Chromium Containing Patents (Class 420/588)
  • Patent number: 11168385
    Abstract: The present disclosure relates to relates generally to metal alloys. The present disclosure relates more particularly to High Entropy Alloys having relatively high strength and relatively low weight. In one aspect, the present disclosure provides a multiple-principal-element high-entropy AlCrTiV metal alloy comprising Al in an amount of 5-50 at %; Cr in an amount of 5-50 at %; Ti in an amount of 5-60 at %; and V in an amount of 5-50 at %, wherein the total amount of Al, Cr, Ti and V is at least 80 at %.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: November 9, 2021
    Assignee: Ohio State Innovation Foundation
    Inventors: Aihua Luo, Weihua Sun, Xuejun Huang
  • Patent number: 9034247
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 19, 2015
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Patent number: 9034248
    Abstract: An object of the present invention is to provide a Ni-based superalloy, especially for a conventional casting, having a good balance among high temperature strength, corrosion resistance and oxidation resistance, as compared to a conventional material. The Ni-based superalloy comprises Cr, Co, Al, Ti, Ta, W, Mo, Nb, C, B, and inevitable impurities, the balance being Ni, the Ni-based superalloy having a superalloy composition comprising, by mass, 13.1 to 16.0% Cr, 11.1 to 20.0% Co, 2.30 to 3.30% Al, 4.55 to 6.00% Ti, 2.50 to 3.50% Ta, 4.00 to 5.50% W, 0.10 to 1.20% Mo, 0.10 to 0.90% Nb, 0.05 to 0.20% C, and 0.005 to 0.02% B.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 19, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Yuting Wang, Akira Yoshinari
  • Patent number: 8992700
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 18.0 to 30.0% cobalt, 11.4 to 16.0% chromium, up to 6.0% tantalum, 2.5 to 3.5% aluminum, 2.5 to 4.0% titanium, 5.5 to 7.5% molybdenum, up to 2.0% niobium, up to 2.0% hafnium, 0.04 to 0.20% carbon, 0.01 to 0.05% boron, 0.03 to 0.09% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.71 to 1.60.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Kenneth Rees Bain, David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Laurent Cretegny, Andrew Ezekiel Wessman
  • Publication number: 20150054223
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: WILLIAM JOHN CRIM JAROSINSKI, VLADIMIR BELOV
  • Patent number: 8961646
    Abstract: There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 24, 2015
    Assignees: Honda Motor Co., Ltd., National Institute for Materials Science
    Inventors: Yuefeng Gu, Tadaharu Yokokawa, Toshiharu Kobayashi, Toshio Osada, Junzo Fujioka, Hiroshi Harada, Daisuke Nagahama, Yusuke Kikuchi
  • Publication number: 20150044491
    Abstract: The invention provides tantalum alloys, methods for forming tantalum alloys having a luminous, black, ceramic surface, and articles, such as, but not limited to, jewelry and watches, formed from the tantalum alloys.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Inventor: Daniel S. PISCITELLI
  • Publication number: 20150030876
    Abstract: By using a two-layer NiCoCraly coating, the formation of cracks in a thermally grown oxide coating, such as is formed on the basis of the protective effect of the NiCoCraly coating, can be reduced.
    Type: Application
    Filed: December 18, 2012
    Publication date: January 29, 2015
    Inventor: Werner Stamm
  • Publication number: 20150010428
    Abstract: A cobalt-nickel alloy composition comprising by weight: about 29 to 37 percent cobalt; about 29 to 37 percent nickel; about 10 to 16 percent chromium; about 4 to 6 percent aluminium; at least one of Nb, Ti and Ta; at least one of W, Ta and Nb; the cobalt and nickel being present in a ratio between about 0.9 and 1.1.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 8, 2015
    Inventors: Mark Christopher HARDY, David DYE, Huiyu YAN, Matthias KNOP, Howard James STONE
  • Patent number: 8920883
    Abstract: Alloy composition for the manufacture of protective coatings, comprising cobalt, nickel, chromium, aluminium, yttrium and iridium in amounts so as to obtain the phases ?, ? and ?, in particular for coating a super-alloy article. Preferably, such super-alloy article is a turbine component.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: December 30, 2014
    Assignee: Ansaldo Energia S.p.A.
