Over 1.5 Percent Silicon Containing Patents (Class 420/50)
  • Patent number: 9694435
    Abstract: Disclosed is a method for producing a permanently joined plate heat exchanger comprising a plurality of metal heat exchanger plates having a solidus temperature above 1100° C., provided beside each other and forming a plate package with first plate interspaces for a first medium and second plate interspaces for a second medium, wherein the first and second plate interspaces are provided in an alternating order in the plate package. Each heat exchanger plate comprises a heat transfer area and an edge area which extend around the heat transfer area. The heat transfer area comprises a corrugation of elevations and depressions, wherein said corrugation of the plates are provided by pressing the plates. Also disclosed is a plate heat exchanger produced by the method.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: July 4, 2017
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Patent number: 9694434
    Abstract: Disclosed is a method for producing a permanently joined plate heat exchanger comprising a plurality of metal heat exchanger plates having a solidus temperature above 1100° C., provided beside each other and forming a plate package with first plate interspaces for a first medium and second plate interspaces for a second medium, wherein the first and second plate interspaces are provided in an alternating order in the plate package, wherein each heat exchanger plate comprises a heat transfer area and an edge area comprising bent edges which extend around the heat transfer area, wherein a first surface of the plates forms a convex shape and a second surface of the plates forms a concave shape, wherein the heat transfer area comprises a corrugation of elevations and depressions, wherein said corrugation of the plates and the bent edges are provided by pressing the plates. Also disclosed is a plate heat exchanger produced by the method.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: July 4, 2017
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Publication number: 20140131338
    Abstract: Various embodiments of a metal cored wires, hardband alloys, and methods are disclosed. In one embodiment of the present invention, a hardbanding wire comprises from about from about 16% to about 30% by weight chromium; from about 4% to about 10% by weight nickel; from about 0.05% to about 0.8% by weight nitrogen; from about 1% to about 4% by weight manganese; from about 1% to about 4% by weight carbon from about 0.5% to about 5% by weight molybdenum; from about 0.25% to about 2% by weight silicon; and the remainder is iron including trace elements. The hardband alloy produced by the metal cored wire meets API magnetic permeability specifications and has improved metal to metal, adhesive wear resistance compared to conventional hardband alloys.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Postle Industries, Inc.
    Inventor: Christopher J. Postle
  • Patent number: 8647448
    Abstract: A steel piston ring and a steel cylinder liner are described which comprise as the main body a steel composition which has good nitridability. The steel composition consists of the following elements: 0-0.5 weight % B, 0.5-1.2 weight % C, 4.0-20.0 weight % Cr, 0-2.0 weight % Cu, 45.30-91.25 weight % Fe, 0.1-3.0 weight % Mn, 0.1-3.0 weight % Mo, 0-0.05 weight % Nb, 2.0-12.0 weight % Ni, 0-0.1 weight % P, 0-0.05 weight % Pb, 0-0.05 weight % S, 2.0-10.0 weight % Si, 0-0.05 weight % Sn, 0.05-2.0 weight % V, 0-0.2 weight % Ti and 0-0.5 weight % W. The steel piston ring and the steel cylinder liner can be manufactured in a casting process using the machinery and technology employed for the manufacture of cast iron parts.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 11, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Patent number: 8486204
    Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 16, 2013
    Assignee: Shin Zu Shing Co., Ltd.
    Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Publication number: 20120301347
    Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Govindarajan MURALIDHARAN, Yukinori Yamamoto, Michael P. Brady
  • Patent number: 8287805
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: October 16, 2012
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Sjödin
  • Publication number: 20120190321
    Abstract: A nonmagnetic stainless steel which has a higher electrical resistivity than existing nonmagnetic alloys, a production process for producing the stainless steel, and a radio wave receiver. The receiver has a main case and rear cover constituted of a nonmagnetic stainless steel having an electrical resistivity as high as more than 100 ??·cm and consisting of C: not more than 0.1%, Si: 4.0-7.5%, Mn: not more than 2.0%, Ni: 25.5-30.0%, Cr: 15.0-20.0%, Mo: 0.1-3.0%, Cu: 0-2.0%, in mass % and the balance Fe and impurities. Even if some variable magnetic flux generated by a coil of an antenna runs through the main case and the rear cover, the receiving efficiency of the antenna can be prevented from being reduced by eddy current loss and a sufficient radio receiving sensitivity can be obtained. This nonmagnetic stainless steel is produced by hot and/or cold plastic working and subsequent solution treating conducted at 1,000-1,180° C.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 26, 2012
    Applicants: HITACHI METALS, LTD., CASIO COMPUTER CO., LTD.
