Includes Adding A Binder Material Patents (Class 419/65)
  • Patent number: 6068813
    Abstract: The present invention provides a method of making metallurgical powder compositions and a method of using the metallurgical powder compositions produced. The method of the present invention includes providing a prealloy powder containing iron and one or more alloying additives that is preferably molybdenum, and admixing the iron-based prealloy powder with a copper containing powder having a weight average particle size of 60 microns or less, and a nickel containing powder having a weight average particle size of 20 microns. The mixture containing the iron-based prealloy powder, copper containing powder, and nickel containing powder is bonded in some manner to facilitate adhesion of the prealloy powder with the other alloying powders. Preferably, a binding agent is used to effect bonding. The metallurgical powder compositions thus produced have, for example, improved mechanical strength properties when formed into metal parts.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: May 30, 2000
    Assignee: Hoeganaes Corporation
    Inventor: Frederick J. Semel
  • Patent number: 6066279
    Abstract: A method of gelcasting includes the steps of providing a solution of at least hydroxymethylacrylamide (HMAM) and water. At least one inorganic powder is added to the mixture. At least one initiator system is provided to polymerize the HMAM. The initiator polymerizes the HMAM and water, to form a firm hydrogel that contains the inorganic powder. One or more comonomers can be polymerized with the HMAM monomer, to alter the final properties of the gelcast material. Additionally, one or more additives can be included in the polymerization mixture, to alter the properties of the gelcast material.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: May 23, 2000
    Assignee: Lockheed Martin Energy Research Corp.
    Inventors: Claudia A. Walls, Glen H. Kirby, Mark A. Janney, Ogbemi O. Omatete, Stephen D. Nunn, April D. McMillan
  • Patent number: 6045748
    Abstract: A method for forming molded articles in any shape from ceramic, glass, or metal powders which comprises: preparing a slurry by dispersing more than one powder selected from a group consisting of ceramic, glass, and metal materials in a dispersing medium using a dispersing agent, and curing by adding a reactive substance that reacts with the dispersing agent to make the dispersibility of the dispersing agent disappear or lower.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: April 4, 2000
    Assignee: NGK Insulators, Ltd.
    Inventor: Shinzo Hayashi
  • Patent number: 6030564
    Abstract: The present invention provides a method of preparing semi-wet pressed green bodies having improved wet strength. The wet strength of the semi-wet pressed green bodies is increased by the addition of at least one polymeric binder having a molecular weight greater than 50,000 comprising, as polymerized units, at least 10 percent of one or more monoethylenically unsaturated acids, salts, or anhydrides, and further comprising at least one hydrophobe per polymeric chain on average. The present invention further provides semi-wet pressed green bodies, having improved wet strength, made from the above method.In one embodiment, the polymeric binder increases the wet strength of ceramic green bodies. In another embodiment, the polymeric binder increases the wet strength of metallurgic green bodies. In another embodiment, the polymeric binder increases the wet strength of cermet green bodies.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 29, 2000
    Assignee: Rohm and Haas Company
    Inventor: David William Whitman
  • Patent number: 6007765
    Abstract: A method of producing molded articles is provided. Raw materials that have been reduced in size are mixed together, are prepared with at least one binder, are pressed into molds, and are hardened.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: December 28, 1999
    Assignee: Exori-Import-Export GmbH & Co. KG
    Inventor: Hans-Hermann Oversberg
  • Patent number: 5984995
    Abstract: This invention relates to a method of manufacturing heat cells which are based on a specific iron oxidation chemistry and having specific physical dimensions and fill characteristics. This method uses direct compaction of powdered ingredients into granules, pellets, tablets, slugs, and/or the like. These heat cells, which can be incorporated into disposable body wraps, provide a controlled and sustained temperature for consistent, convenient, and comfortable heat application for treating temporary or chronic pain. This invention also relates to said exothemic compositions incorporated into said heat cells.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: November 16, 1999
    Assignee: The Procter & Gamble Company
    Inventor: Richard Keim White
  • Patent number: 5977230
    Abstract: A powder injection molding composition or feedstock is made of 70% or more by weight of a powdered metal or ceramic and 30% or less by weight of a binder system. The binder system contains a sufficient amount of polypropylene or polyethylene to hold the so-called brown preform of the molded metal or ceramic powder together for the sintering step of the injection molding process and a sufficient amount of partially hydrolyzed cold water soluble polyvinyl alcohol, water and plasticizer to facilitate molding of the composition into the so-called green preform of the article to be manufactured. The debinding step of the injection molding process for transforming the green preform into the brown preform consists simply of immersing the green preform in water at ambient temperature to dissolve the polyvinyl alcohol. The binder system is nonhazardous, safe, harmless and fully degradable.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: November 2, 1999
    Assignee: Planet Polymer Technologies, Inc.