    Inventors: Sergio Corcoruto, Tatiana Falcinelli, Fabrizio Casadei
  • Publication number: 20140363698
    Abstract: A composition useful as a bond coat is provided. The composition includes about 3% to about 7% chromium, about 10% to about 30% nickel, about 12% to about 18% aluminum, about 0.0005% to about 0.15% yttrium, about 0.0% to about 16% strengtheners, balance cobalt, and incidental impurities. Also provided is a component including a substrate having at least one layer of the composition applied thereto.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventor: Kivilcim ONAL
  • Publication number: 20140363331
    Abstract: A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.
    Type: Application
    Filed: February 27, 2014
    Publication date: December 11, 2014
    Applicant: United States Department of Energy
    Inventor: Brian V. Cockeram
  • Patent number: 8906130
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 9, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: William John Crim Jarosinski, Vladimir Belov
  • Publication number: 20140341775
    Abstract: There is provided a Ti—Al-based alloy ingot having ductility at room temperature, in which the Ti—Al-based ingot has a lamellar structure in which ?2 phases and ? phases are arranged sequentially and regularly, and a thickness ratio ?/?2 of the ? phase to the ?2 phase is equal to or more than 2. There is also provided a Ti—Al-based alloy ingot having ductility at room temperature, in which the Ti—Al-based alloy ingot has a lamellar structure in which ?2 phases and ? phases are arranged sequentially and regularly, the ? phase has a thickness of 100 nm to 200 nm, and the ?2 phase has a thickness of 100 nm or less.
    Type: Application
    Filed: November 27, 2013
    Publication date: November 20, 2014
    Applicant: Korea Institute of Machinery & Materials
    Inventors: SEONG WOONG KIM, SEUNG EON KIM, YOUNG SANG NA, JONG TAEK YEOM
  • Patent number: 8883072
    Abstract: The present invention provides, in a ?? phase precipitation strengthening type Ni-base alloy, an alloy excellent in heat treatment capability and weldability and suitable for joint with a ferritic steel. Further, the present invention provides a welded turbine rotor having the strength, ductility, and toughness simultaneously over the whole welded structure when a precipitation strengthening type Ni-base alloy having a heatproof temperature of 675° C. or higher is joined to a ferritic steel. A Ni-base alloy according to the present invention contains cobalt, chromium, aluminum, carbon, boron, and at least either tungsten or molybdenum with the remainder being nickel and inevitable impurities, having an alloy composition including 12 to 25 percent by mass of Co, 10 to 18 percent by mass of Cr, 2.0 to 3.6 percent by mass of Al, 0.01 to 0.15 percent by mass of C, 0.001 to 0.03 percent by mass of B, the total amount of tungsten and molybdenum being 5.0 to 10 percent by mass.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 11, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20140255726
    Abstract: Coatings as may be used in a gas turbine are provided. A cobalt based coating may include 15 to 40 wt % nickel, 15 to 28 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 5 wt % ruthenium and/or molybdenum, 0 to 2 wt % iridium, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, hafnium, unavoidable impurities, and a balance of cobalt. A nickel based coating may include 15 to 40 wt % cobalt, 10 to 25 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 8 wt % ruthenium or iron, 0 to 1 wt % iridium, 0.05 to 5 wt % molybdenum, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, 0 to 2 wt % hafnium, unavoidable impurities, and a balance of nickel.
