Aluminum Containing Patents (Class 420/471)
  • Publication number: 20110081271
    Abstract: The present invention provides a low-lead copper alloy, which includes 0.05 to 0.3 wt % of lead, 0.3 to 0.8 wt % of aluminum, 0.01 to 3 wt % of bismuth, 1 to 4 wt % of silicon, 0.1 to 1 wt % of tin, and more than 93.6% of copper and zinc, wherein copper is in an amount ranging from 61 to 78 wt %. The low-lead copper alloy of the present invention has excellent toughness and processability, and can provide increased resistance in an environment with a high concentration of chlorine ions.
    Type: Application
    Filed: October 7, 2009
    Publication date: April 7, 2011
    Applicant: Modern Islands Co., Ltd.
    Inventors: Wen Lin Lo, Xiao Ming Peng
  • Publication number: 20110064602
    Abstract: A dezincification-resistant copper alloy is provided. The copper alloy comprises less than 0.3 wt % of lead (Pb), 0.02 to 0.15 wt % of antimony (Sb), 0.02 to 0.25 wt % of arsenic (As), 0.4 to 0.8 wt % of aluminum (Al), 1 to 20 ppm of boron (B), and more than 97 wt % of copper (Cu) and zinc (Zn), wherein the copper is in an amount ranging from 58 to 70 wt %. The dezincification-resistant copper alloy of the present invention has excellent casting properties, good toughness and machinability, and can be corrosion-resistant, thereby reducing dezincification on the surfaces of the alloy.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicant: MODERN ISLANDS CO., LTD.
    Inventors: Wen Lin Lo, Xiao Ming Peng
  • Publication number: 20110056591
    Abstract: Brass alloy powder has a brass composition formed by a mixed phase of ?-phase and ?-phase, and contains 0.5 to 5.0 mass % of chromium. The chromium includes a component that is solid-solved in a mother phase of brass, and a component that is precipitated at crystal grain boundaries.
    Type: Application
    Filed: April 24, 2009
    Publication date: March 10, 2011
    Applicants: Japan Science and Technology Agency, Osaka University
    Inventors: Katsuyoshi Kondoh, Gen Katano, Hisashi Imai, Yoshiharu Kosaka, Akimichi Kojima
  • Publication number: 20110038752
    Abstract: A white bronze alloy consisting essentially of, in weight percent, about 0.3-1.5 wt % aluminum, about 0.5-2.0 wt % bismuth, about 61-66 wt % copper, about 0.0-0.5 wt % iron, about 11-15 wt % manganese, about 4.0-6.0 wt % nickel, about 0.5-2.0 wt % tin, and about 16-20 wt % zinc, as well as incidental amounts of impurities. The alloy is expected to have antimicrobial properties which make the alloy desirable for fabrication into food handling equipment and products for hospitals, bathrooms, and kitchens.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventor: Geary R. Smith
  • Publication number: 20100297464
    Abstract: A melt-solidified substance includes melt-solidified portions formed by welding, build-up spray welding, metallizing or fusing. The melt-solidified portions have the alloy composition containing Zr: 0.0005 to 0.05 mass %, P: 0.01 to 0.34 mass %, Cu: the remainder and satisfying the relationship between the contents of P and Zr, [P]/[Zr]=0.3 to 20, and the mean grain size in the macrostructure after melt-solidification is 300 ?m or less. If Fe and/or Ni are contained in the melt-solidified portion as inevitable impurities, the content of Fe or Ni is restricted to be 0.3 mass % or less when either Fe or Ni is contained, and the total content of Fe and Ni is restricted to be 0.4 mass % or less when both Fe and Ni are contained.
    Type: Application
    Filed: September 30, 2005
    Publication date: November 25, 2010
    Applicant: SANBO SHINDO KOGYO KABUSHIKI KAISHA
    Inventor: Keiichiro Oishi
  • Publication number: 20100284851
    Abstract: The invention provides a Cu—Ni—Sn—P alloy sheet satisfying the resistance property of stress relaxation in the direction perpendicular to the rolling direction and excellent in the other necessary properties as terminals and connectors.
