Titanium, Zirconium, Hafnium, Vanadium, Niobium, Or Tantalum Containing Patents (Class 420/535)
  • Patent number: 7323069
    Abstract: To cast a part, an injectable form of an aluminum-copper (206) alloy is generated and the aluminum-copper (206) alloy is injected into a mold. This mold corresponds to the part. In addition, the aluminum-copper (206) alloy is solidified to generate the part and the part is ejected from the mold.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: January 29, 2008
    Assignees: Contech U.S., LLC, Contech Operating UK, Ltd
    Inventors: Rathindra DasGupta, Zach Brown, Mark Musser
  • Patent number: 7294213
    Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe<0.15; Si<0.15; Zr?0.05; Ag<0.01, other elements <0.05 each and <0.15 total, remainder Al treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: November 13, 2007
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
  • Patent number: 7214279
    Abstract: An Al/Cu/Mg/Mn alloy for the production of semi-finished products with high static and dynamic strength properties has the following composition: 0.3–0.7 wt % silicon (Si), max. 0.15 wt. % iron (Fe), 3.5–4.5 wt % copper (Cu), 0.1–0.5 wt. % manganese (Mn), 0.3–0.8 wt. % magnesium (Mg), 0.5–0.15 wt % titanium (Ti), 0.1–0.25 wt % zirconium (Zr), 0.3–0.7 wt. % silver (Ag), max. 0.05 wt. % others individually, max 0.15 wt. % others globally, the remaining wt. % aluminum (Al). The invention further relates to a semi-finished product made for such an alloy and a method of production of a semi-finished product made for such an alloy.
    Type: Grant
    Filed: June 29, 2002
    Date of Patent: May 8, 2007
    Assignee: Otto Fuchs KG
    Inventors: Gernot Fischer, Dieter Sauer, Gregor Terlinde
  • Patent number: 7175719
    Abstract: Extruded aluminum alloy which excels in machinability, caulking properties, and wear resistance, the extruded aluminum alloy including 3.0 to 6.0 mass % of Si, 0.1 to 0.45 mass % of Mg, 0.01 to 0.5 mass % of Cu, 0.01 to 0.5 mass % of Mn, and 0.40 to 0.90 mass % of Fe, with the balance being Al and unavoidable impurities.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: February 13, 2007
    Assignee: Aisin Keikinzoku Co., Ltd.
    Inventors: Nobuyuki Higashi, Kinji Hashimoto
  • Patent number: 6959476
    Abstract: A method for producing aluminum drive shafts from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 0.2 to 0.8 wt. % Si, 0.05 to 0.4 wt. % Cu, 0.45 to 1.2 wt. % Mg, 0.04 to 0.35 wt. % Cr, 0.7 wt. % max. Fe, 0.15 wt. % max. Mn, 0.25 wt. % max. Zn, 0.15 wt. % max. Ti, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster for continuously casting the molten aluminum alloy. The molten aluminum alloy is cast into a slab which is rolled into a sheet product. After solution heat treatment, the sheet product is formed into a tube having a seam which is welded to provide a seam welded tube. The seam welded tube is placed in a forming die and hydroformed to form the drive shaft.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: November 1, 2005
    Assignee: Commonwealth Industries, Inc.
    Inventors: Zhong Li, Paul Platek
  • Patent number: 6939416
    Abstract: The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr<0.25, Cr<0.25, Zn<1.4, Ti<0.25, V<0.25, others each <0.05 and total <0.15, balance aluminium. The invention relates also to a method of manufacturing such an aluminium alloy product.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: September 6, 2005
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel
  • Patent number: 6918970
    Abstract: A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a L12 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: July 19, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Patent number: 6911099
    Abstract: A process for improving 6XXX alloys, such as 6013, preferably includes heating, hot rolling, inter-rolling thermal treatment at a very high temperature such as 1020° F. or more, again hot rolling (with or without subsequent continuous hot rolling or cold rolling or both), solution heat treating and artificial aging. The initial heating, inter-rolling, thermal treatment and solution treatment, especially the latter two, are carried out at very high temperatures such as 1030° F. Each aforesaid hot rolling stage produces substantial metal thickness reduction. The improved sheet or plate product has a substantially reduced occurrence of reduced density features revealed in scanning electron microscope examination at 500X and exhibits improved (reduced) fatigue crack growth rate providing an advantage in aerospace applications such as fuselage skin, especially fuselage belly skin.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: June 28, 2005
    Assignee: Alcoa Inc.