    Type: Application
    Filed: September 18, 2012
    Publication date: September 11, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Xin-Hai Li
  • Publication number: 20140248509
    Abstract: Compositions are provided that exhibit an austenitic nickel microstructure. The compositions comprise Ni, Cr, Mo and at least one element selected from the group consisting of Al, Si, and Ti. Feedstock having the composition may be in the form of a cored wire or wires, a solid wire or wires, or a powder.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, Grzegorz Jan Kusinski
  • Publication number: 20140234652
    Abstract: Coatings as may be used in a gas turbine are provided. A nickel based coating may include 15 to 40 wt % cobalt, 10 to 25 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 8 wt % ruthenium or iron, 0 to 1 wt % iridium, 0.05 to 5 wt % molybdenum, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, 0 to 2 wt % hafnium, unavoidable impurities, and a balance of nickel. A cobalt based coating may include 15 to 40 wt % nickel, 15 to 28 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 5 wt % ruthenium and/or molybdenum, 0 to 2 wt % iridium, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, hafnium, unavoidable impurities, and a balance of cobalt.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 21, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Xin-Hai Li
  • Publication number: 20140220379
    Abstract: Known protective layers having a high Cr content and additionally a silicon form brittle phases which additionally become brittle under the influence of carbon during use. The protective layer hereof has a composition 22% to 24% cobalt (Co), 10.5% to 11.5% aluminum (AI), 0.2% to 0.4% yttrium (Y) and/or at least one equivalent metal from the group comprising scandium and the rare earth elements, 14% to 16% chrome (Cr), optionally 0.3% to 0.9% tantalum, the remainder nickel (Ni).
    Type: Application
    Filed: June 22, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Publication number: 20140220384
    Abstract: Known protective layers having a high Cr-content and a silicone in addition, form brittle phases that embrittle further under the influence of carbon during use. The protective layer according to the invention is composed of 22% to 26% cobalt (Co), 10.5% to 12% aluminum (Al), 0.2% to 0.4% Yttrium (Y) and/or at least one equivalent metal from the group comprising Scandium and the rare earth elements, 15% to 16% chrome (Cr), optionally 0.3% to 1.5% tantal, the remainder nickel (Ni).
    Type: Application
    Filed: August 3, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Publication number: 20140205449
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight: 16.0 to 30.0% cobalt; 9.5 to 12.5% chromium; 4.0 to 6.0% tantalum; 2.0 to 4.0% aluminum; 2.0 to 3.4% titanium; 3.0 to 6.0% tungsten; 1.0 to 4.0% molybdenum; 1.5 to 3.5% niobium; up to 1.0% hafnium; 0.02 to 0.20% carbon; 0.01 to 0.05% boron; 0.02 to 0.10% zirconium; the balance essentially nickel and impurities. The superalloy has a W+Nb?Cr value of at least ?6, is free of observable amounts of sigma and eta phases, and exhibits a time to 0.2% creep at 1300° F. and 100 ksi of at least 1000 hours.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 24, 2014
    Applicant: General Electric Company
    Inventors: David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Daniel Yeuching Wei, Andrew Ezekiel Wessman, Kenneth Rees Bain, Andrew Martin Powell
  • Publication number: 20140170598
    Abstract: The present invention relates to a cobalt-based noble-metal dental alloy for the SLM process, which is intended for the production of metallic components, a corresponding method of producing a metallic component and a corresponding metallic component.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: BEGO Bremer Boldsclägerei Wilh, Herbst GmbH & Co. KG
    Inventor: BEGO Bremer Goldschlägerel Wilh, Herbst GmbH & Co. KG
  • Publication number: 20140154094
    Abstract: Articles suitable for use in high temperature applications, such as turbomachinery components, and methods for making such articles, are provided. One embodiment is an article. The article comprises a material comprising a plurality of L12-structured gamma-prime phase precipitates distributed within a matrix phase at a concentration of at least 20% by volume, wherein the gamma-prime phase precipitates are less than 1 micrometer in size, and a plurality of A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The solvus temperature of the eta phase is higher than the solvus temperature of the gamma-prime phase. Moreover, the material has a median grain size less than 10 micrometers.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 5, 2014