    Type: Application
    Filed: January 22, 2009
    Publication date: November 11, 2010
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventor: Yasuhiro Aruga
  • Patent number: 7806996
    Abstract: A copper-based alloy essentially includes 5.0 to 10.0 wt % of Zn, 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi, 0<Se?0.35 wt %, 0<P?0.5, one of 0<Sb?2.2 wt % and 0<Ni?4.8 wt %, and a balance of Cu and unavoidable impurities. It may essentially includes 5.0 to 10.0 wt % of Zn, 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi, 0?Se?0.35 wt %, 0<P<0.5 wt %, one of 0<Sb?2.2 wt % and 0<Ni?4.8 wt %, 1.20 to 4.90 Vol. % of at least one selected from the group consisting of a non-solid solution substance secured with Bi and a non-solid solution secured with Bi and Se, and a balance of Cu and unavoidable impurities.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 5, 2010
    Assignee: Kitz Corporation
    Inventors: Kazuhito Kurose, Yukihiro Hirata, Tomoyuki Ozasa, Hisanori Terui
  • Patent number: 7776163
    Abstract: The present invention provides a lead-free free-cutting aluminum brass alloy and its manufacturing method. The alloy comprises: 57.0˜63.0 wt % Cu, 0.3˜0.7 wt % Al, 0.1˜0.5 wt % Bi, 0.2˜0.4 wt % Sn, 0.1˜0.5 wt % Si, 0.01˜0.15 wt % P, at least two elements selected from the group of 0.01-0.15 wt % Mg, 0.0016-0.0020 wt % B, and 0.001-0.05 wt % rare earth elements and the balance being Zn and unavoidable impurities. The inventive alloy has excellent castability, weldability, cuttability and corrosion resistance. It is suitable for low pressure die casting, gravity casting, horizontal continuous casting, forging and extrusion. Its metal material cost is lower than bismuth brass. It is particularly applicable for components used in drinking water supply systems and other structural components. It is a new environmentally-friendly free-cutting aluminum brass alloy.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: August 17, 2010
    Assignee: Xiamen Lota International Co., Ltd.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20100155011
    Abstract: The present invention provides a lead-free free-cutting aluminum brass alloy and its manufacturing method. The alloy comprises: 57.0˜63.0 wt % Cu, 0.3˜0.7 wt % Al, 0.1˜0.5 wt % Bi, 0.2˜0.4 wt % Sn, 0.1˜0.5 wt % Si, 0.01˜0.15 wt % P, at least two elements selected from the group of 0.01-0.15 wt % Mg, 0.0016-0.0020 wt % B, and 0.001-0.05 wt % rare earth elements and the balance being Zn and unavoidable impurities. The inventive alloy has excellent castability, weldability, cuttability and corrosion resistance. It is suitable for low pressure die casting, gravity casting, horizontal continuous casting, forging and extrusion. Its metal material cost is lower than bismuth brass. It is particularly applicable for components used in drinking water supply systems and other structural components. It is a new environmentally-friendly free-cutting aluminum brass alloy.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 24, 2010
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20100158748
    Abstract: The present invention provides a lead-free free-cutting aluminum brass alloy and its manufacturing method. The alloy comprises: 57.0˜63.0 wt % Cu, 0.3˜0.7 wt % Al, 0.1˜0.5 wt % Bi, 0.2˜0.4 wt % Sn, 0.1˜0.5 wt % Si, 0.01˜0.15 wt % P, at least two elements selected from the group of 0.01-0.15 wt % Mg, 0.0016-0.0020 wt % B, and 0.001-0.05 wt % rare earth elements and the balance being Zn and unavoidable impurities. The inventive alloy has excellent castability, weldability, cuttability and corrosion resistance. It is suitable for low pressure die casting, gravity casting, horizontal continuous casting, forging and extrusion. Its metal material cost is lower than bismuth brass. It is particularly applicable for components used in drinking water supply systems and other structural components. It is a new environmentally-friendly free-cutting aluminum brass alloy.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Applicant: XIAMEN LOTA INTERNATIONAL CO., LTD.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Patent number: 7740721
    Abstract: Provided is a copper alloy sputtering target containing 0.01 to (less than) 0.5 wt % of at least 1 element selected from Al or Sn, and containing Mn or Si in a total amount of 0.25 wtppm or less. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics. A semiconductor element wiring formed with this target is also provided.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: June 22, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventor: Takeo Okabe
  • Patent number: 7736448
    Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 15, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
  • Publication number: 20100135848
    Abstract: The present invention supplies a lead-free free-cutting silicon brass alloy with high zinc which preferably comprises 35.0 to 42.0 wt % Zn, 0.1 to 1.5 wt % Si, 0.03 to 0.3 wt % Al, 0.01 to 0.36 wt % P, 0.01 to 0.1 wt % Ti, 0.001 to 0.05 wt % rare earth metals selected from the group consisting of La and Ce, 0.05 to 0.5 wt % Sn, and/or 0.05 to 0.2 wt % Ni, and the balance being Cu and unavoidable impurities. The invented alloy is excellent in castability, weldability, cuttability, electroplating properties, corrosion resistance, mechanical properties. The alloy is especially applicable in castings which need cutting and welding under low pressure die casting, such as castings for faucet bodies in the water supply system. The alloy is also suitable for use in components which are produced from casting ingots by die forging.