    Inventors: Junichi Sato, Toshihiro Uehara, Kenji Yokoyama
  • Publication number: 20110300016
    Abstract: In order to provide a material of low cost that is suitable to produce parts or coatings having a high wear and also high chemical resistance, an alloy is proposed comprising 13 to 16 percent by weight nickel (Ni), 13.5 to 16.5 percent by weight of chromium (Cr), 0.5 to 3 percent by weight of molybdenum (Mo), 3.5 to 4.5 percent by weight of silicon (Si), 3.5 to 4 percent by weight of boron (B) and 1.5 to 2.1 percent by weight of carbon (C), balance iron (Fe).
    Type: Application
    Filed: February 17, 2010
    Publication date: December 8, 2011
    Applicant: MEC Holding GmbH
    Inventor: Gary Robert Heath
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Publication number: 20110192127
    Abstract: A filter comprising a porous sintered stainless steel is provided. The filter includes 10-30% chromium, 5-25% nickel, 0.5-3% manganese; 1-4% silicon, and 0-3% molybdenum with the remainder being iron and inevitable impurities. The sintered steel has a density less than 80% of full density. The use of a stainless steel powder for the preparation of a filter having improved permeability at high temperatures also is described.
    Type: Application
    Filed: April 20, 2011
    Publication date: August 11, 2011
    Applicant: HÖGANÄS AB
    Inventors: Owe Mårs, Ingrid Hauer
  • Publication number: 20110020166
    Abstract: The object of the present invention is to provide at a low cost iron-base heat- and corrosion-resistant brazing material which make it possible to braze parts made of a base metal selected from among various stainless steels, particularly ferritic stainless steels, at a practical temperature (of 1120° C. or lower) and are excellent in the wetting property against the base metal and which can attain excellent resistance to corrosion by sulfuric acid or nitric acid and high strength without coarsening the structure of the base metal. The iron-base heat- and corrosion-resistant brazing material is characterized by comprising 30 to 75 wt % of Fe, 35 wt % or less of Ni and 5 to 20 wt % of Cr in a total amount of Ni and Cr of 15 to 50 wt %, and 7 wt % or less of Si and 4 to 10 wt % of P in a total amount of Si and P of 9 to 13 wt %. The iron-base heat- and corrosion-resistant brazing material further comprising 0.5 to 5 wt % of Mo and/or 0.
    Type: Application
    Filed: August 28, 2008
    Publication date: January 27, 2011
    Inventors: Katsunori Otobe, Shozo Nagai
  • Publication number: 20100055495
    Abstract: The present invention relates to a brazing material comprising an alloy containing essentially of: 15 to 30 wt % chromium (Cr); 0.1 to 5.0 wt % manganese (Mn); 9 to 20 wt % nickel (Ni); 0 to 4.0 wt % molybdenum (Mo); 0 to 1.0 wt % nitrogen (N); 1.0 to 7.0 wt % silicone (Si); 0 to 0.2 wt % boron (B); 1.0 to 7.0 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf) and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si and P are in amounts effective to lower melting temperature. The present invention relates further to a method of brazing, a product brazed with the brazing material.
    Type: Application
    Filed: November 14, 2007
    Publication date: March 4, 2010
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Sjödin
  • Publication number: 20090038280
    Abstract: A filter comprising a porous sintered stainless steel is provided. The filter includes 10-30% chromium, 5-25% nickel, 0.5-3% manganese; 1-4% silicon, and 0-3% molybdenum with the remainder being iron and inevitable impurities. The sintered steel has a density less than 80% of full density. The use of a stainless steel powder for the preparation of a filter having improved permeability at high temperatures also is described.