    Applicant: General Electric Copmpany
    Inventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
  • Patent number: 8734716
    Abstract: Disclosed is a novel heat-resistant superalloy for turbine disks having a chemical composition consisting of, in mass %, 19.5-55% of cobalt, 2-25% of chromium, 0.2-7% of aluminum, 3-15% of titanium and the balance of nickel and inevitable impurities.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 27, 2014
    Assignee: National Institute for Materials Science
    Inventors: Hiroshi Harada, Yuefeng Gu, Chuanyong Cui, Makoto Osawa, Akihiro Sato, Toshiharu Kobayashi
  • Publication number: 20140119979
    Abstract: A nickel-based superalloy composition includes from about 5 to about 7 wt % aluminum, from about 4 to about 8 wt % tantalum, from about 3 to about 8 wt % chromium, from about 3 to about 7 wt % tungsten, from 1 to about 5 wt % molybdenum, from 1.5 to about 5 wt % rhenium, from 5 to about 14 wt % cobalt, from about 0 to about 1 wt % hafnium, from about 0.01 to about 0.03 wt % carbon, from about 0.002 to about 0.006 wt % boron, and balance nickel and incidental impurities. The composition may exhibit a sustained peak low cycle fatigue life at 1800° F./45 ksi of at least about 4000 cycles. The nickel-based superalloy composition may be used in single-crystal or directionally solidified superalloy articles, such as a blade, nozzle, a shroud, a splash plate, and a combustor of a gas turbine engine.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: General Electric Company
    Inventors: Wei-Jun Zhang, Douglas Gerard Konitzer, Joshua Leigh Miller
  • Patent number: 8697250
    Abstract: A composition based on a novel MCrAlY formulation is provided for the production of protective coatings. The specific combination of the constituents of the MCrAlY formulation advantageously allows significantly high loadings of ceramic (metal oxide) while still retaining the ability to selectively oxidize aluminum to form alumina scale, a property previously not attainable with conventional MCrAlY materials when loaded with ceramics at levels of 15-45 weight percent. The alumina scale in combination with the modified MCrAlY formulation act as a barrier to specific detrimental oxide formations. The compositions of the present invention can act as protective coatings for a wide array of applications.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 15, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: William Jarosinski
  • Publication number: 20140060707
    Abstract: Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 3% nickel, 0% to about 10% tungsten, less than about 1% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Jeremy Hoishun Li
  • Publication number: 20140010701
    Abstract: Alloys based on titanium aluminides, such as ? (TiAl) which may be made through the use of casting or powder metallurgical processes and heat treatments. The alloys contain titanium, 38 to 46 atom % aluminum, and 5 to 10 atom % niobium, and they contain composite lamella structures with B19 phase and ? phase there in a volume ratio of the B19 phase to ? phase 0.05:1 and 20:1.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Applicant: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Fritz Appel, Jonathan Paul, Michael Oehring
  • Patent number: 8623272
    Abstract: A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt. %, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: January 7, 2014
    Assignee: The Argen Corporation
    Inventors: Arun Prasad, Paul J. Cascone
  • Publication number: 20130337286
    Abstract: Known protective coatings having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. A protective coating is provided. The protective coating includes the composition of 24% to 26% cobalt, 10% to 12% aluminum, 0.2% to 0.5% yttrium, 12% to 14% chromium, and the remainder nickel.
    Type: Application
    Filed: October 19, 2011
    Publication date: December 19, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130315659
    Abstract: A braze alloy composition is disclosed, containing nickel, about 5% to about 40% of at least one refractory metal selected from niobium, tantalum, or molybdenum; about 2% to about 32% chromium; and about 0.5% to about 10% of at least one active metal element. An electrochemical cell that includes two components joined to each other by such a braze composition is also described. A method for joining components such as those within an electrochemical cell is also described. The method includes the step of introducing a braze alloy composition between a first component and a second component to be joined, to form a brazing structure. In many instances, one component is formed of a ceramic, while the other is formed of a metal or metal alloy.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 28, 2013