    Type: Application
    Filed: March 19, 2009
    Publication date: June 3, 2010
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20100098579
    Abstract: The present invention relates to a lead-free, bismuth-free free-cutting phosphorous brass alloy and its method of manufacture. The alloy comprises: Cu; Zn; 0.59 to 1.6 wt % P; and other elements in the amount of 0.005 to 0.6 wt %, which comprise at least two elements selected from the group consisting of Al, Si, Sb, Sn, Rare earth element (RE), Ti and B, and the balance being unavoidable impurities. The phosphorous brass alloy contains a combined wt % of Cu and Zn of between 97.0 wt % and 99.5 wt %, within which the content of Zn is above 40 wt %. Considering the solid solubility of P in the matrix of copper will be decreased rapidly with the temperature decrease and form the brittle intermetallic compounds Cu3P with Cu, the present invention relies upon P to ensure excellent cuttability of the invented alloy. The invented alloy is reasonably priced, and has excellent cuttability, castability, hot and cold workability, dezincification corrosion resistance, mechanical properties and weldability.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: XIAMEN LOTA INTERNATIONAL CO., LTD.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Patent number: 7695578
    Abstract: A copper-based alloy that has the soundness of alloy enhanced by restraining the concentrated occurrence of microporosities while suppressing the lead content and an ingot and a liquid-contacting part using the alloy are provided. The copper-based alloy has the soundness of alloy improved during the course of solidification of the copper-based alloy by crystallizing an intermetallic compound capable of solidifying at a temperature exceeding a solidus line in dendritic gaps of the alloy, suppressing migration of a solute, thereby allowing dispersion of microporosities, utilizing crystallization of the intermetallic compound as well for effecting dispersed crystallization of a low melting metal or a low melting intermetallic compound capable of solidifying at a temperature falling short of a liquidus line, and relying on the low melting metal or low melting intermetallic compound to enter the microporosities and suppress occurrence of microporosities.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 13, 2010
    Assignee: Kitz Corporation
    Inventors: Teruhiko Horigome, Kazuhito Kurose
  • Publication number: 20100080731
    Abstract: A tin-free lead-free free-cutting magnesium brass alloy comprises 56.0 to 64.0 wt % Cu, 1.05 to about 2.1 wt % Mg, 0.21 to 0.4 wt % P and other elements 0.002 to 0.9 wt % which comprise at least two elements selected from the group consisting of Al, Si, Sb, rare earth elements, Ti and B and the balance being Zn with unavoidable impurities, wherein a cutting percentage of the alloy is at least 80%. The process for producing such alloy is also proposed. The invented alloy is excellent in cuttability, castability, hot and cold workability, corrosion resistance, mechanical properties and weldability and particularly applicable in spare parts, forging and casting which need cutting and grinding process. The cost of necessary metal materials of the invented alloy is lower than lead-free free-cutting bismuth and antimony brass alloy and is equivalent to lead-contained brass alloy.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 1, 2010
    Applicant: XIAMEN LOTA INTERNATIONAL CO., LTD.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20100008817
    Abstract: A seamless pipe copper alloy includes Zr and at least one of Al, Sn, and Zn, with the balance being Cu and unavoidable impurities, the Al content, the Sn content, the Zn content, and the Zr content of the copper alloy satisfying the expressions 0.05?A+B+C, 0.01?D?0.5, and 0.25?A+B+C+D?0.8 (wherein A represents the Al content (mass %), B represents the Sn content (mass %), C represents the Zn content (mass %), and D represents the Zr content (mass %)). The seamless pipe copper alloy exhibits excellent workability, high strength, and high thermal conductivity. The seamless pipe copper alloy also shows only a small decrease in strength due to brazing.
    Type: Application
    Filed: October 2, 2007
    Publication date: January 14, 2010
    Inventor: Tetsuya Ando
  • Publication number: 20090311127
    Abstract: A lead-free free-cutting magnesium brass alloy comprises 56.0 to 64.0 wt % Cu, 0.6 to 2.5 wt % Mg, 0.15 to 0.4 wt % P and other elements 0.002 to 0.9 wt % which comprise at least two elements selected from the group consisting of Al, Si, Sb, Sn, Re, Ti and B and the balance being Zn and unavoidable impurities. The process for producing such alloy is also proposed. The invented alloy is excellent in cuttability, castability, hot and cold workability, corrosion resistance, mechanical properties and weldability and particularly applicable in spare parts, forging and castings which need cutting, grinding and electroplating process. The cost of necessary metal materials of the invented alloy is lower than lead-free free-cutting bismuth and antimony brass alloy and is equivalent to lead-contained brass alloy.