    Inventors: Xiaoming Yang, Robert J. Petcavich
  • Patent number: 5972269
    Abstract: A method of injection molding ceramic or metal parts having an internal cavity or other complicated shape. A fugitive core is formed of a particulate and a first binder. The core is then suspended in a conventional injection molding cavity. The part is then injection molded by injecting a ceramic or metal powder mixed with a second binder while in a plastic state into the mold cavity and around the suspended core. Once the second different binder hardens or gels, the molded part together with the core are removed from the mold cavity. The molded part and core are then subject to a debinding process to debind the first binder to thereby remove the core. Because two different binders were used for the core and molding, the binder used to form the molded part remains unaffected when removing the core.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: October 26, 1999
    Assignee: Taurus International Manufacturing, Inc.
    Inventors: Eduardo L. Barros, Eugene R. Andreotti
  • Patent number: 5925463
    Abstract: The object of the invention is a method for the electrochemical preparation of metal colloids with particle sizes of less than 30 nm, characterized in that one or more metals of groups Ib, IIb, III, IV, V, VI, VIIb, VIII, lanthanoides, and/or actinoides of the periodic table are cathodically reduced in the presence of a stabilizer, optionally with a supporting electrolyte being added, in organic solvents or in solvent mixtures of organic solvents and/or water within a temperature range of between -78.degree. C. and +120.degree. C. to form metal colloidal solutions or redispersible metal colloid powders, optionally in the presence of inert substrates and/or soluble metal salts of the respective metals.The invention further relates to soluble or redispersible colloids as well as application on substrates and immobilization thereof, in particular for the preparation of catalysts.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: July 20, 1999
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Wolfgang Helbig, Stefan Andreas Quaiser
  • Patent number: 5925308
    Abstract: A method of producing a formable mixture involves combining a powder material, and a plurality of gel-forming polymers, wherein at least one gel-forming polymer is a proton donor, and at least one gel forming polymer is a proton acceptor. A method of making a monolithic structure involves producing a formable mixture of powder material which can be ceramic, metal, glass, glass ceramic, molecular sieve and combinations thereof, a plurality of gel-forming polymers as described above, extruding the mixture to form a green monolithic structure, and drying and firing the green structure.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: July 20, 1999
    Assignee: Corning Incorporated
    Inventors: Edward J. Fewkes, Frances M. Smith, Lung-Ming Wu
  • Patent number: 5908588
    Abstract: A process of molding inorganic materials into desired shapes comprises mixing the material with a dispersant, milling, molding the mixture, drying the mixture and sintering.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: June 1, 1999
    Assignee: Eastman Kodak Company
    Inventors: Syamal K. Ghosh, Dilip K. Chatterjee, James S. Reed, Steven R. Arrasmith
  • Patent number: 5781846
    Abstract: A method of producing a flux-cored brazing composition for brazing aluminum that can be produced in lengths ranging from 500 to 10,000 feet long. The flux, preferably a finely powdered potassium fluoroaluminate complex, is deposited in an extremely small channel of aluminum filler material using a volumetric feeder to ensure an even distribution of flux to metal alloy.