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Raghavendra Rao Adharapurapu, Mohamed Rahmane
  • Publication number: 20130306019
    Abstract: A surface hardening material being excellent in impact resistance and having abrasion resistance is provided. Provided are: a high-toughness cobalt-based alloy containing 25.0 to 40.0 mass % of Cr, 0.5 to 12.0 mass % of a sum of W and/or Mo, 0.8 to 5.5 mass % of Si, and 0.5 to 2.5 mass % of B, 8.0 mass % or less of each of Fe, Ni, Mn, and Cu, and 0.3 mass % or less of C, the sum amount of Fe, Ni, Mn, and C being 10.0 mass % or less, and the remainder comprising 48.0 to 68.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 21, 2013
    Inventors: Katsunori Otobe, Shinichi Nishimura, Kazunori Kurahashi
  • Publication number: 20130299562
    Abstract: Cobalt-based solder alloys are proposed. The cobalt-based solder alloys have germanium. The germanium has a higher melting point than nickel-based alloys such that the germanium is used advantageously for repairing or treating components having the nickel-based alloys used at high temperatures. The components are repaired or treated by soldering using the cobalt-based solder alloys.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 14, 2013
    Inventors: Sabastian Piegert, Peter Randelzhofer, Robert Singer
  • Publication number: 20130302638
    Abstract: Known protective layers with a high Cr content and additionally silicon form brittle phases which additionally embrittle during use under the influence of carbon. A protective layer including the composition of from 24% to 26% cobalt, from 10% to 12% aluminium, from 0.2% to 0.5T yttrium, from 12% to 14% chromium, remainder nickel is provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 14, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130288072
    Abstract: An alloy to a protective layer for protecting a component against corrosion and/or oxidation, in particular at high temperatures is proposed. Known protective layers with a high Cr content and in addition silicon form brittle phases which additionally embrittle during use under the influence of carbon. The proposed protective layer has the composition of from 24% to 26% cobalt, from 10% to 12% aluminum, from 0.2% to 0.5% yttrium, from 12% to 14% chromium, from 0.3% to 5.0% tantalum, nickel.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 31, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130255442
    Abstract: A Ni-based alloy for a welding material including, by mass, 0.001 to 0.1% of C, 18 to 25% of Co, 16 to 20% of Cr, 2.5 to 3.5% of Al, 9.0 to 15.0% of Mo+W, 0.001 to 0.03% of B and the balance being Ni and inevitable impurities.
    Type: Application
    Filed: February 19, 2013
    Publication date: October 3, 2013
    Applicant: HITACHI, LTD.
    Inventors: Shinya IMANO, Hiroyuki DOI, Jun SATO
  • Publication number: 20130243642
    Abstract: A metallic coating or alloy is provided, which is nickel based, and includes at least ? and ?? phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 19, 2013
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, JR., Werner Stamm
  • Patent number: 8524149
    Abstract: A nickel base alloy includes: by mass, 0.001 to 0.1% of carbon; 12 to 23% of chromium; 15 to 25% of cobalt; 3.5 to 5.0% of aluminum; 4 to 12% of molybdenum; 0.1 to 7.0% of tungsten; and a total amount of Ti, Ta and Nb being not more than 0.5%. A parameter Ps represented by a formula (1) shown below is 0.6 to 1.6, Ps=?7×[C]?0.1×[Mo]+0.5×[Al]??(1) where [C] indicates an amount of carbon; [Mo] indicates an amount of molybdenum; and [Al] indicates an amount of aluminum, by mass percent.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 3, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20130224069
    Abstract: Provided is a hydrochloric acid corrosion resistant alloy For brazing that is provided with corrosion resistance against hydrochloric acid, and when brazing various types of stainless steel, can be used for brazing at practical temperatures (1150° C. or less), and has good joint strength and brazeability to the substrate. The hydrochloric acid corrosion resistant alloy of the present invention contains, in mass percent, 6.0-18.0% Mo, 10.0-25.0% Cr, 0.5-5.0% Si, and 4.5-8.0% P, with the remainder being 40.0-73.0% Ni and unavoidable impurities, and the total of Si and P being 6.5-10.5%. In this case, the alloy may contain 12.0% or less of Cu, 20.0% or less of Co, 15.0% or less of Fe, 8.0% or less of W, 5.0% or less of Mn, and 0.5% or less of the total of C, B, Al, Ti, and Nb.