    Type: Application
    Filed: January 15, 2009
    Publication date: December 17, 2009
    Inventors: Chuankai Xu, Zhenging Hu, Siqi Zhang
  • Publication number: 20090311126
    Abstract: Considering the solid solubility of P in the matrix of copper will be decreased rapidly with the temperature decrease and form the brittle intermetallic compounds Cu3P with Cu, the present invention elects P as one of the main elements for ensuring the excellent cuttability of the invented alloy. The lead-free free-cutting phosphorous brass alloy comprises: Cu, Zn, 0.4 to 1.6 wt % P. and other elements in the amount of 0.005 to 0.6 wt %, which comprise at least two elments selected from the group consisting of Al, Si, Sb, Sn, Re, Ti and B, and the balance being unavoidable impurities. The phosphorous brass alloy contains a combined wt % of Cu and Zn of between 97.0 wt % and 99.5 wt %, within which the content of Zn is above 35 wt %. The method of manufacturing the alloy is also disclosed. The invented alloy has excellent cuttability, castability, hot and cold workability, dezincification corrosion resistance, mechanical properties and weldability.
    Type: Application
    Filed: January 15, 2009
    Publication date: December 17, 2009
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20090311128
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 17, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd)
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20090263272
    Abstract: There is provided a brass free from lead (Pb) and possessing excellent machinability, castability, mechanical properties and other properties. A brass consisting of not less than 55% by weight and not more than 75% by weight of copper (Cu), not less than 0.3% by weight and not more than 4.0% by weight of bismuth (Bi), and y % by weight of boron (B) and x % by weight of silicon (Si), y and x satisfying the following requirements: 0?x?2.0, 0?y?0.3, and y>?0.15x+0.015ab, wherein a is 0.2 when Bi is 0.3% by weight ?Bi<0.75% by weight; 0.85 when Bi is 0.75% by weight ?Bi<1.5% by weight; and 1 when Bi is 1.5% by weight ?Bi?4.0% by weight, b is 1 when the apparent content of zinc (Zn) is not less than 37% and less than 41%; and 0.75 when the apparent content of Zn is not less than 41% and not more than 45%, the balance consisting of Zn and unavoidable impurities, is excellent in castability, as well as, for example, in machinability and mechanical properties.
    Type: Application
    Filed: October 1, 2008
    Publication date: October 22, 2009
    Inventor: Toru Uchida
  • Publication number: 20090214380
    Abstract: The present invention relates to a copper alloy, in particular for components which carry media or drinking water, in particular fittings, valves or compression joints and also an advantageous use of the copper alloy and components for lines carrying media or drinking water. It is an object of the present invention to provide a copper alloy which has good corrosion resistance, good castability and mechanical workability and also good mechanical properties and displays good migration values, particularly in respect of the migration of lead and nickel ions into drinking water. The copper alloy provided for this purpose by the present invention comprises from 2% by weight to 4.5% by weight of silicon, from 1 to 15% by weight of zinc and from 0.05% by weight to 2% by weight of manganese. Furthermore, from 0.05 to 0.4% by weight of aluminium and from 0.05 to 2% by weight of tin can optionally be present. As balance, the copper alloy contains copper and unavoidable impurities.
    Type: Application
    Filed: December 13, 2006
    Publication date: August 27, 2009
    Applicants: GEBR. KEMPER GMBH & CO. KG METALLWERKE, JRG GUNZENHAUSER AG, R. NUSSBAUM AG METALLGIESSEREI UND ARMATURENFABRIK, VIEGA GMBH & CO. KG
    Inventors: Katrin Müller, Patrik Zeiter, Frank Leistritz
  • Publication number: 20090092517
    Abstract: A copper alloy extruded material is provided by extruding a copper alloy powder solidified billet and old grain boundaries remain in it.