    Type: Grant
    Filed: August 7, 1995
    Date of Patent: July 14, 1998
    Inventor: James L. Jossick
  • Patent number: 5765095
    Abstract: A method for manufacturing a PCD bit by isostatically or mechanically press forming a green on a metallic blank. A metallic blank is vertically suspended into a flexible vessel. Powder metal is mixed with a binder and introduced into the flexible vessel surrounding the lower end of the suspended metallic blank. The vessel is then isostatically or mechanically pressed causing the powder mixture to stick together and to the blank, forming a green on the blank. The blank and green are removed from the vessel and the exposed end of the metallic blank is chucked onto a milling machine and turned for milling the green into the shape of a PCD bit head. After the milling is completed, the green and blank are sintered, hardening the bit head shaped green and strongly bonding it to the metallic blank, forming a PCD bit wherein the hardened green is the bit head while the metallic blank is the bit pin.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: June 9, 1998
    Assignee: Smith International, Inc.
    Inventors: Richard A. Flak, T. H. (Nick) Nichols, Thomas W. Oldham
  • Patent number: 5722038
    Abstract: A method for forming a mold element comprised of metallic pellets and a bonding agent to bond together the metallic pellets. The metallic pellets can be a mixture of ferrous shot and ferrous grit and the bonding agent can be a solvent or a resin. The method comprises conditioning at least some of the metallic pellets by impaction to form a flaky surface.
    Type: Grant
    Filed: February 11, 1993
    Date of Patent: February 24, 1998
    Inventor: Timothy M. McLaughlin
  • Patent number: 5718865
    Abstract: A moulded alum composition is formed by mixing crushed solid alum with a polyol plasticiser followed by heating to form a slurry, and then pouring the mixture into a mould. No mechanical cutting and grinding is required and weakening cracks and fissures present in the raw alum are removed.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: February 17, 1998
    Inventor: Darren John Askew
  • Patent number: 5697043
    Abstract: The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of:(a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide;(b) making a layer by depositing an amount of said powder slurry in a confined region;(c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and(d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: December 9, 1997
    Assignee: Battelle Memorial Institute
    Inventors: Suresh Baskaran, Gordon L. Graff
  • Patent number: 5682592
    Abstract: A fabrication method for a paste-type metal hydride electrode for a nickel/metal hydride battery which includes; pulverizing a V-Ti-Zr-Ni-type and Mm-type hydrogen storage alloy in which a small amount of Pd and/or Ru are combined; mixing K.B.(or Ni powder)+PTFE+CMC(HPMC) undiluted paste solution with the hydrogen storage alloy powder, filling a porous nickel with the mixed paste, drying the paste-filled porous nickel, and press-forming the dried paste and which, by providing the paste-type electrode fabrication, is capable of not lowering the electrode capacity by preventing the oxidation of active material and poor conductivity and has the effect of a preventing significant decrease of the electrode capacity, a remarkable increase in cycle life of electrode, and the realization of a paste-type fabrication of an AB.sub.2 type alloy in accordance with a new paste composition and hydrogen storage alloy composition, which has previously been regarded as impossible.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: October 28, 1997
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Suk Yun, Byung Won Cho, Won Il Cho, Chi Hum Paik
  • Patent number: 5665289
    Abstract: A new class of binders for binding finely divided inert inorganic molding particles when shaped into objects by known mechanical shaping techniques such as injection molding. The novel binders are solid polymer solutions containing a major fraction of a low molecular weight solid relatively non-volatile chemical as solvent in which is substantially dissolved a minor fraction of at least one high molecular weight solid polymer. The solid polymer solution binders when molten are homogeneous solutions and can be readily uniformly mixed with the usual inorganic molding particles into a readily flowable mixture which can be shaped and solidified. When solidified, the polymer and solid chemical remain a substantially homogeneous solution without appreciable phase separation.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: September 9, 1997
    Assignee: Chang I. Chung
    Inventors: Chan I. Chung, Miao Yong Cao
  • Patent number: 5628945