    Inventors: Paul E. Magnusen, Dhruba J. Chakrabarti, Anne E. Zemo, Robert W. Westerlund, Anthony Morales, Daniel T. Moulton
  • Patent number: 6908590
    Abstract: All aluminum alloy is disclosed that includes 6.5 to 8.5 percent silicon, 0.6 to 1.0 percent iron, 0.0 to 0.5 percent manganese, 0.35 to 0.65 percent magnesium, 0.0 to 1.0 percent zinc, 0.0 to 0.2 percent titanium, 2.0 to 2.5 percent copper, and aluminum as the remainder with further one or more other elements that are 0.0 to 0.15 percent of the weight of the aluminum alloy. An aluminum alloy of the above composition is high in strength and suitable for use with SSM methods of casting, such as Rheocasting and Thixocasting.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 21, 2005
    Assignee: SPX Corporation
    Inventor: Rathindra DasGupta
  • Patent number: 6866817
    Abstract: An aluminum based material includes the elements of scandium (Sc), silicon (Si), magnesium (Mg), zirconium (Zr), copper (Cu), and aluminum (Al). Thus, the aluminum based material can be used to make a heatsink plate having a heatsink effect of 20%, so that the aluminum based material has a greater conductivity and heatsink effect. In addition, the aluminum crystal has a fined size smaller than 0.1 nanometer (0.1 nm), thereby facilitating the later working process, so that the aluminum based material can be worked easily and conveniently.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: March 15, 2005
    Inventor: Chung-Chih Hsiao
  • Patent number: 6863747
    Abstract: An aluminum sheet material for automobiles is herein disclosed, having an aluminum alloy composition: (i) comprising 3.5 to 5 wt % of Si, 0.3 to 1.5 wt % of Mg, 0.4 to 1.5 wt % of Zn, 0.4 to 1.5 wt % of Cu, 0.4 to 1.5 wt % of Fe, and 0.6 to 1 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities, or (ii) comprising between more than 2.6 wt % and 5 wt % of Si, 0.2 to 1.0 wt % of Mg, 0.2 to 1.5 wt % of Zn, 0.2 to 1.5 wt % of Cu, 0.2 to 1.5 wt % of Fe, and between 0.05 and less than 0.6 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: March 8, 2005
    Assignees: Furukawa-Sky Aluminum Corp., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kazuhisa Kashiwazaki, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6808864
    Abstract: Disclosed is a support for a lithographic printing plate obtained by subjecting an aluminum plate to a graining treatment and an anodizing treatment, the support comprising at least any one of Mn in a range from 0.1 to 1.5 wt % and Mg in a range from 0.1 to 1.5 wt %; Fe of 0 to 1 wt %; Si of 0 to 0.5 wt %; Cu of 0 to 0.2 wt %; at least one kind of element out of the elements listed in items (a) to (d) below in a range of content affixed thereto, (a) 1 to 100 ppm each of one or more kinds of elements selected from a group consisting of Li, Be, Sc, Mo, Ag, Ge, Ce, Nd, Dy and Au, (b) 0.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: October 26, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Patent number: 6790407
    Abstract: The present invention relates to high-strength aluminium-based alloy of Al—Zn—Mg—Cu system and the article made thereof. Said alloy can be used as a structural material in aircraft- and rocket engineering, and for fabricating the articles for transportation- and instrument engineering. The advantage of the suggested alloy is its high strength and the required level of service properties combined with sufficient technological effectiveness necessary for fabricating various wrought semiproducts, mainly of large sizes. Said alloy has the following composition (in wt %): zinc 7.6-8.6 magnesium 1.6-2.3 copper  1.4-1.95 zirconium 0.08-0.20 manganese 0.01-0.1  iron 0.02-0.15 silicon 0.01-0.1  chrome 0.01-0.05 nickel 0.0001-0.03  beryllium 0.0001-0.005  bismuth 0.00005-0.0005  hydrogen 0.08 × 10−5-2.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 14, 2004
    Assignees: Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie “Vserossiisky auchno-Issledovatelsky Institut Aviatsionnykh Materialov”, Otkrytoe Aktsionernoe Obschestvo “Samrsky Metallurgichesky Zavod”
    Inventors: Iosif Naumovich Fridlyander, Evgeny Nikolaevich Kablov, Olga Grigorievna Senatorova, Svetlana Fedorovna Legoshina, Vladimir Nikolaevich Samonin, Alexandr Juvenarievich Sukhikh, Johannes Koshorst
  • Patent number: 6783869
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 31, 2004
    Assignee: MIBA Gleitlager Aktiengesellschaft
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Patent number: 6743396