    Type: Application
    Filed: July 25, 2006
    Publication date: April 9, 2009
    Inventors: Yoshiharu Kosaka, Masanori Okuyama, Akimichi Kojima, Katsuyoshi Kondoh
  • Patent number: 7507304
    Abstract: Provided is a first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si; a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn; the first or the second alloy sputtering target further comprising one or more selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less; and a semiconductor element wiring formed by the use of the above target. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 24, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Publication number: 20090022620
    Abstract: The invention relates to a copper-zinc alloy, consisting of (in wt %): from 28.0 to 36.0% Zn, from 0.5 to 2.3% Si, from 1.5 to 2.5% Mn, from 0.2 to 3.0% Ni, from 0.5 to 1.5% Al, from 0.1 to 1.0% Fe, optionally also up to at most 0.1% Pb, optionally also up to at most 0.2% Sn, optionally also up, to at most 0.1% P, optionally also up to 0.08% S, remainder Cu and inevitable impurities, with mixed silicides of iron-nickel-manganese incorporated in the matrix.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 22, 2009
    Inventor: Kai Weber
  • Publication number: 20090016927
    Abstract: A brass alloy as raw materials for Semi Solid Metal casting has a component composition containing Zn of 8 to 40 mass %, Zr of 0.0005 to 0.04 mass %, P of 0.01 to 0.25 mass %, and a balance of Cu and inevitable impurities, further containing one or more kinds of Si of 2 to 5 mass %, Sn of 0.05 to 6 mass %, and Al of 0.05 to 3.5 mass % as needed, and further containing one or more kinds of Pb of 0.005 to 0.45 mass %, Bi of 0.005 to 0.45 mass %, Se of 0.03 to 0.45 mass %, and Te of 0.01 to 0.45 mass %.
    Type: Application
    Filed: February 9, 2007
    Publication date: January 15, 2009
    Applicants: Mitsubishi Shindoh Co., Ltd., Mitsubishi Materials Corporation
    Inventor: Keiichiro Oishi
  • Publication number: 20080219881
    Abstract: A copper zinc alloy that is used as a material for a sliding bearing wherein the alloy comprises 59-73% copper, 2.7-8.5% manganese, 1.5-6.3% aluminum, 0.2-4% silicon, 0.2-3% iron, 0-2% lead, 0-2% nickel, 0-0.4% tin, residual zinc and unavoidable impurities.
    Type: Application
    Filed: September 19, 2007
    Publication date: September 11, 2008
    Applicant: DIEHL METALL STIFTUNG & CO., KG
    Inventor: Norbert Gaag
  • Patent number: 7297215
    Abstract: By exactly comprehending the true properties of the rare elements (such as Bi and Se) which are alternative components for Pb, the alloy is enabled to secure machinability equal to the bronze alloy (CAC406) generally used hitherto and acquire mechanical properties at least equal to the CAC406 as well in spite of a decrease in the content of the rare elements (such as Bi and Se) in the alloy. Further, it is possible to suppress the occurrence of casting defects by elucidating the unresolved influence of the decrease of the alternative components (such as Bi and Se) for Pb on the wholesomeness of a casting. Moreover, it is possible, by decreasing the rare elements, to produce a copper-based alloy containing rare elements at a low cost and to provide a cast ingot and a liquid-contacting part each using the alloy. The copper-based alloy, and the cast ingot and liquid-contacting part each using the alloy individually contain at least 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi and satisfying 0<Se?0.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: November 20, 2007
    Assignee: Kitz Corporation
    Inventors: Kazuhito Kurose, Yukihiro Hirata, Tomoyuki Ozasa, Hisanori Terui
  • Publication number: 20040118487
    Abstract: The invention relates to a Cu—Al—Ni—Fe alloy containing from 3 to 6 wt % aluminum, from 3 to 6.5 wt % nickel, from 1 to 4.5 wt % iron, from 0.1 to 1 wt % silicon, from 0.1 to 1 wt % manganese and from 0.05 to 1 wt % tin, the other chemical elements having contents by weight of less than 1%, and the balance is copper.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 24, 2004
    Inventor: Bruno Lhuillier
  • Publication number: 20010001400
    Abstract: There is provided a tin brass alloy having a grain structure that is refined by the addition of controlled amounts of both zinc and iron.