    Type: Application
    Filed: May 24, 2006
    Publication date: February 12, 2009
    Applicant: Hoganas AB
    Inventors: Owe Mars, Ingrid Hauer
  • Patent number: 7455811
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains approximately 9-30% Cr, approximately 0-8% Mn, approximately 0-25% Ni, 0-1% N, a maximum of 7% Mo, less than about 6% Si, approximately 0-2% B and/or about 0-15% P, all stated in weight percent, which addition of Si, P, and B in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as Si, P and B.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2008
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Patent number: 7101446
    Abstract: An austenitic stainless steel with minimized deformation by heating and cooling treatment after cold working, which consists of, % by mass, C: 0.03% or less, Si: 2 to 4%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.03% or less, Ni: 9 to 15%, Cr: 15 to 20%, N: 0.02 to 0.2%, Nb: 0.03% or less, each of Mo and Cu or a total of Mo and Cu: 0.2 to 4%, and the balance Fe and impurities, and satisfies the following formulas (1) and (2). This steel can also have good weldability when the following formula (3) is also satisfied in addition to the formulas (1) and (2); 16.9+6.9Ni+12.5Cu?1.3Cr+3.2Mn+9.3Mo?205C?38.5N?6.5Si?120Nb?40??(1) 450?440(C+N)?12.2Si?9.5Mn?13.5Cr?20(Cu+Ni)?18.5Mo??90??(2) 8.2+30(C+N)+0.5Mn+Ni?1.1(1.5Si+Cr+Mo)+2.5Nb??0.8??(3) wherein each element symbol in the formulas (1), (2) and (3) represents the content, % by mass, of each element included in the steel.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 5, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kiyoko Takeda, Haruhiko Kajimura, Mitsuo Miyahara
  • Patent number: 6883701
    Abstract: A plurality of parts are brazed using an iron/chromium filler metal. The parts are preferably composed of stainless steel. The brazed assembly forms a heat exchanger characterized by good corrosion resistance and low rates of leaching of Ni, which are further improved by a post-brazing conditioning step in an oxygen-containing atmosphere at a temperature of about 150° to 600° C. The preferred brazing filler metal consists essentially of a composition having the formula FeaCrbCocNidMoeWfBgSih wherein the subscripts are in atom percent and total 100%, “b” is about 5 to 20, “c” ranges from 0 to about 30, “d” is 0 to about 20, “e” is 0 to about 5, “f” is 0 to about 5, “g” is about 8 to 15, “h” is about 8 to 15, the balance being incidental impurities of up to about 1 percent by weight of the total composition.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: April 26, 2005
    Assignee: Metglas, Inc.
    Inventors: Anatol Rabinkin, Nicholas J. DeCristofaro
  • Publication number: 20040184945
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains 0-40% Cr, preferably 9-30% Cr, 0-16% Mn, preferably 0-8% Mn, and even more preferably 0-5% Mn, 0-25% Ni, 0-1% N and maximally 7% Mo, below 6% Si and/or 0-2% B, preferably 0-1.5% B and/or 0-15% P, all stated in weight percent, which addition of B, P, Si in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as B and/or P and/or Si.
    Type: Application
    Filed: April 27, 2004
    Publication date: September 23, 2004
    Inventor: Per Erik Sjodin
  • Patent number: 6773660
    Abstract: A hot workable ferric stainless steel alloy resistant to thermal cyclic stress and oxidation at elevated temperatures having improved mechanical properties rendering it especially suitable as a substrate for exhaust gas purifying applications, such as catalytic converters or heating applications, has a composition including (in weight-%): C ≦0.05%; Cr 16.0-24.0%; Ni more than 1.0-15.0%; Al 4.5-12.0%; Mo + W ≦4.0%; Mn ≦1.0%; Si ≦2.0%; Zr + Hf ≦0.1%; REM ≦0.1%; N ≦0.05%; and balance Fe and normally occurring steelmaking impurities and additions.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 10, 2004
    Assignee: Sandvik AB
    Inventors: Magnus Cedergren, Kenneth Göransson
  • Patent number: 6355212
    Abstract: The invention is directed to anti-corrosive alloys and relates in particular to an alloy containing cobalt, chromium, aluminum, yttrium, silicon, a metal from the second main group, together with the corresponding oxide, in the following proportions: chromium (Cr) 26.0-30%; aluminum (Al) 5.5-13.0%; yttrium (Y) 0.3-1.5%; silicon (Si) 1.5-4.5%; metal from the second main group (magnesium, calcium, barium, strontium) 0.1-2.0%; oxide of the corresponding metal from the second main group 0.1-2.0%; cobalt (Co) remaining percentage. Preferably, tantalum (Ta) is also added in a proportion of 0.5-4.0%, and the remaining percentage of cobalt is replaced by a remaining percentage of Me, Me being understood to mean a metal which may be nickel (Ni) or iron (Fe) or cobalt (Co) or a composition comprising Ni—Fe—Co, Ni—Fe, Ni—Co, Co—Fe.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: March 12, 2002
    Assignee: Turbocoating SpA
    Inventor: Nelso Antolotti
  • Patent number: 6060180
    Abstract: The present invention provides a highly corrosion-resistant alloy used as a boiler tube in equipment the energy source of which is obtained by burning fossil fuel or waste, a steel tube for which the alloy is used, and a process for producing the steel tube. The alloy comprises up to 0.05% of C, 1.0 to 2.6% of Si, 0.02 to 1.0% of Mn, 20.0 to 28.0% of Cr, 18.0 to 30.0% of Ni, up to 4.0% of Mo, up to 0.05% of Al, 0.05 to 0.30% of N and the balance Fe and unavoidable impurities. Furthermore, the present invention also provides a multilayer steel tube having the alloy as a liner material and a standardized boiler tube as a base layer material, and a process for producing the multilayer steel tube.