    Abstract: The present invention relates to a method for producing AlMn strips or sheets for producing components by soldering, wherein a precursor material is produced from a melt which contains (in weight-percent) Si: 0.3-1.2%, Fe: ≦0.5%, Cu: ≦0.1%, Mn: 1.0-1.8%, Mg: ≦0.3%, Cr+Zr: 0.05-0.4%, Zn: ≦0.1% , Ti: ≦0.1% , Sn: ≦0.15%, and unavoidable companion elements, whose individual amounts are at most 0.05% and whose sum is at most 0.15%, as well as aluminum as the remainder, wherein the precursor material is preheated at a preheating temperature of less than 520° C. over a dwell time of at most 12 hours, wherein the preheated precursor material is hot rolled into a hot strip using a final hot rolling temperature of at least 250° C., wherein the hot strip is cold rolled into a cold strip without intermediate annealing.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: June 1, 2004
    Assignee: Hydro Aluminium Deutschland GmbH
    Inventors: Pascal Wagner, Wolf-Dieter Finkelnburg, Dietrich Wieser, Manfred Mrotzek
  • Patent number: 6726878
    Abstract: The invention relates to high strength aluminium—based alloy of Al—Zn—Mg—Cu system and the articles made thereof. The present alloy is characterized by the combination of improved properties: flowability, technological plasticity, fracture toughness while preserving high levels of strength properties. Said alloy comprises (mass. %): Zn 6.35-8.0 Si 0.01-0.2 Mg 0.5-2.5 Fe 0.06-0.25 Cu 0.8-1.3 Zr 0.07-0.2 Cr 0.001-0.05 Ti 0.03-0.1 Mn 0.001-0.1 Be 0.0001-0.05 and at least one element from the group of alkali-earth metals: K 0.0001-0.01 Na 0.0001-0.01 Ca 0.0001-0.01 Al-balance the sum Zr+2Ti≦0.3%, and the ratio Si:Be≧2.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: April 27, 2004
    Assignees: Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie “Vserossiisky Nauchno-Issle-Dovatelsky Institut Aviatsionnykh Materialov”, Otkrytoe Aktsionernoe Obschestvo “Samarsky Metallurgichesky Zavod”
    Inventors: Iosif Naumovich Flidlyander, Evgeny Nikolaevich Kablov, Evgeniya Anatolievna Tkachenko, Vladimir Nikolaevich Samonin, Viktor Yakovlevich Valkov
  • Patent number: 6726785
    Abstract: An aluminum alloy sheet material, containing 2.6% by mass or more and less than 3.5% by mass (% by mass is simply denoted by % hereinafter) of Si, 0.05 to 0.5% of Mg, 0.5% or more and less than 1.2% of Cu, 0.6 to 1.5% of Mn, 0.5 to 1.6% of Zn, and 0.3 to 2.0% of Fe, and containing, if necessary, at least one of 0.01 to 0.2% of Cr, 0.01 to 0.2% of Zr, 0.01 to 0.2% of V, and 0.01 to 0.2% of Ti, with the balance of Al and unavoidable impurities. A method of producing the aluminum alloy sheet material, which method contains carrying out specific workings.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 27, 2004
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Oyama, Yoichiro Bekki, Noboru Hayashi, Morio Kuroki
  • Patent number: 6716390
    Abstract: An aluminum alloy extruded material for automotive structural members, which contains 2.6 to 5 wt % of Si, 0.15 to 0.3 wt % of Mg, 0.3 to 2 wt % of Cu, 0.05 to 1 wt % of Mn, 0.2 to 1.5 wt % of Fe, 0.2 to 2.5 wt % of Zn, 0.005 to 0.1 wt % of Cr, and 0.005 to 0.05 wt % of Ti, and satisfies relationship of the following expression (I), (Content of Mn (wt %))+0.32×(content of Fe (wt %))+0.097×(content of Si (wt %))+3.5×(content of Cr (wt %))+2.9×(content of Ti (wt %))≦1.36 (I) with the balance being made of aluminum and unavoidable impurities. A method of producing the aluminum alloy extruded material for automotive structural members, which comprises cooling with a refrigerant from outside of a die-exit side, at the time of extrusion.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 6, 2004
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20040057865
    Abstract: A piston made of aluminum cast alloy having a main body section in an approximately cylindrical shape, atop face section provided and arranged so as to occlude one end of the main body section, and a pin boss section in which a pin hole is provided so as to penetrate through the main body section in a radial direction. The piston comprises an aluminum cast alloy containing Mg (Magnesium): equal to or less than 0.2 mass %, Ti (Titanium) 0.05-0.3 mass %, Si (Silicon): 10-21 mass %, Cu (Copper): 2-3.5 mass %, Fe (Iron): 0.1-0.7 mass %, Ni (Nickel): 1-3 mass %, P (Phosphorus): 0.001-0.02 mass %, Al (Aluminum): the remaining portions, and impurities.
