flowable and compactible and less dependent on temperature with respect to flowability and compactibility at room temperature or during warming. The iron-based powder composition includes an iron-based powder, a lubricant melted and fixed to the iron-based powder, an alloying powder bonded to the iron-based powder with the aid of the lubricant, and a free lubricant. One or more constituent members are coated with an organosiloxane layer in a coating ratio of greater than about 80%. The organosiloxane has phenyl groups as a functional group. The lubricant melted and fixed to the iron-based powder is a composite melt composed of a calcium soap and a lithium soap, or a composite melt composed of a calcium soap and an amide lubricant. The free lubricant is a mixed powder composed of an amide lubricant and a methyl polymethacrylate powder, or a lithium soap powder. A process for producing the iron-based powder composition is also provided.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Yukiko Ozaki, Satoshi Uenosono, Kuniaki Ogura
  • Publication number: 20020088505
    Abstract: A composition of metal powder for powder metallurgy applications comprising an iron-based powder metal admixed with a minority fraction of a ferrite powder having a lesser particle-size distribution. The ferrite particles are associated with an exterior surface of the iron-based particles and, after compression molding by a powder metallurgy technique, are incorporated into the microstructural pores between adjacent particles of iron-based powder. A composite structure formed from the composition of the present invention has an improved overall permeability and overall resistivity. A binder, such as a thermoplastic polyacrylate, may be added to the admixture of iron-based and ferrite powders for promoting the association of the ferrite powder with the iron-based powder.
    Type: Application
    Filed: January 9, 2001
    Publication date: July 11, 2002
    Inventor: David Earl Gay
  • Publication number: 20020068005
    Abstract: The invention relates to a process for the production of metallic and metal-ceramic composite components by powder injection molding of a system comprising a metal composite powder, a binder and optionally a ceramic component, where the metal composite powder used is mixed with a protecting liquid in an inert atmosphere before the mixing with the binder. The invention furthermore relates to molybdenum/copper and tungsten/copper composite powders which have a primary metal particle size of predominantly <2 &mgr;m, an oxygen content of <0.8% by weight and optionally a ceramic component, to the use of these composite powders for the production of composite components by powder injection molding, and to a process for the preparation of composite powders in which oxides of molybdenum or tungsten and of copper are mixed, dry-ground and reduced using hydrogen at a temperature of from 800 to 1050° C., and a ceramic component is optionally admixed with the resultant metal composite powder.
    Type: Application
    Filed: August 20, 2001
    Publication date: June 6, 2002
    Inventors: Helmut Meinhardt, Bernd Meyer, Matthias Knuwer, Dietmar Fister, Wolfgang Wiezoreck
  • Patent number: 6399018
    Abstract: Solid objects are made by means of a novel multi-step forming, debinding, sintering and infiltrating process, using a metal-ceramic composition. In this process, the mixture is held for a period of time to degas and settle the powdered material from a liquid binder. The packed geometry is then heated to above the melting temperature of the binder to remove the binder portion of the solid geometry. Upon removal of the binder the binder-free solid geometry is raised to a temperature where the metal pre-sinters together into a three-dimensional rigid matrix with interconnected porosity to form a solid precursor. The porous matrix includes the particulate ceramic material and a first metal, which are at least partially sintered. A molten second metal is then introduced to the fill the porous matrix and form an infiltrated matrix.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: June 4, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Randall M. German, Timothy J. Weaver, Julian A. Thomas, Sundar V. Atre, Anthony Griffo
  • Patent number: 6395223
    Abstract: A method of making a brazing flux compound including the steps of dispensing a desired amount of each of a plurality of ingredients. Adding potassium bifluoride to a bowl and adding boric acid on top of the potassium bifluoride. Mixing the boric acid and potassium bifluoride to form a substantially smooth wet first paste. Adding potassium tetraborate to the first paste and mixing the potassium tetraborate with the first paste to form a substantially creamy second paste. Adding potassium fluoroborate to the second paste and mixing the potassium fluoroborate with the second paste to form a third paste. Adding potassium carbonate to the third paste and mixing until the potassium carbonate is completely dissolved thus forming a fourth paste. Heating the fourth paste for a predetermined time at a predetermined temperature such that the said fourth paste is substantially dried into a substantially solid flux and then reducing the substantially solid flux to a powder flux.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: May 28, 2002
    Assignee: Omn. Technologies Corporation
    Inventors: Jerry L. Schuster, Daniel J. Jossick
  • Patent number: 6368992
    Abstract: A binder system for use in the formation of ceramic or other powder-formed greenware comprising a binder, a solvent for the binder, a surfactant, and a component that is non-solvent with respect to the binder and solvent. The non-solvent component exhibits a lower viscosity than the solvent when containing the binder and comprises a low molecular weight oil having a 90% recovered distillation temperature range of between about 220 to 400° C. Also disclosed is a process of forming and shaping plasticized powder mixtures and a process for forming ceramic articles utilizing the binder system.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: April 9, 2002