    Type: Grant
    Filed: November 2, 1997
    Date of Patent: May 9, 2000
    Assignee: Nippon Steel Corporation
    Inventors: Tetsuo Ishitsuka, Koichi Nose
  • Patent number: 6036917
    Abstract: An alloy having a composition, by weight, of about 0.025% or less carbon, about 0.5 to about 4.1% manganese, about 5.5 to about 6.2% silicon, about 11 to about 15% chromium, about 9.0 to about 15.5% nickel, about 0.8 to about 1.2% molybdenum and about 0.8 to about 2% copper and the remainder being essentially iron with incidental impurities. This composition results in lean alloy content in a high silicon austenitic stainless steel for concentrated sulfuric acid service while maintaining a corrosion rate similar to and competitive with existing alloys for such service. Acceptable characteristics were found when hot working was carried out in the range of about 2100.degree. F. to about 2200.degree. F. Annealing in the range of about 1925.degree. F. to about 2025.degree. F. is preferred, as is rapid water quenching after annealing.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: March 14, 2000
    Assignee: Allegheny Ludlum Corporation
    Inventors: Dominic A. Sorace, John F. Grubb
  • Patent number: 5944917
    Abstract: A stainless steel having excellent corrosion resistance to ozone added water, such as ozone added ultrapure water used in semiconductor manufacturing processes and the like, as well as a manufacturing method. The stainless steel comprises a base metal and an oxide film formed on the surface of the base metal, the base metal being a stainless steel which contains 12 to 30% of Cr, 0 to 35% of Ni, and 1 to 6% of Al and Si while the contents of the other alloying elements are limited to as low a level as possible, the oxide film mainly comprising Al oxide or a Si oxide or both. The oxide film may be formed on the base metal surface through the dry oxidation process or the wet oxidation process. In the stainless steel, metallic ions are rarely dissolved from the base metal into the ozone added water.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: August 31, 1999
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kiyoko Takeda, Shigeki Azuma, Yoshio Tarutani, Yoshitaka Nishiyama, Yasushi Matsuda
  • Patent number: 5749939
    Abstract: A multiple stage process for obtaining Ni units from Ni laterite ores and sulfur-bearing Ni concentrates during production of nickel-alloyed iron, nickel-alloyed steel or nickel-alloyed stainless steel in a reactor equipped with top- and bottom-blowing means. Dried Ni laterite ore is charged into an iron/slag bath mixture containing dissolved carbon and a metalloid reductant such as aluminum or silicon. The laterite ore is melted while heat is generated by oxidation of the metalloid and carbon in the reactor. After the laterite ore is melted, top-blowing of pure oxygen and bottom-blowing of an oxygen-containing gas are ceased. Bottom injection of an inert stirring gas is begun. A sulfur-bearing Ni concentrate and aluminum are added to the bath.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: May 12, 1998
    Assignee: Armco Inc.
    Inventor: David M. Kundrat
  • Patent number: 5693155
    Abstract: For diminishing coking in a petrochemical process, coking-resistant steel containing by weight:about 0.05% to 0.06% of carbon;about 2.5% to 5% of silicon;10% to 20% of chromium;10% to 15% of nickel0.5% to 1.5% of manganese;0-0.5% of titanium;at most 0.8% of aluminium;the complement to 100% being essentially iron,can be used to manufacture tubes and plates for producing reactors or elements thereof, as well as for coatings of the internal walls of furnaces, reactors or tubings where coking can occur.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: December 2, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Valerie Mousseaux, Fran.cedilla.ois Ropital, Andre Sugier
  • Patent number: 5569334
    Abstract: Stainless steel member for semiconductor fabrication equipment having a passive state coating on the surface of the stainless steel comprising, in weight percent, 0.1% or less of C, 2.0% or less of Si, 3.0% or less of Mn, 10% or more of Ni, 15 to 25% of Cr, 1.5 to 4.5% of Mo, 0.5% or less of one or more rare earth element and Fe for substantially the whole remainder. Said passive state coating has a pitting potential of at least 900 mV (when the current density of the anode polarization curve determined with a potentiostat in 3.5% aqueous sodium chloride solution is 10 .mu.A/cm.sup.2) and has a thickness of 0.5 to 20 nm. The invention also includes a surface treatment method for the stainless steel.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: October 29, 1996
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tsunehiro Kawata, Katsuhiko Kojo, Youichiro Kazama, Takayuki Fukaya, Toshihiko Tsujimura
  • Patent number: 5565167