    Type: Application
    Filed: July 17, 2003
    Publication date: March 25, 2004
    Applicant: Kabushiki Kaisha Toyota Chuo
    Inventors: Hajime Ikuno, Yoshihiko Sugimoto, Hiroshi Hohjo
  • Patent number: 6706242
    Abstract: Heat resistant Al die cast material having 12.5% to 14.0% of Si, 3.0% to 4.5% of Cu, 1.4% to 2.0% of Mg, and 1.12% to 2.4% of Zn. The die cast metal becomes amenable to age hardening treatment when appropriate amounts of Mg and Zn are added to an Al—Si—Cu alloy for enhancing mechanical strength and seizure characteristics.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: March 16, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Norimasa Takasaki, Yuuko Yoshimura
  • Patent number: 6676899
    Abstract: A chemical composition of alloys, in particular naturally hard semifinished-material alloys, which are intended to be used in this form as material for semifinished materials. A naturally hard aluminum alloy for semifinished materials which, in addition to magnesium, titanium, beryllium, zirconium, scandium, and cerium, is also made of manganese, copper, zinc, and an element group containing iron and silicon, the ratio of iron to silicon being in the range of 1 to 5.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: January 13, 2004
    Assignee: Eads Deutschland GmbH
    Inventors: Valentin Georgijevich Davydov, Yuri Filatov, Blanka Lenczowski, Viktor Yelagin, Valeri Zakarov
  • Patent number: 6673473
    Abstract: The invention relates to a display screen, in particular a color display screen, based on a display screen support with a single-layer or multi-layer coating which contains a red luminous substance and a coloring pigment. The invention is furthermore directed towards the display screen coating, means for the production thereof and a coated red luminous substance capable of being used for this purpose. A feature of the invention, is the presence of red tantalum (V) nitride by way of pigment for the purpose of increasing the contrast and decreasing the reflection of the display screen.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: January 6, 2004
    Assignee: Ferro GmbH
    Inventor: Hans-Peter Letschert
  • Patent number: 6656421
    Abstract: An aluminum-beryllium-silicon based alloy is disclosed, which comprises 5.0 to 30.0 mass % of Be, 0.1 to 15.0 mass % of Si and 0.1 to 3.0 mass %, the balance being Al and inevitable impurities. The alloy is useful for producing automobile engine parts, etc.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: December 2, 2003
    Assignees: NGK Insulators, Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toshimasa Ochiai, Hiroshi Yamada, Masami Hoshi
  • Patent number: 6630037
    Abstract: High strength and high toughness aluminum alloy forgings having, as a whole, a strength at &sgr;0.2 of 315 N/mm2 or more and an impact shock value of 20 J/cm2 or more, wherein the aluminum alloy material contains Mg: 0.6-1.6%, Si: 0.8-1.8%, Cu: 0.1-1.0%, Fe: 0.30% or less, one or more of Mn: 0.15-0.6%, Cr: 0.1-0.2% and Zr: 0.1-0.2%, and the balance of Al and inevitable impurities, wherein the volume fraction of total constituents phase particles (Mg2Si and Al—Fe—Si—(Mn, Cr, Zr) series intermetallic compounds) in the aluminum alloy structure in the forgings is 1.5% or less per unit area.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: October 7, 2003