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Devi Chalasani, Christopher J. Malarkey
  • Patent number: 6355208
    Abstract: A process for producing a high-density iron-based green compact is provided that can form a green compact with a high density. Also provided is a process for producing a sintered compact from the green compact. A specified combination lubricant is applied to the surface of a die for compacting by electrical charging, wherein the combination lubricant includes a first lubricant having a melting point that is higher than a preset compacting temperature, and a second lubricant having a melting point that is lower than a compacting temperature. A heated iron-based powder mixture is filled into the die, followed by compacting, whereby a green compact is formed. The green compact can be sintered to provide a sintered compact.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: March 12, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Shigeru Unami, Yukiko Ozaki, Satoshi Uenosono
  • Patent number: 6344078
    Abstract: A binder system for use in the formation of ceramic or other powder-formed greenware comprising a binder, a solvent for the binder, a surfactant, and a component that is non-solvent with respect to the binder and solvent. The non-solvent component exhibits a lower viscosity than the solvent when containing the binder and comprises at least a portion of an organic liquid having a 90% recovered distillation temperature of no greater than about 225° C. and more preferably less than 220° C. Also disclosed is a process of forming and shaping plasticized powder mixtures and a process for forming ceramic articles utilizing the binder system.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: February 5, 2002
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Devi Chalasani, Ronald E. Johnson
  • Patent number: 6334882
    Abstract: The invention refers to a process for compressing a spherical metal powder, agglomerated with at least 0.5% by weight of a thermo-reversible hydrocolloid as a binder, in a uniaxial press operation with a ram speed of over 2 m/s to a green body having a high density. More particularly the invention also refers to a process for sintering said green bodies to products with full or near full density. The products obtained can be high resistant, high strength details or parts of stainless steel or other alloys.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: January 1, 2002
    Assignees: Scandinavian Powdertech AB, Metals Process Systems
    Inventor: Christer &angst;slund
  • Patent number: 6299678
    Abstract: A binder system for use in the formation of ceramic or other powder-formed greenware comprising a binder, a solvent for the binder, a surfactant, and a component that is non-solvent with respect to the binder and solvent. The non-solvent component exhibits a lower viscosity than the solvent when containing the binder and comprises at least a portion of a branched chain paraffin exhibiting a 90% recovered distillation temperature ranging between 205° C. to about 225° C. and a carbon chain length comprised predominantly of carbon chain distributions ranging from 12 to 14. Also disclosed is a process of forming and shaping plasticized powder mixtures and a process for forming ceramic articles utilizing the binder system.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 9, 2001
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Devi Chalasani
  • Patent number: 6284192
    Abstract: A method of extruding an electrode, batch material, particularly a zinc or nickel, electrode material, and an extruder assembly for extruding the material, are described. The method and extruder are designed to produce a low compaction of the material and low, back pressure, whereby working of the batch material is limited.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: September 4, 2001
    Assignee: Corning Incorporated
    Inventors: Everett W. Coonan, Paul D. Frayer, Roy J. Monahan, Kathleen A. Wexell
  • Patent number: 6261496
    Abstract: A novel process for preparing injection molding feedstock compounds in a continuous manner amenable to high volume manufacturing includes the steps of forming a mixture including metal and/or ceramic powders, a binder and a liquid carrier, supplying the components in a continuous manner to a twin screw extruder, forcing the homogeneous compounded mixture through an exit die, and cutting the extruded strand into pellets. The pellets are useful for shape-forming articles by various molding processes.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: July 17, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Richard L. Duyckinck, Brian Snow, Steven Sesny, George Glandz
  • Patent number: 6232368
    Abstract: An embodiment of the present invention provides a method for improving the tensile strength of foundry cores and molds over what may be conventionally achieved. The use of acidic methylene compounds in binder compositions which include strongly alkaline phenolic resoles results in an ester curable binder that may be used to make foundry cores and molds having significantly greater tensile strengths than are achieved with prior art binders. An embodiment of the present invention provides a composition which includes a phenolic resole having a pH ranging from about 10.5 to about 13.5 and an acidic methylene compound.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 15, 2001
    Assignee: Borden Chemical, Inc.