    Type: Application
    Filed: June 30, 1997
    Publication date: May 24, 2001
    Applicant: Dennis R. Brauer et al
    Inventors: DENNIS R. BRAUER, JOHN F. BREEDIS, RONALD N. CARON, CARL DEPPISCH
  • Patent number: 6149739
    Abstract: An improved white manganese bronze alloy containing, in weight percent, about 1.0-3.0 wt % aluminum, about 2.0-4.0 wt % bismuth, about 53-59 wt % copper, about 0.8-2.0 wt % iron, about 11-15 wt % manganese, about 5.0-7.0 wt % nickel, about 1.3-2.5 wt % tin, and about 18-24 wt % zinc, as well as incidental amounts of antimony, lead, phosphorus, silicon and sulfur, which is able to withstand vigorous cleaning and disinfection, and is not subject to galling.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: November 21, 2000
    Assignee: G & W Electric Company
    Inventor: Geary Robert Smith
  • Patent number: 5985055
    Abstract: A copper base alloy consisting essentially of tin in an amount from about 1.0 to 11.0% by weight, phosphorous in an amount from about 0.01 to 0.35% by weight, iron in an amount from about 0.01 to about 0.8% by weight, and the balance essentially copper, including phosphide particles uniformly distributed throughout the matrix, is described. The alloy is characterized by an excellent combination of physical properties. The process of forming the copper base alloy described herein includes casting, homogenizing, rolling, process annealing and stress relief annealing.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: November 16, 1999
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Patent number: 5653827
    Abstract: Reduced-lead yellow brass alloys are disclosed. The alloys comprise copper; zinc; an amount of bismuth effective to enhance castability of the alloys; and an amount of selenium effective to increase machinability of the alloy. Preferably, the alloys further include an amount of antimony effective to inhibit dezincification of the alloys. In a particularly preferred embodiment, an alloy according to the present invention comprises zinc; copper in an amount ranging from about 62.5% to about 64.0% by weight; tin in an amount ranging from about 0.2% to about 0.4% by weight; iron in an amount ranging from about 0.1% to about 0.3% by weight; nickel in an amount ranging from about 0.15% to about 0.25% by weight; aluminum in an amount ranging from about 0.3% to about 0.6% by weight; bismuth in an amount ranging from about 0.8% to about 1.0% by weight; antimony in an amount ranging from about 0.02% to about 0.04% by weight; and selenium in an amount ranging from about 0.05% to about 0.25% by weight.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 5, 1997
    Assignee: Starline Mfg. Co., Inc.
    Inventors: Keith D. Kramer, Thomas R. Hoesly, Frederick F. Treul
  • Patent number: 5490953
    Abstract: Novel compound semiconductors are of the general formula, X.sub.5 YZ.sub.4, wherein X is a member selected from the group consisting of Cu, Ag and mixtures thereof, Y is a member selected from the group consisting of Al, Ga, Tl and mixtures thereof, and Z is a member selected from the group consisting of Se, S, Te and mixtures thereof. Typical of the compound semiconductors are Cu.sub.5 AlSe.sub.4 and Ag.sub.4 AlSe.sub.4. These compound semiconductors are especially useful for making blue to UV light-emitting devices which include n-type and p-type compound semiconductor layers made of the above compound semiconductors.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: February 13, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshio Morita
  • Patent number: 5487867
    Abstract: A copper based casting alloy in which lead is replaced by 0.1 to 7 wt % bismuth and 0.1 to 2 wt % mischmetal or its rare earth equivalent is used to improve the distribution of bismuth in the alloy. The alloy is further defined by additions of tin, zinc, nickel, manganese, silicon, aluminum, iron and/or antimony.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: January 30, 1996
    Assignee: Federalloy, Inc.
    Inventor: Akhileshwar R. Singh
  • Patent number: 5445687
    Abstract: A hot working material of corrosion resistant copper-based alloy having a metal composition of 61.0 weight percent to less than 63.0 weight percent copper, 1.0 weight percent to 3.5 weight percent lead, 0.7 weight percent to 1.2 weight percent tin, 0.2 weight percent to 0.7 weight percent nickel, 0.03 weight percent to 0.4 weight percent iron, 0.02 weight percent to 0.10 weight percent antimony, and 0.04 weight percent to 0.15 weight percent phosphorus, with the balance composed of zinc and inevitable accompanying impurities. The alloy is subjected to hot working and subsequent heat treatment at 500.degree. C. to 600.degree. C. for 30 minutes to 3 hours and sufficient that the alloy has an .alpha. single-phase structure and addition elements are dispersed uniformly in the entire structure.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: August 29, 1995
    Assignees: Toyo Valve Co., Ltd., Sanbo Shindo Kogyo Co., Ltd.
    Inventors: Tosuke Sukegawa, Yoshihito Shimoda, Hisashi Tan, Takahiro Tsuji, Keiichiro Oishi
  • Patent number: 5334814
    Abstract: A spot welding electrode is made of a copper base material such as copper, copper alloy, or alumina dispersion strengthened copper, and has a Sn coating layer formed at the part making contact with the material being welded. The formed Sn coating layer reduces electrode wear and prolongs electrode life.
    Type: Grant
    Filed: May 27, 1992
    Date of Patent: August 2, 1994
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Tadashi Nosetani, Keizo Namba, Hiromichi Sano, Makoto Yonemitsu, Masaki Kumagai, Masanori Tsunekawa
  • Patent number: 5330712
    Abstract: An alloy consisting essentially of about 0.1 to 7% bismuth, up to about 16% tin, up to about 25% zinc, up to about 27% nickel, about 0.1 to 1% mischmetal and the balance copper and incidental impurities.
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: July 19, 1994
    Assignee: Federalloy, Inc.