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroki Sawada, Takayuki Kitano, Manabu Nakai
  • Patent number: 6623693
    Abstract: An aluminum alloy composition consists essentially of controlled amounts of iron, silicon, copper, manganese, magnesium, titanium, zinc, zirconium, and free machining elements with the balance being aluminum and incidental impurities. The alloy provides improvements in combined strength, corrosion resistance, machinability, and brazeability. A component or article made from the aluminum alloy can be machined to the right configuration and can be brazed to another component to form a high quality brazed joint. In addition, the article can withstand corrosive environments and has the necessary mechanical properties to interface with other components. The alloy is adapted for particular use as a component in a heat exchanger assembly, such as a connector block having one or more machined surfaces or passageways.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: September 23, 2003
    Assignee: Reynolds Metals Company
    Inventor: Subhahish Sircar
  • Patent number: 6607616
    Abstract: The invention relates to an aluminum casting alloy and to cast products made thereof consisting of, in weight percent: Mg 1.0-2.6, Si 0.5-2.0, Mn 0.9-1.4, Fe<0.50, Cu<1.0, Zn<0.30, Ti<0.20, Be<0.003, balance aluminum and inevitable impurities.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 19, 2003
    Assignee: Corus Aluminium Voerde GmbH
    Inventors: Martinus Godefridus Johannes Spanjers, Timothy John Hurd
  • Patent number: 6596412
    Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: July 22, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventor: Robert Mergen
  • Patent number: 6592687
    Abstract: A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14-25.0, Copper 5.5-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.0, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X═Ti, V, Zr) having a L12 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: July 15, 2003
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Publication number: 20030068249
    Abstract: An improved aluminum base alloy having improved hot crack resistance when solidified into cast products, the alloy comprised of 4 to 5.5 wt. % Cu, max. 0.5 wt. % Mn, max. 0.55 wt. % Mg, max. 0.2 wt. % Si, up to 0.5 wt. % Fe, optionally 1.13 to 1.7 wt. % Ni, 0.005 to 0.12 wt. % Ti, the balance comprised of aluminum, incidental elements and impurities.
    Type: Application
    Filed: October 30, 2001
    Publication date: April 10, 2003
    Inventor: Geoffrey K. Sigworth
  • Publication number: 20030066579
    Abstract: A method for forming a remateable cracked aluminum base alloy connecting rod using a semi-solid aluminum alloy processing to produce a connecting rod having a globular microstructure contained in a lower melting eutectic with improved properties.
    Type: Application
    Filed: November 6, 2002
    Publication date: April 10, 2003
    Inventor: S. Craig Bergsma
  • Publication number: 20030059336
    Abstract: An aluminum alloy material for use in a terminal, which material contains a crystalline structure having 30% or more of a space factor of crystal grains having a crystal grain size of 30 &mgr;m or less. A terminal containing the aluminum alloy material.