    Inventor: Kenneth B. White
  • Patent number: 6228299
    Abstract: A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: May 8, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Mark A. Janney, Claudia A. H. Walls
  • Patent number: 6224990
    Abstract: The application of polypropylene carbonate in solution to valve metal powders having relatively high surface area, then evaporating the solvent under static (non-agitating) conditions. The static drying of the coated valve metal powder produces a semi-solid cake which may be converted into a free-flowing powder via screening. Valve metal powders so-coated with polypropylene carbonate are particularly well-suited for the fabrication of powder metallurgy anode bodies used for the manufacture of electrolytic capacitors.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: May 1, 2001
    Assignee: Kemet Electronics Corporation
    Inventors: Randolph S. Hahn, Peter James Fernstrom, Udaya Shankar Bhimaraja, Brian J. Melody
  • Patent number: 6197252
    Abstract: The invention relates to a method of removing water-insoluble binder from a porous article formed from pressed particulate material, such as tantalum powder. The invention provides a method capable of removing substantially all of the binder from the article for high purity applications, such as capacitor manufacture. The method comprises contacting the article with an aqueous solution of an agent which reacts with said binder to produce a water soluble derivative thereof whereby said binder derivative may be substantially dissolved in said solution. In a particular embodiment, the derivative is produced by hydrolysis of a fatty acid binder.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: March 6, 2001
    Assignee: AVX Limited
    Inventors: Ian H. Bishop, David Masheder
  • Patent number: 6174494
    Abstract: A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: January 16, 2001
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventors: Richard A. Lowden, Thomas M. McCoig, Joseph B. Dooley, Cyrus M. Smith
  • Patent number: 6156264
    Abstract: Disclosed is a process for producing an AC cylindrical electromagnetic ignition coil core (28) comprising:filling a cylindrical holding container (20) with powdered metal;placing the filled container into an electromagnetic field and compacting, in the radial direction, the powder in the container by subjecting the powder to the electromagnetic field; andrecovering the compacted ignition coil core (28).
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: December 5, 2000
    Assignee: Delphi Technologies, Inc.