    Abstract: A method for controlling chemical distribution of substances in a solid state (and products produced thereby), the method comprising the steps of mixing particles of a first powder and a triggerable granule facilitator to form first microcapsules, the first microcapsules each having a core of one of the particles and a cladding of the facilitator; and triggering the facilitator while dry mixing the microcapsules to form substantially spherical granules of the microcapsules, the granules each having a controlled chemical distribution.The method also includes the steps of mixing particles of a second powder with the facilitator to form second microcapsules, the second microcapsules each having a core of one of the particles of the second powder and a cladding of the facilitator; and then mixing the first and the second microcapsules prior to said triggering step.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: May 13, 1997
    Inventors: Richard E. Riman, Paul R. Mort, III
  • Patent number: 5574959
    Abstract: A metal casing for a semiconductor device is manufactured by a powder metallurgy injection molding process which uses infiltration. The metal casing includes a base member and an enclosure member arranged on the base member. The base member and the enclosure member are formed of an alloy including 20 to 50 percent by volume of copper, equal to or less than 1 percent by weight of nickel and remainder of tungsten or molybdenum. The metal casing is manufactured as a net-shape product by a process which includes the steps of mixing tungsten powder and nickel powder having average particles sizes equal to or less than 40 .mu.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: November 12, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masanori Tsujioka, Junzoh Matsumura
  • Patent number: 5543249
    Abstract: A method for preparing an electrode component comprises mixing an electrode active material in a water-based environment with the aid of surfactants. A preferred embodiment of this process comprises combining a high surface area carbonaceous cathode active material with a water/surfactant mixture, and then adding a fluoro-polymer as the binder material to the slurry. The resulting paste is processed and formed into the cathode material. This process replaces the use of isopropyl alcohol with the water/surfactant mixture as the solvent. Preferred surfactants include those of the polyglycol family.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: August 6, 1996
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Esther S. Takeuchi, Michael F. Pyszczek
  • Patent number: 5538684
    Abstract: The present invention provides lubricant compositions for the powder metallurgical field. The lubricant compositions contain a solid phase lubricant such as graphite, molybdenum disulfide, and polytetrafluoroethylene in combination with a liquid phase lubricant that is a binder for the solid phase lubricant. The binder can be chosen from various classes of compounds including polyethylene glycols, polyethylene glycol esters, partial esters of C.sub.3-6 polyhydric alcohols, polyvinyl esters, and polyvinyl pyrrolidones. The binder is solubilized in an organic solvent.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 23, 1996
    Assignee: Hoeganaes Corporation
    Inventors: Sydney Luk, Ann Lawrence
  • Patent number: 5531955
    Abstract: Process of imparting conductivity to a three-dimensional net-shaped porous sheet can be performed efficiently before carrying out electroplating process. Fine metallic powders are applied to the porous sheet made of a foamed sheet, a nonwoven sheet, a mesh sheet or a plurality of sheets layered one on the other, so that a conductive metallic layer is formed on the porous sheet. Then, an electroplated layer is formed on the surface of the conductive metallic layer. The conductive metallic layer remains when the porous sheet burned out. Consequently, a metallic layer of the conductive metallic layer and the electroplated layer forms the metallic framework of the metallic porous sheet.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: July 2, 1996
    Assignee: Katayama Special Industries, Ltd.
    Inventor: Hirofumi Sugikawa
  • Patent number: 5529747
    Abstract: A formable composite magnetic flux concentrator material is composed of about 65% to 90% ferromagnetic material, such as iron powder, and about 35% to 10% binder, the binder being a mixture of an epoxy and one or more catalysts. The concentrator material is provided in a formable state as a putty-like body which can be worked into any desired shape dictated by the configuration of the induction heating coil used in a particular application. In one form, the density of the concentrator material is increased by application of vibration, compression and vacuum to de-air the material and to reduce voids therein. In another form, the iron powder comprises spherical-shaped particles and non-spherical shaped powders chosen in a ratio to maximize the density of material available.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: June 25, 1996
    Assignee: Learflux, Inc.