    Type: Application
    Filed: September 19, 2002
    Publication date: March 27, 2003
    Inventors: Yukikatsu Aida, Kinya Ogawa, Hidemichi Fujiwara
  • Patent number: 6511555
    Abstract: The present invention relates to a cylinder head and motor block casting and a method of making the same, including an aluminum alloy having the following composition: Si 6.80-7.20, Fe 0.35-0.45, Cu 0.30-0.40, Mn 0.25-0.30, Mg 0.35-0.45, Ni 0.45-0.55 Zn 0.10-0.15, Ti 0.11-0.15 with the remainder being aluminum as well as unavoidable impurities with a maximum content of 0.05 each, but not more than a maximum of 0.15 impurities in all.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: January 28, 2003
    Assignee: Vaw Aluminium AG
    Inventors: Franz Josef Feikus, Leonhard Heusler
  • Patent number: 6494137
    Abstract: A support for a lithographic printing plate obtained by performing surface graining and anodizing of an aluminum alloy plate, wherein the foregoing aluminum alloy plate contains specific contents of Fe, Si, Cu, Ti, Zn and Mg, with the balance being Al and incidental impurities. The presensitized plate obtained from this support for a lithographic printing plate is excellent in press life and in resistance to dot ink stain when processed into a lithographic printing plate. Preferably, the support for a lithographic printing plate, with regard to the surface of the support, has a center line average roughness Ra in the range of 0.2-0.6 &mgr;m, a maximum height Rmax in the range of 3.0-6.0 &mgr;m, a ten-point mean roughness Rz in the range of 2.0-5.5 &mgr;m, a center line peak height Rp in the range of 1.0-3.0 &mgr;m, a center line valley depth Rv in the range of 2.0-3.5 &mgr;m, a mean spacing Sm in the range of 40-70 &mgr;m, an average inclination &Dgr;a in the range of 6.0-12.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: December 17, 2002
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Patent number: 6465113
    Abstract: An aluminum alloy brazing sheet having a four-layered structure, of sheet thickness 0.2 mm or less, and having a core alloy, a filler alloy of an Al—Si alloy on one surface of the core alloy, a sacrificial anode material of an Al—Zn alloy on the other surface of the core alloy, and an intermediate layer between the core alloy and sacrificial anode material, wherein the core alloy is composed of an Al alloy containing given amounts of Si, Fe, Mn, and Cu, with the balance being made of Al and unavoidable impurities, and wherein the intermediate layer is composed of an Al alloy containing given amounts of Si, Fe, Mn, and Cu, with the balance being made of Al and unavoidable impurities.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: October 15, 2002
    Assignees: The Furukawa Electric Company, Ltd., Denso Corporation
    Inventors: Noriyuki Yamada, Takeyoshi Doko, Yoshiaki Ogiwara, Satoshi Tanaka, Sunao Fukuda, Yoshihiko Kamiya, Masaki Shimizu, Kenji Negura
  • Patent number: 6461454
    Abstract: An aluminum alloy plate for an automobile has a chemical composition containing 0.8 to 1.5% by mass of Si, 0.4 to 0.7% by mass of Mg and 0.5 to 0.8% by mass of Cu. The crystal grain size is 10 to 40 &mgr;m. Cu content obtained by analyzing the outermost surface of the aluminum alloy with an oxide film according to X-ray photoelectron spectroscopy (XPS) is {fraction (1/10)} to ½ of the Cu content of the bulk of the aluminum alloy plate.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: October 8, 2002
    Assignees: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Nissan Motor Co., Ltd.
    Inventors: Makoto Tawara, Osamu Takezoe, Mariko Sakata, Shinji Matsuda, Masahito Katsukura, Tsutomu Hattori
  • Patent number: 6451453
    Abstract: Strip or drawn tube for the manufacture of a brazed heat exchanger, formed from an aluminum alloy containing Si, Cu and Mn, with optional amounts of Mg, Fe, Zn and Ti, where Fe≦Si, and Cu+Mg>0.4. In the form of a strip, the alloy may be coated on one or both surfaces with an aluminum brazing alloy.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: September 17, 2002
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Claude Kucza, Ravi Shahani, Bruce Morere, Jean-Luc Hoffmann
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20020090560
    Abstract: The invention relates to a display screen, in particular a colour display screen, based on a display-screen support with a single-layer or multi-layer coating which contains a red luminous substance and a colouring pigment. The invention is furthermore directed towards the display-screen coating, means for the production thereof and a coated red luminous substance capable of being used for this purpose.