    Abstract: A stainless steel excellent in fused-salt corrosion resistance having a composition specified in weight per cent including not more than 0.1% of C, not more than 2.0% of Mn, not less than 7.5% and less than 15.0% of Ni, 14.0-20.0% of Cr, more than 0.2% and not more than 4.0% of Si, and 1.0-4.0% of Al, and in some cases also including one or more of not more than 3.0% of Cu, not more than 3.0% of Mo, not more than 1.0% of Ti, not more than 1.0% of Zr, not more than 0.5% Y, and not more than 0.5% of REM, and satisfying the relationship Si%/Al%.ltoreq.1.0, the balance being Fe and unavoidable impurities.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: October 15, 1996
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Nobukazu Fujimoto, Naoto Hiramatsu, Yoshihiro Uematsu
  • Patent number: 5340413
    Abstract: Fe-Ni based soft magnetic alloys having nanocrystalline particles substantially uniformly distributed throughout an amorphous matrix are disclosed. The soft magnetic alloys of the present invention may be represented by the general formula:(Fe.sub.1-x Ni.sub.x).sub.a M.sub.b (B.sub.1-y Si.sub.y).sub.cwhere M is a metal chosen from the group consisting of Mo, Cr, Hf, Nb, Ta, Ti, V, W, Zr. The quantity "x" is between about 0.2 and about 0.9; a is between about 60 and 90; b is between about 0.1 and 10; y is between 0 and 0.5; and c is between about 0.1 and about 30, with the stipulation that all the elements, plus impurities, add up to 100. Also described is a process for making the nanocrystalline alloys and for optimizing certain magnetic properties of said alloys via a two step anneal.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: August 23, 1994
    Assignee: AlliedSignal Inc.
    Inventor: Ronald Martis
  • Patent number: 5340534
    Abstract: An austenitic, stainless steel alloy having a good combination of galling resistance and corrosion resistance is disclosed containing in weight percent about:______________________________________ Broad Intermediate Preferred ______________________________________ C 0.25 max. 0.02-0.15 0.05-0.12 Mn 3-10 4-8 5-7 Si 2.25-5 2.5-4.5 3-4 Cr 15-23 16.5-21 17.5-19 Ni 2-12 4-10 6-9 Mo 0.5-4.0 0.5-2.5 0.75-1.5 N 0.35 max. 0.05-0.25 0.10-0.20 ______________________________________and the balance of the alloy is essentially iron. This alloy also has good resistance to formation of deformation-induced martensite as indicated by the alloy's low work-hardening rate and low magnetic permeability when cold-rolled to a 50% reduction in cross-sectional area.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: August 23, 1994
    Assignee: CRS Holdings, Inc.
    Inventor: John H. Magee
  • Patent number: 5338616
    Abstract: A far-infrared emitter of high corrosion resistance is prepared by an oxidizing heat treatment of a body made from a stainless steel of 20-35% by weight of chromium, 0.5-5.0% by weight of molybdenum, up to 3.0% by weight of manganese and up to 3.0% by weight of silicon at 900.degree.-1200.degree. C. to form an oxidized surface film having a thickness of at least 0.2 mg/cm.sup.2. Further, a far-infrared emitter of a high emissivity approximating a black body is prepared by subjecting a body made from a stainless steel of 10-35% by weight of chromium, 1.0-4.0% by weight of silicon and up to 3.0% by weight of manganese to a blasting treatment to roughen the surface followed by an oxidizing heat treatment at 900.degree.-1200.degree. C. to form an oxide film on the surface in the form of protrusions having a length of at least 5 .mu.m.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: August 16, 1994
    Assignees: Kawasaki Steel Corporation, Osaka Gas Co., Ltd.
    Inventors: Kazuhide Ishii, Tatsuo Kawasaki, Noriyuki Kuriyama, Shoji Dohi, Akio Nakashiba, Souhei Miyazaki
  • Patent number: 5320801
    Abstract: Air-meltable, castable, machinable, hardenable alloys that are resistant to highly corrosive and abrasive slurries, especially those employed in the handling of wet-process phosphoric acid reactor fluids or hot concentrated sulfuric acid. The alloys consist of, by weight, about 11% to about 40% nickel (plus cobalt), about 27% to about 42% chromium, about 1% to about 4% copper, about 3% to about 4.5% silicon, about 0.7% to about 2% carbon, about 0.3% to about 3% manganese, up to about 4.5% molybdenum, and the balance essentially iron plus the usual minor impurities.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: June 14, 1994
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 5316721
    Abstract: A heat-resistant alloy having a high creep rupture strength under high-temperature low-stress conditions and excellent resistance to carburization even when used at a high temperature exceeding 1100.degree. C. The alloy comprises, in % by weight, more than 0.1% to less than 1.5% of C, more than 2% to less than 3% of Si, more than 0% to less than 2% of Mn, more than 20% to less than 30% of Cr, more than 25% to less than 40% of Ni, more than 0.6% to less than 2% of Al, and the balance Fe and inevitable impurities. When required, the alloy contains at least one component selected from the group consisting of 0.01 to 0.5% of Zr, up to 0.2% of N, 0.2 to 2.0% of Nb, 0.2 to 2.0% of W and 0.01 to 03% of Ti.