    Inventor: Thomas J. Learman
  • Patent number: 5525293
    Abstract: Disclosed is a powder metallurgical mixed powder capable of preventing the defective dispersion, that is, the segregation of physical property improving powders and a lubricant powder without reduction in lubricity, and of suppressing the generation of dust upon handling of powders; and a powder metallurgical binder capable of realizing such a mixed powder. The binder including a copolymer containing monomer components of ethylene and propylene, which may be combined with a liquid binder having a specified composition as needed, is added to a powder metallurgical raw powder.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: June 11, 1996
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Akihiko Kagawa, Kazuhisa Fujisawa, Hironori Suzuki, Masahiro Murakami, Kunihiro Yoshioka, Hirotaka Hanaoka
  • Patent number: 5514327
    Abstract: Apparatus for use in cooling an integrated circuit structure. The apparatus includes a heat sink having a first portion configured for thermal engagement with an integrated circuit device and a second portion configured for the dissipation of heat into an ambient fluid, such as air. The heat sink is made from a powdered metal which, in one preferred embodiment, includes copper. The heat sink may be formed from the plurality of discrete layers, each layer having a button projecting from one surface, and a depression formed in an opposing surface. The depression is configured to receive a projecting button portion from another layer. In an alternative embodiment the heat sink includes a plurality of plugs projecting from the generally flat surface.
    Type: Grant
    Filed: December 14, 1993
    Date of Patent: May 7, 1996
    Assignee: LSI Logic Corporation
    Inventor: Mark R. Schneider
  • Patent number: 5505903
    Abstract: In the manufacture of cold-moulded briquettes from iron-containing waste metallurgical material mixed with a binder, in order to obtain high-strength briquettes and almost complete reducibility, magnetite waste metallurgical material such as scale (1) is mixed with haematite fine material (5) to form a layer (10) of haematite line materials (5) enveloping the individual magnetite particles (9), after which the binder is added to the mixture (FIG. 1).
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: April 9, 1996
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Gunter Schrey, Gero Tessmer, Karl Katzensteiner, Klaus Kopper
  • Patent number: 5468446
    Abstract: The pelletisation or granulation of a material or mixture of materials the or at least one of which is reactive in a liquid to produce a gas is improved by treating the reactive material prior to final compaction to form a coating thereon of a substance which is less soluble in the liquid than the reactive material. The preferred reactive material is calcium hydride and the preferred coating is calcium carbonate with or without calcium hydroxide.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: November 21, 1995
    Assignees: British Aerospace PLC, BAeSEMA Ltd.
    Inventors: Peter C. Morgan, Alan D. Hart, Philip D. Morgans
  • Patent number: 5447682
    Abstract: According to the method of making a magnetic coating material, 100 parts by weight of a magnetic metal powder, 1 to 10 parts by weight of fatty acid, 1 to 5 parts by weight of a dispersing agent, and a solvent are combined in the absence of a binding agent, wherein the solvent is present in sufficient amount to yield an admixture having a solids concentration of the magnetic metal powder in the range from 65 to 70 percent. The admixture is kneaded using a pressure kneader. The kneaded admixture is then blended with a binding agent to provide the magnetic coating material.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: September 5, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventor: Yusuki Saito
  • Patent number: 5443788
    Abstract: The subject invention relates to method for briquetting fines and ultrafines comprising mixing the fines and ultrafines on a continuous basis with a binder system having low viscosity of up to about 200 cps and at least 50% solids, such that the resulting briquette contains less than about 3% binder by weight of the briquette.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: August 22, 1995
    Assignee: Palsat International, Inc.
    Inventors: Francis S. Palowitz, Sudarshan R. Sathe
  • Patent number: 5435967
    Abstract: The present invention provides a method of preparing a molded body good in processing properties, having fine contiguous pores throughout it. The surface texture of the body is fine. The body is excellent in thermal conductivity and heat-resistance properties, can be readily prepared, and is usable as a transferring mold.The method comprises compounding and mixing 5-20 parts by weight of a binder consisting of a modified amine and a modified M. D. I. that are both liquid with 100 parts by weight of an aggregate consisting of aluminum powders or aluminum-based alloy powders, filling the mixture in a molding flask, and compressing it under a pressure per unit area of 20-80 kg/cm.sup.2, and maintaining it under the same pressure until the binder is hardened.
    Type: Grant
    Filed: April 19, 1994
    Date of Patent: July 25, 1995
    Assignee: Sintokogio, Ltd.