    Type: Application
    Filed: November 21, 2001
    Publication date: July 11, 2002
    Applicant: Ferro GmbH
    Inventor: Hans-Peter Letschert
  • Patent number: 6403232
    Abstract: A core material of an aluminum brazing sheet restricts Mg to less than 0.3 wt % and Fe to not more than 0.2 wt %, and contains more than 0.2 wt % and not more than 1.0 wt % of Cu, 0.3 to 1.3 wt % of Si, 0.3 to 1.5 wt % of Mn and the balance of Al and inevitable impurities. A brazing filler material is formed on one surface of the core material by Al—Si based aluminum alloy. Also, a cladding material is formed on the other surface of the core material, and contains less than 0.2 wt % of Si, 2.0 to 3.5 wt % of Mg, not less than 0.5 wt % and less than 2.0 wt % of Zn and the balance of Al and inevitable impurities. Further, the value (cladding material hardness)/(the core material hardness) that is a ratio of the hardness of the cladding material to the hardness of the core material is not more than 1.5.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: June 11, 2002
    Assignees: Kobe Alcoa Transportation Products Ltd., Denso Corporation
    Inventors: Tadashi Okamoto, Osamu Takezoe, Takahiko Nagaya, Yasuaki Isobe, Taketoshi Toyama, Sunao Fukuda
  • Patent number: 6399020
    Abstract: An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications, having the following composition, by weight percent (wt %): Silicon  11.0-14.0 Copper  5.6-8.0 Iron   0-0.8 Magnesium  0.5-1.5 Nickel 0.05-0.9 Manganese   0-1.0 Titanium 0.05-1.2 Zirconium 0.12-1.2 Vanadium 0.05-1.2 Zinc 0.05-0.9 Strontium 0.001-0.1  Aluminum balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: June 4, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Patent number: 6361741
    Abstract: This invention relates to an aluminum alloy with B-rated or better machineability, said alloy being suitable for using as brazing in the Nocolock® process. The alloy consists essentially of: about 0.5-0.8 wt. % silicon; about 0.4-0.6 wt. % magnesium; about 0.4-0.72 wt. % tin; up to about 0.5 wt. % iron; up to about 0.3 wt. % copper; up to about 0.35 wt. % manganese; up to about 0.15 wt. % chromium; and up to about 0.2 wt. % zinc; the balance aluminum and incidental elements and impurities. This product is preferentially processed into one or more of the following tempers: T1, T5, T6, T651, T6510, T6511, T8, T851, and T9.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: March 26, 2002
    Assignee: Alcoa Inc.
    Inventors: Thomas J. Klemp, Richard A. Jeniski, Jr., David W. Hohman
  • Patent number: 6342112
    Abstract: An Al—Mg based alloy sheet product in which the crystallographic texture exhibits a ratio of the volume fraction of grains in the S orientation {123}<634> to the volume fraction of grains in the CUBE orientation {100}<001> (S/Cube) being 1 or more, and is comprised of grains with a volume fraction of about 10% or less in the GOSS orientation {110}<001>, wherein the grain size is in a range of about 20 to 100 &mgr;m demonstrates good formability.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: January 29, 2002
    Assignees: Alcoa Inc., Kobe Steel Ltd.
    Inventors: Frederic Barlat, John C. Brem, Shigeo Hattori, Yasuhiro Havashida, Daniel J. Lege, Kwansoo Chung, Yasushi Maeda, Kuniaki Matsui, Shawn J. Murtha, Masahiro Yanagawa, Narikazu Hashimoto
  • Patent number: 6325869
    Abstract: A substantially unrecrystallized extrusion comprising about 3.6 to about 4.2 wt. % copper, about 1.0 to about 1.6 wt. % magnesium, about 0.3 to about 0.8 wt. % manganese, about 0.05 to about 0.25% zirconium, the balance substantially aluminum, incidental elements and impurities. The extrusion has a longitudinal yield strength of at least about 50 ksi and a longitudinal tensile ultimate strength of at least about 70 ksi. On a preferred basis, the extrusions of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: December 4, 2001
    Assignee: Alcoa Inc.
    Inventors: John Liu, Gary H. Bray, David A. Lukasak, Robert C. Pahl
  • Patent number: 6294272
    Abstract: An aluminium alloy for use as a core material in brazing sheet, comprising, in weight %: Mn 0.7-1.5, Cu 0.6-1.0, Fe not more than 0.4, Si less than 0.1, Mg 0.05-0.8, Ti 0.02-0.3, Cr 0.1-0.25, Zr 0.1-0.2, balance Al and unavoidable impurities, wherein 0.20<(Cr+Zr)≦0.4, the alloy being capable of obtaining in the post-brazing state 0.2% yield strength of at least 65 MPa and having a corrosion life of more than 11 days in a SWAAT test without perforations in accordance with ASTM G-85.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: September 25, 2001
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Jeroen Andreas Helmuth Söntgerath, Achim Bürger, Klaus Vieregge
  • Publication number: 20010010866
    Abstract: An aluminium alloy for use as a core material in brazing sheet, consisting of, in weight %: Mn 0.7-1.5, Cu 0.6-1.0, Fe not more than 0.4, Si less than 0.1, Mg 0.05-0.8, Ti 0.02-0.3, Cr 0.1-0.25, Zr 0.1-0.2, balance Al and unavoidable impurities, wherein 0.2≦(Cr+Zr)≦0.4, the alloy being capable of obtaining in the post-brazing state 0.2% yield strength of at least 65 MPa and having a corrosion life of more than 11 days in a SWAAT test without perforations in accordance with ASTM G-85.