    Inventor: Akhileshwar R. Singh
  • Patent number: 5236662
    Abstract: Wires made of copper-based compositions are disclosed, in which the compositions preferably contain aluminum, tin, and silicon. Formulations containing solely tin and aluminum, and solely tin and silicon are also disclosed. By practice of the invention, substantial improvements in bond strength and quality of the surface finish are achieved, as compared with prior art wire compositions.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: August 17, 1993
    Inventors: David D. Kiilunen, David A. Sartor
  • Patent number: 5102620
    Abstract: Spray cast alloys having reduced porosity and increased ductility are provided as well as a process for the manufacture of the alloys. An effective amount of a reactive metal which reacts with the spray casting atmosphere but not with the desired alloy is dissolved into the alloy prior to spray casting. Preferred reactive metals readily form a nitride which is finely dispersed throughout the spray cast alloy.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: April 7, 1992
    Assignee: Olin Corporation
    Inventors: William G. Watson, Sankaranarayanan Ashok, Harvey P. Cheskis
  • Patent number: 5100617
    Abstract: Metal filler compositions and methods of employing the same are disclosed, in which the compositions are copper base with the addition thereto of tin and silicon. For thermal spraying applications, aluminum is included in the formulation. By practice of the invention, substantial improvements in bond strength and quality of the surface finish are achieved.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: March 31, 1992
    Assignee: Midwest Thermal Spray Inc.
    Inventors: David D. Kiilunen, David A. Sartor
  • Patent number: 5021105
    Abstract: A copper alloy for electronic instruments is disclosed which comprises 2.0 to 7.0 wt. % of Sn, 1.0 to 6.0 wt. % in total amount of at least one kind of Ni, Co and Cr, o.1 to 2.0 wt. % of Si, and the remainder of Cu and unavoidable impurities, thereby further the content of O.sub.2 in unavoidable impurities being not more than 50 ppm, the content of S being not more than 20 ppm, and the average particle diameter of precipitates being not larger than 10 .mu.m. As the uses of such copper alloys, lead material for semiconductor elements and connector, socket, spring and terminal for electronic and electric instruments are claimed.
    Type: Grant
    Filed: February 8, 1989
    Date of Patent: June 4, 1991
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Makoto Asai, Yoshimasa Ohyama, Tohru Tanigawa, Shigeo Shinozaki, Shoji Shiga
  • Patent number: 4995924
    Abstract: A novel synchronizer ring for use in a speed variator that is made of a Cu base alloy and which exhibits good initial accommodation by mating surfaces while ensuring high wear resistance is disclosed. The ring is made of a Cu base alloy containing 20-40% Zn (all percents being on a weight basis), 2-8% Al, and at least two components (intermetallic compound forming components) selected from among the following five elements, i.e., 0.1-3% of at least one of Ti, Zr and Cr, 0.1-3% Sn, 0.1-6% of at least one of Fe, Ni and Co, 0.1-5% Mn and 0.2-2% Si, and optionally at least one additional component that differs from said selected two components and which is selected from among 0-5% Mn, 0-3% Sn and 0-3% of at least one of Ti, Zr and Cr, and the balance being Cu and incidental impurities. The ring also has either an oxide film layer of aluminum oxide base with an average thickness of 0.1-10 .mu.m or a work-hardened layer with an average thickness of 5-300 .mu.
    Type: Grant
    Filed: October 4, 1989
    Date of Patent: February 26, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventor: Hidetoshi Akutsu
  • Patent number: 4990309
    Abstract: A high strength copper alloy of excellent bending processability containing Ni: 5-20 wt %, Sn: 0.5-3 wt %, Al: 0.5-5 wt %, Mg: 0.001-0.05 wt %, Cr: 0.001-0.1 wt %, Zn: 0.05-5 wt %, the balance of Cu and inevitable impurities, and having a tensile strength of from 80 to 120 kgf/mm.sup.2. Up to 0.2 wt % of one or more of Fe,Mn,Ti,Zr,P,In,Ta and Co can be added without a deleterious effect. The alloy is non-toxic and economical, as well as shows tensile strength and elongation at least comparable with beryllium-copper alloy and has excellent solderability and solder-resistant and heat resistant peelability. The alloy can be used suitably as materials for electric terminals, connectors, etc.