    Inventors: Kazuyuki Nishikawa, Naoshi Makiguchi, Masato Kawamura
  • Patent number: 5418069
    Abstract: A formable composite magnetic flux concentrator is composed of about 65 to 90 percent ferromagnetic material, such as iron powder, and about 35 to 10 percent binder, the binder being a mixture of an epoxy and one or more catalysts. The concentrator is provided in a formable state as a putty-like body which can be worked into any desired shape dictated by the configuration of the induction heating coil used in a particular application.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: May 23, 1995
    Inventor: Thomas J. Learman
  • Patent number: 5393486
    Abstract: A method of making an orthodontic appliance such as a bracket includes the step of forming a preform of molding material while a portion of the molding material is in contact with a textured portion of a web. The web is subsequently degraded by a thermal or solvent degrading process to leave a witness impression on the underside of the preform. The web optionally serves as a conveyor to move the preform from one processing area to another, and optionally has the appearance of a woven material such that the resulting appliance resembles a mesh base appliance having undercut regions.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: February 28, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Robert P. Eckert, Evangelos G. Georgakis
  • Patent number: 5380179
    Abstract: The improved binder system for use in the injection molding of sinterable powders such as metal powders, ceramic powders and cermet powders comprises a (co)polymer that has a molecular weight in excess of 2000 and which contains at least one epoxy group in the molecule. Preferably, the binder system comprises said (co)polymer, a (co)polymer other than said (co)polymer, and an organic compound having a molecular weight up to 2000. Using a binder system comprising (a) 3-80 wt % of a (co)polymer that has a molecular weight in excess of 2000 and which has at least one epoxy group in the molecule, (b) up to 70 wt % of a (co)polymer other than component (a), and (c) 20-80 wt % of an organic compound having a molecular weight of not more than 2000, there is provided a composition for the injection molding of sinterable powders. The compound has excellent moldability and strength properties.
    Type: Grant
    Filed: March 16, 1993
    Date of Patent: January 10, 1995
    Assignee: Kawasaki Steel Corporation
    Inventors: Kimihiro Nishimura, Kenji Yoshino
  • Patent number: 5342574
    Abstract: A method for producing an anisotropic rare earth magnet is improved by extruding using a compacted material formed in a shape having difference in level between the center part to be in contact with the end face of a punch and the outer peripheral part to be faced with a molding cavity formed between the punch and a cylindrical die of a mold.
    Type: Grant
    Filed: April 6, 1993
    Date of Patent: August 30, 1994
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yasuaki Kasai, Hiyoshi Yamada, Norio Yoshikawa
  • Patent number: 5333520
    Abstract: A method for manufacturing of a cemented carbide body for cutting tools, rock drilling tools or wear parts with complicated geometry characterized in that the body is sintered together from simpler pressed but unsintered parts to form a body with desired complex geometry.
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: August 2, 1994
    Assignee: Sandvik AB
    Inventors: Udo K. Fischer, Jan Akerman, Bengt A. Asberg, Stig E. Lagerberg
  • Patent number: 5302341
    Abstract: The subject invention relates to method for briquetting fines and ultrafines comprising mixing the fines and ultrafines on a continuous basis with a binder system having low viscosity of up to about 200 cps and at least 50% solids, such that the resulting briquette contains less than about 3% binder by weight of the briquette.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: April 12, 1994
    Assignee: Palsat International, Inc.
    Inventors: Francis S. Palowitz, Sudarshan R. Sathe
  • Patent number: 5279785
    Abstract: A sintered or bonded permanent magnet formed from a material consisting mainly of iron, particularly a Nd-Fe-B alloy, and having a high corrosion resistance has a surface coated with a resin obtained by the polycondensation of tannic acid, phenols and aldehydes. A bonded magnet is also made from a powder of any such material composed of particles coated with any such resin.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: January 18, 1994
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Fumihito Mohri, Takuji Nomura, Shougo Miki
  • Patent number: 5277867
    Abstract: The present invention presents a method of processing ferrous powder materials to produce high strength small component parts suitable for use in miniaturized electrical and electronic equipment. The processing steps involve, in part, mixing with a binder, dewaxing or presintering at a temperature higher than in the conventional dewaxing process, and final sintering at a temperature lower than the conventional sintering process to produce parts having density values of over 96% theoretical density and high mechanical strength properties in a shorter sintering time than the conventional processing method.