    Type: Grant
    Filed: December 30, 1991
    Date of Patent: May 31, 1994
    Assignee: Kubota Corporation
    Inventors: Junichi Sugitani, Masahiro Inui, Koji Tsuchida, Teruo Yoshimoto
  • Patent number: 5306464
    Abstract: Air-meltable, castable, machinable, tough, silicon containing, chromium-nickel-iron alloys that are resistant to hot concentrated sulfuric acid and to abrasive or erosive action of grit or vapor bubbles in the acid. The alloys consist of, by weight, about 15% to about 25% nickel, from about 15% to about 26% chromium, from about 4.5% to about 8% silicon, from about 1% to about 4% copper, from about 0.3% to about 3% molybdenum, from about 0.5% to about 1.7% carbon, up to about 1.5% manganese, and the balance substantially iron plus the usual impurities and incidental tramp elements.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: April 26, 1994
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 5296054
    Abstract: The invention relates to a high-silicon-content corrosion-resistant austenitic steel, characterized by alloying contents (in % by weight) of______________________________________ max. 0.2% C 10 to 25% Ni 8 to 13% Cr 6.5 to 8% Si 0 to 10% Mn and/or Co max. 0.010% S max. 0.025% P ______________________________________residue iron and the usual admixtures and impurities due to manufacture.The steel is suitable as a material for the production of corrosion-resistant articles for the handling of highly concentrated hot sulphuric acid, highly concentrated hot nitric acid and other strongly oxidizing media, such as chromic acid, in the form of rolled plates, strips, pipes, rods, wires and other forms of product.
    Type: Grant
    Filed: June 4, 1992
    Date of Patent: March 22, 1994
    Assignees: I.P. Bardin Central Research Institute of Iron & Steel, Krupp-VDM GmbH
    Inventors: Levin F. Lvovich, Goronkova A. Dmitrievna, Kzasnykh V. Ivanovich, Rolf Kirchheiner, Michael Kohler, Ulrich Heubner
  • Patent number: 5252148
    Abstract: A soft magnetic alloy having a composition of general formula:(Fe.sub.1-a Ni.sub.a).sub.100-x-y-z-p-q Cu.sub.x Si.sub.y B.sub.z Cr.sub.p M.sup.1.sub.q (I)wherein M.sup.1 is V or Mn or a mixture of V and Mn, 0.ltoreq.a.ltoreq.0.5, 0.1.ltoreq.x.ltoreq.5, 6.ltoreq.y.ltoreq.20, 6.ltoreq.z.ltoreq.20, 15.ltoreq.y+z.ltoreq.30, 0.5.ltoreq.p.ltoreq.10, and 0.5.ltoreq.q.ltoreq.10 and possessing a fine crystalline phase is suitable as a core, especially a wound core and a compressed powder core.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: October 12, 1993
    Assignee: TDK Corporation
    Inventors: Masao Shigeta, Asako Kajita, Ippo Hirai, Tsutomu Choh
  • Patent number: 5244513
    Abstract: Ferrous group shape memory alloys consisting essentially of Cr: 16.0-21.0 wt %, Si: 3.0-7.0 wt % and Ni: 11.0-21.0 wt % and satisfying Ni wt %.gtoreq.[0.67.times.{Cr+1.2.times.(Si+Ti+Zr+Hf+V+Nb+Ta)}-] wt % and (Cr+Si) wt %.gtoreq.20 wt %, these ferrous-group shape-memory alloys having a corrosion resistance, a shape-memorizing properties, an intergranular corrosion resistance and a stress corrosion cracking resistance in nitric acid for nuclear fuel reprocessing plants and high-temperature, high-pressure water for light-water reactors.