    Type: Grant
    Filed: July 6, 1989
    Date of Patent: February 5, 1991
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Riichi Tsuno, Tatsuya Kinoshita, Hitoshi Tanaka
  • Patent number: 4874439
    Abstract: A synchronizer ring for use in an automotive speed variator. The ring not only has high strength and toughness but also exhibits high wear resistance, as well as good synchronizing characteristics with respect to a mating member as expressed in terms of friction coefficient. The Cu alloy of which this ring is made has one of the following compositions: (1) 17-40% Zn (all percents are on a weight basis), 2-11% Al and 50-3,000 ppm of oxygen, as well as 0.1-3.5% of at least one element selected from among Ti, Zr and V, 0.003-0.3% Mg and with at least one optional element selected from among Fe, Ni, Co, P, Ca, Mn, Sn, Si and Pb, the balance being Cu and incidental impurities; or (2) 17-40% Zn, 2-11% Al, 0.5-6% Mn, 0.1-2% Si, 0.1-3% of at least one of Fe, Ni and Co, 0.003-0.3% of Mg, and 30-1,000 ppm of oxygen, with at least one optional element selected from among P, Ca, Cr, Pb and Sn, and with the balance being Cu and incidental impurities.
    Type: Grant
    Filed: February 18, 1988
    Date of Patent: October 17, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventor: Hidetoshi Akutsu
  • Patent number: 4851191
    Abstract: High strength and high wear resistance copper alloys consisting essentially of (I) 54-66% by weight of Cu, 1.0-5.0% by weight of Al, 1.0-5.0% by weight of Mn, 0.1-2.0% by weight of Si, 0.1-3.0% by weight of Sn, 0.01-1.0% by weight of B, and as the remainder, Zn and inevitable impurities, and (II) 54-66% by weight of Cu, 1.0-5.0% by weight of Al, 1.0-5.0% by weight of Mn, 0.1-2.0% by weight of Si, 0.1-3.0% by weight of Sn, 0.01-1.0% by weight of B, 0.1-4.0% by weight of one or more elements selected from Fe, Ni and Cr, and as the remainder, Zn and inevitable impurities.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: July 25, 1989
    Assignee: Poong San Metal Corporation
    Inventors: Kun S. Lee, Dong K. Park
  • Patent number: 4750029
    Abstract: A copper base lead material for leads of a semiconductor device, which consists essentially of from 0.05 to 0.25 percent by weight tin, from 0.01 to 0.2 percent by weight silver, from 0.025 to 0.1 percent by weight phosphorus, from 0.05 to 0.2 percent by weight magnesium, and the balance of copper and inevitable impurities, wherein the P/Mg ratio is within a range from 0.5 to 0.85, preferably within a range from 0.60 to 0.85, so as to form a compound of magnesium and phosphorus or Mg.sub.3 P.sub.2. The copper base lead material possesses satisfactory properties required of a metal material for leads in semiconductor devices, such as strength, thermal resistance, and stampability, and further possesses excellent heat radiation to an extent suitable for use as leads of semiconductor devices having high wiring densities. The invention also includes the semiconductor device containing said leads.
    Type: Grant
    Filed: March 26, 1987
    Date of Patent: June 7, 1988
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Rensei Futatsuka, Tadao Sakakibara, Shunichi Chiba
  • Patent number: 4687633
    Abstract: A lead material for ceramic package ICs which comprises Ni 1.0-5.0 wt %, Co 0.2-1.0 wt %, Si 0.2-1.5 wt %, Zn 0.1-5.0 wt %, Cr 0.001-0.1 wt %, and Mn 0.02-1.0 wt %, with the remainder being Cu and inevitable impurities. It does not cause cracking to the ceramic substrate in the cooling step after silver soldering at 800.degree. to 950.degree. C., even though its coefficient of thermal expansion differs from that of ceramics. Moreover, it retains its high strength and conductivity after brazing.
    Type: Grant
    Filed: January 7, 1986
    Date of Patent: August 18, 1987
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Tateo Yuchi, Riichi Tsuno
  • Patent number: 4666667
    Abstract: A high-strength, high-conductivity copper alloy comprises, all by weight, from 0.8 to 4.0% of Sn, from more than 0.01 to 0.4% of P, from 0.05 to 1.0% of Ni, from 0.05 to 1.0% of one, two or more elements selected from Al, Hf, Be, Mo, Zn, Te, Pb, Co, Zr, and Nb, and the remainder of Cu and inevitable impurities. The impurities include not more than 0.0020% of oxygen.
    Type: Grant
    Filed: March 25, 1986
    Date of Patent: May 19, 1987
    Assignee: Nippon Mining Co., Ltd.
    Inventors: Morinori Kamio, Masahiro Tsuji, Hirohito Miyashita
  • Patent number: RE35624
    Abstract: Wires made of copper-based compositions are disclosed, in which the compositions preferably contain aluminum, tin, and silicon. Formulations containing solely tin and aluminum, and solely tin and silicon are also disclosed. By practice of the invention, substantial improvements in bond strength and quality of the surface finish are achieved, as compared with prior art wire compositions.
    Type: Grant
    Filed: August 16, 1995
    Date of Patent: October 7, 1997
    Inventors: David D. Kiilunen, David A. Sartor