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: January 11, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Koshiro Ueda, Hiroshi Sawaguchi, Tohru Kohno
  • Patent number: 5194203
    Abstract: A method of mixing a powder material and a binder in a predetermined ratio and kneading the mixture so that substantially whole surface of the powder particles are covered by the binder, molding the kneaded mixture into the shapes of desired products, then removing the binder from the moldings without causing expansion or cracks in the moldings before sintering. The binder comprises one or more organic binding substances soluble to an alcohol or to an mixed solvent of an alcohol and benzene or one or more ketones and one or more organic binding substances insoluble to the alcohol or to the mixed solvent. The moldings are put in contact with the alcohol or the mixed solvent to extract the organic binding substances soluble to the alcohol or to the mixed solvent from the moldings. The organic binding substances insoluble to the alcohol or to the mixed solvent are then removed by heat-decomposition.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: March 16, 1993
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yoshimitsu Kankawa, Yasunari Kaneko, Norio Kasahara
  • Patent number: 5188793
    Abstract: A dewaxing method of a metal and/or ceramic molded body which comprises immersing the metal and/or ceramic molded body formed through a plastic molding in a boiling solvent to extract the dispersion medium contained in the molded body with said solvent. According to the method of the invention, the dewaxing time can be shortened from about 150 hours to the sum of about 54 hours for the solvent extraction and about 11 hous for dewaxing under heating. The dewaxed molded body is a sound body containing no crack nor expansion.
    Type: Grant
    Filed: August 8, 1990
    Date of Patent: February 23, 1993
    Assignee: NKK Corporation
    Inventor: Hiroaki Nishio
  • Patent number: 5141702
    Abstract: A method for depositing a composite coating on a substrate is provided. The coating contains a mixture of ductile metal particles and a uniformly dispersed polymer particles. The polymer is present in a concentration effective to reduce frictional forces. The coating mixture is compacted such as by isostatic pressing, formed into strips and then clad to the substrate. One preferred coating contains 0.5 weight percent polytetrafluoro-ethylene in a tin matrix.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: August 25, 1992
    Assignee: Olin Corporation
    Inventors: Bruce M. Guenin, Julius C. Fister
  • Patent number: 5126104
    Abstract: A method is disclosed for preparing an intimate mixture of powders of nickel-chromium-boron-silicon alloy, molybdenum metal powder, and Cr.sub.3 C.sub.2 /NiCr alloy suitable for thermal spray coatings which comprises milling a starting mixture of the above two alloys with molybdenum powder to produce a milled mixture wherein the average particle size is less than about 10 micrometers in diameter, forming an aqueous slurry of the resulting milled mixture and a binder which can be an ammoniacal molybdate compound or polyvinyl alcohol, and agglomerating the milled mixture and binder. The intimate mixture and binder may be sintered in a reducing atmosphere at a temperature of about 800.degree. C. to 950.degree. C. for a sufficient time to form a sintered partially alloyed mixture wherein the bulk density is greater than about 1.2 g/cc.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: June 30, 1992
    Assignee: GTE Products Corporation
    Inventors: Vidhu Anand, Sanjay Sampath, David L. Houck, Jack E. Vanderpool
  • Patent number: 5122326
    Abstract: The present invention is a method of removing binder material which is non-sublimable at room temperature and pressures greater than 1 Torr from a binder and particulate mixture. The binder and particulate mixture is formed into a shaped article and placed in a closed furnace. The closed furnace is then adjusted to a pressure and temperature sufficient to effect transformation of the binder material from a solid to a vapor and diffusion of the binder material as a vapor through, and from, the binder and particulate mixture without formation of a liquid phase of binder material on the binder and particulate mixture surface. The shaped article is held under these processing conditions until substantially all of the binder material transforms to its vapor state and diffuses through, and from, the mixture into the closed furnace. The binder material vapor is then evacuated from the furnace through conventional means.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: June 16, 1992
    Assignee: Vacuum Industries Inc.