    Type: Grant
    Filed: March 27, 1992
    Date of Patent: September 14, 1993
    Assignees: Mitsubishi Jukogyo Kabushiki Kaisha, NKK Corporation
    Inventors: Yoshikuni Kadoya, Toshio Yonezawa, Naotake Ito, Toru Inazumi, Yutaka Moriya, Haruo Suzuki, Katsumi Masamura, Takemi Yamada
  • Patent number: 5151248
    Abstract: An austenitic stainless steel for use for high temperature concentrated sulfuric acid which comprises, on weight basis, 0.04% or less of C, 5-7% of Si, 2% or less of Mn, 15-25% of Cr, 4-24% of Ni, 0.01-1.07% of Pd and the rest consisting of Fe and unavoidable contaminant materials. By the incorporation of small amount of palladium in a basal austenitic stainless steel containing the essential three elements of Cr, Ni and Si, a superior corrosion resistance against highly concentrated high temperature sulfuric acid is attained.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: September 29, 1992
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Ryuichiro Ebara, Hideo Nakamoto, Naohiko Ukawa, Tamotsu Yamada, Yasuo Nishimura
  • Patent number: 5147475
    Abstract: The invention relates to a high silicon containing stainless steel alloy in which the amounts of the alloy elements have been balanced such that the austenite phase remains stable without being deformed into martensite even under large amounts of working. The steel alloy comprises 0.04-0.25% C, 2.0-5.0% Si, 3.5-7.5% Mn, 16-21% Cr, 8-11% Ni, 0.10-0.45% N, the remainder being iron and normal impurities.
    Type: Grant
    Filed: February 26, 1991
    Date of Patent: September 15, 1992
    Assignee: Sandvik AB
    Inventor: Hakan Holmberg
  • Patent number: 5120496
    Abstract: In the processing of hot concentrated sulfuric acid or oleum in steel apparatus, the improvement wherein said apparatus is formed of an alloyed material comprising an iron-chrome-nickel-silicon alloy containing 13 to 32% by weight Cr, 5 to 25% by weight nickel and 4 to 9% by weight Si and having a structure containing more than 10% delta-ferrite.
    Type: Grant
    Filed: September 14, 1990
    Date of Patent: June 9, 1992
    Assignee: Bayer Aktiengesellschaft
    Inventors: Elmar-Manfred Horn, Stylianos Savakis
  • Patent number: 5051233
    Abstract: In the processing of hot concentrated sulfuric acid or oleum in steel apparatus, the improvement wherein said apparatus is formed of an alloyed material comprising an iron-chrome-nickel-silicon alloy containing 13 to 32% by weight Cr, 5 to 25% by weight nickel and 4 to 9% by weight Si and having a structure containing more than 10% delta-ferrite.
    Type: Grant
    Filed: January 11, 1990
    Date of Patent: September 24, 1991
    Assignee: Bayer Aktiengesellschaft
    Inventors: Elmar-Manfred Horn, Stylianos Savakis
  • Patent number: 5028396
    Abstract: Apparatus for the manufacture of sulphuric acid comprising at least one gas-concentrated sulphuric acid contacting unit and a sulphuric acid heat exchanger. The contacting unit and/or the heat exchanger is formed of high silicon content austenitic steel.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: July 2, 1991
    Assignee: Chemetics International Company, Ltd.
    Inventors: Frederick W. S. Jones, Frank Smith
  • Patent number: 4999158
    Abstract: This invention relates to iron-base alloy compositions, nickel containing austenitic ferrous alloy compositions (especially low nickel compositions) and dopants added to low nickel austenitic alloys as a means of improving the elevated temperature oxidation resistance of the resultant material.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: March 12, 1991
    Assignee: Chrysler Corporation
    Inventor: John M. Corwin
  • Patent number: 4999159
    Abstract: A heat-resistant austenitic stainless steel is disclosed. This steel essentially consists of: not more than 0.06% C, 1-4% Si, 0.5-4% mn, not more than 0.035% P, not more than 0.005% S, 10-17% Ni, 14-20% Cr, 1-4% Mo, 0.01-0.5% Al, not more than 0.035% N, and balance essentially Fe, and may further contain small amounts of any of Cu, REM and B and the composition thereof is adjusted so that a limited amount of .delta.-ferrite appears in solidification. The steel has excellent hot salt corrosion resistance, weldability, salt errosion resistance of the weld and hot-workability.
    Type: Grant
    Filed: February 13, 1990
    Date of Patent: March 12, 1991
    Assignee: Nisshin Steel Company, Ltd.
    Inventors: Yoshihiro Uematsu, Isami Shimizu, Naoto Hiramatsu
  • Patent number: 4933143
    Abstract: An austenitic stainless steel having excellent corrosion resistance in hot aqueous medium is disclosed. The steel essentially consists by weight ofC: not more than 0.08%Si: 2.5-4.0%Mn: not more than 0.8%P: not more than 0.045%S: not more than 0.005%Cr: 16-25%Ni: 6-20%Cu: 1.5-4.0%N: not more than 0.05%and the balance Fe and unavoidable incidental impurities.