    Type: Application
    Filed: March 24, 1999
    Publication date: August 2, 2001
    Inventors: JEROEN ANDREAS HELMUTH SONTGERATH, ACHIM BURGER, KLAUS VIEREGGE
  • Patent number: 6267922
    Abstract: An aluminum alloy containing the following elements in the stated amounts: 0.6≦Mg≦0.9; 0.25≦Si≦0.6; 0.25≦Cu≦0.9; Fe<0.4; Mn<0.4; the total of the amounts of Cu, Si and Mg being, in atomic weight percent, more than 1.2% and less than 1.8%. These alloys may be subjected to homogenization at about 470 to 560° C. for more than four hours, hot rolling at a temperature in the range of 400 to 580° C., cold rolling, solutionizing at a temperature in the range of 470 to 580° C., and natural aging at ambient temperature. The alloys may then be used as structural components for all aluminum vehicles and may be recycled with other aluminum alloys used in such vehicles.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: July 31, 2001
    Assignee: Alcan International Limited
    Inventors: Michael Jackson Bull, Alok Kumar Gupta, Michael John Wheeler
  • Patent number: 6258465
    Abstract: Provided is an energy absorbing member which makes it possible to induce contraction and deformation into a form of bellows, with Euler's buckle being restrained. An energy absorbing member comprises a hollow extrusion which is made of an aluminum alloy and has an outer portion and an inner rib connected to the outer portion, and the radius of the corner where the rib and the outer portion are connected to each other is not more than a half of the thickness of the rib. A similar energy absorbing member has plural inner ribs which are connected to the outer portion and cross each other, and the radius of the corner where the ribs cross each other is 1 mm or less.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: July 10, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Takashi Oka, Hiroyuki Yamashita, Masakazu Hirano
  • Patent number: 6231809
    Abstract: An Al—Mg—Si type alloy sheet contains 0.2 to 1.5 wt % of Mg and 0.2 to 1.5 wt % of Si. The sheet has textures in which orientation distribution density of Goss orientation is 3 or lower, orientation distribution density of PP orientation is 3 or lower and orientation distribution density of Brass orientation is 3 or lower. The sheet may contain 0.01 to 1.5 wt % in total weight of one or more elements selected from the group consisting of Mn, Cr, Fe, Zr, V and Ti. The sheet may further contain 0.01 to 1.5 wt % in total weight of one or more elements selected from the group consisting of Cu, Ag, Zn and Sn. Thus, ridging marks is restrained in the aluminum alloy sheet.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: May 15, 2001
    Assignees: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Alcoa Transporation Products Ltd.
    Inventors: Katsushi Matsumoto, Masahiro Yanagawa, Yasuo Takaki
  • Patent number: 6126898
    Abstract: An aluminum-copper alloy comprising substantially insoluble particles which occupy the interdendritic regions of the alloy.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: October 3, 2000
    Assignee: Aeromet International PLC
    Inventor: Simon Andrew Butler
  • Patent number: 6120621
    Abstract: An aluminum alloy strip useful for can stock having a thickness of less than or equal to about 30 mm, and containing large (Mn,Fe)Al.sub.6 intermetallics as principal intermetallic particles in said strip. The intermetallic particles have an average surface size at a surface of the strip and an average bulk size in a bulk of the strip, the average surface size being greater than the average bulk size. The strip article may be produced by supplying a molten aluminum alloy having a composition consisting, in addition to aluminum, essentially by weight of: Si between 0.05 and 0.15%; Fe between 0.3 and 0.6%; Mn between 0.6 and 1.2%; Mg between 1.1 and 1.8%; Cu between 0.2 and 0.6%; and other elements: less than or equal to 0.05% each element with a maximum of 0.2% for the total of other elements; and casting the molten alloy in a continuous caster having opposed moving mold surfaces to an as-cast thickness of less than or equal to 30 mm.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: September 19, 2000
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, John Fitzsimon