    Inventors: Martha L. Jackson, Elliot Thompson
  • Patent number: 5098620
    Abstract: A method and apparatus for injection molding of ceramic suspension is disclosed wherein an elastomeric bladder is disposed within a mold cavity of a mold. The elastomeric bladder, in a relaxed state, can be tubular or can be formed by bonding together sheets of material. A ceramic suspension is injected into the elastomeric bladder, whereby the elastomeric bladder is distended. Distention of the elastomeric bladder applied a significant force to the ceramic suspension for preventing jetting and formation of knit lines within the ceramic suspension. The ceramic suspension distends the elastomeric bladder until the mold cavity is filled. The ceramic suspension is then exposed to conditions sufficient to cause the injected ceramic suspension to form a molded ceramic greenware composite. The molded ceramic greenware composite can then be removed from the mold for drying and for debindering and densification to form a finished ceramic part.
    Type: Grant
    Filed: June 7, 1990
    Date of Patent: March 24, 1992
    Assignee: The Dow Chemical Company
    Inventors: Norbert L. Bradley, Virgil W. Coomer
  • Patent number: 5080846
    Abstract: A polyacetal binder is removed from an extruded or injection molded ceramic green body in less than 25 hours by a variable heating rate schedule in which the heating rate is reduced when the temperature of the green body reaches the point at which isothermal degradation of the polyacetal binder can take place and wherein at least 80 wt. % of the binder can be removed. In air, the isothermal removal of the binder can take place within the range of 160.degree.-220.degree. C. while in nitrogen the range is from about 300.degree.-360.degree. C.
    Type: Grant
    Filed: November 13, 1989
    Date of Patent: January 14, 1992
    Assignee: Hoechst Celanese Corp.
    Inventors: Hongkyu Kim, Gerd Wingefeld
  • Patent number: 5068071
    Abstract: A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.
    Type: Grant
    Filed: April 25, 1990
    Date of Patent: November 26, 1991
    Assignee: KMS Fusion, Inc.
    Inventor: Thomas P. O'Holleran
  • Patent number: 5045277
    Abstract: A method for producing metal carbide grade powders which comprises forming a wax mixture consisting essentially of in percent by weight about 5 to about 15 paraffin oil, with the balance being an esterified wax and paraffin, heating the wax mixture to a temperature above the melting point to melt the wax mixture and maintain it in the molten state, forming a powder-wax mixture consisting essentially of metal carbide powder, a binder metal, and the wax mixture while heating to a temperature above the melting point of the wax mixture to maintain the wax mixture in the molten state to result in a uniform distribution of the wax mixture on the carbide and binder metal particles, forming a slurry of the powder-wax mixture and water, attritor milling the slurry at a temperature below the melting point of the wax mixture, and removing water and agglomerating to produce metal carbide grade powder wherein a densified article made therefrom exhibits less linear shrinkage than articles made from carbide grade powder abs
    Type: Grant
    Filed: September 10, 1990
    Date of Patent: September 3, 1991
    Assignee: GTE Products Corporation
    Inventors: Joseph J. Penkunas, Theodore E. Smith, Jr.
  • Patent number: 5037492
    Abstract: Diffusion alloying techniques are used to introduce low level additives into hot-worked Nd-Fe-B magnets. The powdered metal is added to the rapidly solidifed ribbons of the magnetic alloy prior to hot working. Diffusion alloying during hot-working permits the final chemistry of the magnet and more specifically the grain boundaries to be determined during the final processing steps. Elements which diffuse into the matrix, such as zinc, copper and nickel, enhance the coercivity by as much as 100 percent in die-upset magnets. At optimum levels, approximately 0.5-0.8 weight percent, the additives did not diminish the remanence or energy product of the magnet.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: August 6, 1991
    Assignee: General Motors Corporation
    Inventors: Earl G. Brewer, Carlton D. Fuerst
  • Patent number: RE35367
    Abstract: A dental material of a metal composition for reinforcing the metal framework of a dental restoration comprising an aggregate combination of metal particles including a first high fusing temperature precious metal component and a second low fusing temperature component which form a porous sponge-like structure upon heat treatment.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: October 29, 1996
    Inventors: Itzhak Shoher, Aharon Whiteman