    Inventors: Ralph Herbert Johnston, David Allen Score, David Earl Gay, Albert Anthony Skinner
  • Patent number: 6150048
    Abstract: Disclosed are a metallic interconnection material for solid oxide fuel cells and a preparation method thereof. The metallic interconnection material has two fine microstructural phases in which 5-25% by volume of LaCrO.sub.3 is dispersed at the grain boundaries of Cr particles. It can be prepared by mixing 75-95% by volume of a Cr powder and 5-25% by volume of an LaCrO.sub.3 powder, together with a solvent and a binder, in a mill, molding the mixture into a predetermined shape after drying, and sintering the molded shape at approximately 1,500.degree. C. for 10 hours in an Ar atmosphere with 5 vol % of hydrogen to give an LaCrO.sub.3 -dispersed Cr alloy. The LaCrO.sub.3 -dispersed Cr alloy shows high electric conductivity by virtue of the growth inhibition of Cr particles during sintering and high chemical stability by virtue of the presence of the rare earth metal, La, meeting meet the requirements for the interconnection materials for solid oxide fuel cells.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: November 21, 2000
    Assignee: Korea Institute of Energy Research
    Inventors: Rak-Hyun Song, Dong-Ryul Shin, Kwangg-Sun Jeon, Yi-Sup Han, Dokiya Masayuki
  • Patent number: 6139600
    Abstract: An iron-based powder composition is produces in accordance with a method comprising the steps of: adding to iron-based and alloying powders, for a primary mixing, a surface treatment agent, and in addition, for a secondary mixing, a fatty acid amide and at least one lubricant, wherein the lubricant has a melting point higher than that of the fatty acid amide and can be, a thermoplastic resin, a thermoplastic elastomer, and inorganic or organic compounds having a layered crystal structure; heating and stirring up a mixture after the secondary mixing at a temperature above a melting point of the fatty acid amide to melt the fatty acid amide; cooling, while mixing, the mixture subjected to the heating and stirring process so that the alloying powder and a lubricant having a melting point higher than the fatty acid amide adhere to a surface of the iron base powder subjected to the surface treatment by an adhesive force of the melt; and adding at the time of the cooling, for a tertiary mixing, a metallic soap and
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: October 31, 2000
    Assignee: Kawasaki Steel Corporation
    Inventors: Yukiko Ozaki, Satoshi Uenosono, Kuniaki Ogura
  • Patent number: 6136265
    Abstract: A method of forming a coating on metal particles that can be used to produce powder metallurgy articles, including those for electromagnetic and structural applications. The method is generally a solution-blending process that employs a coating solution that contains a solvent and one or more particulate additives, at least one of which is a polymeric binder that is only partially soluble in the solvent. As a result, only a portion of each binder particle is dissolved in the solvent. Notably, the coating solution is free of a discrete adhesion-promoting (tackifier) additive for adhering the polymeric binder to the metal particles. Instead, each binder particle is sufficiently dissolved in the solvent to promote adhesion of the binder particles to the metal particles during mixing, so that each metal particle is encapsulated with a coating containing the polymeric binder. The particles may then be compacted to bind them together with the coating and form a solid article.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: October 24, 2000
    Assignee: Delphi Technologies Inc.
    Inventor: David Earl Gay
  • Patent number: 6136061
    Abstract: The present invention provides for nanostructured metal compacts exhibiting a preferred grain orientation formed from nanosize metal particles, preferably having anisometric morphology. The compact may comprise a single-phase metal powder, that is, a metal powder comprised of a single element, or may be an alloy, or the metal powder may be admixed with another component thereby resulting in a compact exhibiting heterogenous properties. The metal particles are fabricated or compacted, as by a powder metallurgical process, utlizing a relatively high pressure sufficient to form a compact, object, body, article, product or the like, with desired integrity and desity. The particles tend to become oriented with their largest dimension perpendicular to the direction of the applied force. Compaction occurs at about ambient temperature, but may be at subambient or elevated temperatures provided this temperature variation is not deleterious to the grain structure of the compact.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: October 24, 2000
    Inventor: Charles P. Gibson
  • Patent number: 6080345
    Abstract: Powder mixtures and a method of forming and shaping the mixtures. The method involves compounding the components of powder materials, binder, solvent for the binder, surfactant, and non-solvent with respect to at least the binder, the solvent, and the powder materials. The non-solvent is lower in viscosity than the binder combined with the solvent. The solvent is present in an amount that is less than the amount that would be present otherwise. The components are mixed and plasticized, and shaped to form a green body. The choice of components results in improved wet green strength in the green body. The method is especially useful for extrusion processing of aqueous binder systems such as water and cellulose ethers and hydrophobic non-solvents, to form structures such as honeycombs. In the body, the ratio, upon subsequent firing, of the isostatic strength to the A-axis strength is at least about 20% higher than in bodies made without the mixture composition of the invention.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: June 27, 2000
    Assignee: Corning Incorporated
    Inventors: Devi Chalasani, Michael Fischer, Christopher J. Malarkey, Kevin R. McCarthy, Brian E. Stutts, Michael E. Zak