    Type: Grant
    Filed: August 29, 1988
    Date of Patent: June 12, 1990
    Assignee: Nisshin Steel Company, Ltd.
    Inventors: Toshiro Adachi, Atsushi Fujii, Isamu Yoshimura, Tsuguyasu Yoshii
  • Patent number: 4933027
    Abstract: An iron-based shape-memory alloy excellent in a shape-memory property, a corrosion resistance and a high-temperature oxidation resistance, consisting essentially of:chromium: from 5.0 to 20.0 wt. %,silicon: from 2.0 to 8.0 wt. %,at least one element selected from the group consisting of:manganese: from 0.1 to 14.8 wt. %,nickel: from 0.1 to 20.0 wt. %,cobalt: from 0.1 to 30.0 wt. %,copper: from 0.1 to 3.0 wt. %, andnitrogen: from 0.001 to 0.400 wt. %,whereNi+0.5 Mn+0.4 Co+0.06 Cu+0.002 N.gtoreq.0.67 (Cr+1.2 Si)-3,and the balance being iron and incidental impurities.
    Type: Grant
    Filed: February 23, 1989
    Date of Patent: June 12, 1990
    Assignee: NKK Corporation
    Inventors: Yutaka Moriya, Tetsuya Sanpei, Hisatoshi Tagawa
  • Patent number: 4929289
    Abstract: An iron-based shape-memory alloy excellent in a shape-memory property and a corrosion resistance, consisting essentially of:______________________________________ chromium: from 0.1 to 5.0 wt. %, silicon: from 2.0 to 8.0 wt. %, manganese: from 1.0 to 14.8 wt. %, at least one element selected from the group consisting of: nickel: from 0.1 to 20.0 wt. %, cobalt: from 0.1 to 30.0 wt. %, copper: from 0.1 to 3.0 wt. %, and nitrogen: from 0.001 to 0.400 wt. %, where, Ni + 0.5 Mn + 0.4 Co + 0.06 Cu + 0.002 N .gtoreq. 0.67 (Cr + 1.2 Si), and the balance being iron and incidental impurities.
    Type: Grant
    Filed: February 23, 1989
    Date of Patent: May 29, 1990
    Assignee: NKK Corporation
    Inventors: Yutaka Moriya, Tetsuya Sanpei, Hisatoshi Tagawa
  • Patent number: 4917860
    Abstract: Alloys are provided which consist essentially of between about 4% and 18.5% by weight nickel, from about 24% to about 30% by weight chromium, from about 0.35 to about 1% by weight molybdenum, from about 2.7% to about 4.5% by weight copper, from about 2.7% to about 4.5% by weight silicon, up to about 1.5% by weight manganese, up to about 0.25% by weight nitrogen, up to about 0.8% by weight columbium (niobium), up to about 1.0% by weight tantalum, up to about 0.007% by weight boron, up to about 0.35% by weight vanadium, up to about 0.8% by weight tungsten, up to about 0.08% by weight carbon, up to about 0.6% by weight titanium and the balance essentially iron. Small amounts of cobalt as naturally occur in some ores may be present but are considered a part of the nickel content.
    Type: Grant
    Filed: January 10, 1989
    Date of Patent: April 17, 1990
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 4826655
    Abstract: A new cast high silicon heat resistant alloy is provided having the broad composition of about 0.16 to 0.30% carbon, about 3.2 to 4.5% silicon, about 0.8 to 1.5% aluminum, about 17 to 20% chromium, about 12 to 16% nickel, up to about 2% manganese, 0 to 0.07% rare earth alloys and the balance iron with residual impurities in ordinary amounts. The alloy is an austenitic chromium and nickel containing alloy having high strength and corrosion resistance.
    Type: Grant
    Filed: November 25, 1987
    Date of Patent: May 2, 1989
    Assignee: Rolled Alloys, Inc.
    Inventor: Gene Rundell
  • Patent number: 4802894
    Abstract: A structural member to be subjected to a hot gas atmosphere produced through reaction between coal and a gasifier such as oxygen, air, steam or hydrogen, in a gasification furnace for example. The structural member is made of an anti-sulfur attack Cr-Ni-Al-Si alloy steel which has a composition essentially consisting of, by weight, 0.03 to 0.3% of C, 1 to 10% of Si, not greater than 2.0% of Mn, 8 to 14% of Ni, 16 to 20% of Cr, 0.5 to 10% of Al and the balance not less than 50% of Fe.
    Type: Grant
    Filed: January 12, 1987
    Date of Patent: February 7, 1989
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Usami, Seishin Kirihara, Tadaoki Morimoto, Hiroyuki Doi, Michiya Okada