    Type: Application
    Filed: May 26, 2011
    Publication date: August 29, 2013
    Applicant: FUKUDA METAL FOIL & POWDER CO., LTD
    Inventors: Katsunori Otobe, Shinichi Nishimura
  • Patent number: 8512630
    Abstract: The present invention relates to pulverulent materials suitable for storing hydrogen, and more particularly to a method of preparing such a material, in which: (A) a composite metallic material having a specific granular structure is prepared by co-melting the following mixtures: a first metallic mixture (m1), which is an alloy (a1) of body-centered cubic crystal structure, based on titanium, vanadium, chromium and/or manganese, or a mixture of these metals in the proportions of the alloy (a1); and a second mixture (m2), which is an alloy (a2), comprising 38 to 42% zirconium, niobium, molybdenum, hafnium, tantalum and/or tungsten and 56 to 60 mol % of nickel and/or copper, or else a mixture of these metals in the proportions of the alloy (a2), with a mass ratio (m2)/(m1+m2) ranging from 0.1 wt % to 20 wt %; and (B) the composite metallic material thus obtained is hydrogenated, whereby the composite material is fragmented (hydrogen decrepitation).
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 20, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jean Charbonnier, Patricia De Rango, Daniel Fruchart, Salvatore Miraglia, Sophie Rivoirard, Natalia Skryabina
  • Publication number: 20130206287
    Abstract: A Co-based alloy containing not less than 0.001 mass % and less than 0.100 mass % of C, not less than 9.0 mass % and less than 20.0 mass % of Cr, not less than 2.0 mass % and less than 5.0 mass % of Al, not less than 13.0 mass % and less than 20.0 mass % of W, and not less than 39.0 mass % and less than 55.0 mass % of Ni, with the remainder being made up by Co and unavoidable impurities, wherein the contents of Mo, Nb, Ti and Ta which are included in the unavoidable impurities are as follows: Mo<0.010 mass %, Nb<0.010 mass %, Ti<0.010 mass %, and Ta<0.010 mass %.
    Type: Application
    Filed: August 15, 2011
    Publication date: August 15, 2013
    Applicants: TOHOKU UNIVERSITY, HITACHI, LTD.
    Inventors: Jun Sato, Shinya Imano, Mototsugu Osaki, Shigeki Ueta, Kiyohito Ishida, Toshihiro Omori, Hiroaki Nishida, Masahiro Hayashi, Tomoki Shiota
  • Publication number: 20130209266
    Abstract: A composition of matter, comprising in combination, in atomic percent contents: a content of nickel as a largest content; 19.0-21.0 percent cobalt; 9.0-13.0 percent chromium; 1.0-3.0 percent tantalum; 0.9-1.5 percent tungsten; 7.0-9.5 percent aluminum; 0.10-0.25 percent boron; 0.09-0.20 percent carbon; 1.5-2.0 percent molybdenum; 1.1-1.5 percent niobium; 3.0-3.6 percent titanium; and 0.02-0.09 percent zirconium.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Paul L. Reynolds, Jerry C. Capo, Darryl Slade Stolz
  • Publication number: 20130209265
    Abstract: A composition of matter comprises, in combination, in weight percent: a content of nickel as a largest content; 3.10-3.75 aluminum; 0.02-0.09 boron; 0.02-0.09 carbon; 9.5-11.25 chromium; 20.0-22.0 cobalt; 2.8-4.2 molybdenum; 1.6-2.4 niobium; 4.2-6.1 tantalum; 2.6-3.5 titanium; 1.8-2.5 tungsten; and 0.04-0.09 zirconium.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Paul L. Reynolds, Darryl Slade Stolz
  • Publication number: 20130167687
    Abstract: There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries.
    Type: Application
    Filed: November 9, 2011
    Publication date: July 4, 2013
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, HONDA MOTOR CO., LTD.
    Inventors: Yuefeng Gu, Tadaharu Yokokawa, Toshiharu Kobayashi, Toshio Osada, Junzo Fujioka, Hiroshi Harada, Daisuke Nagahama, Yusuke Kikuchi
  • Publication number: 20130156555
    Abstract: Braze materials, brazing processes, and coatings produced therefrom, for example, a wear-resistant coating suitable for protecting surfaces subjected to wear at high temperatures. The braze material includes first particles formed of a metallic alloy and second particles formed of a cobalt-base braze alloy having a melting point below the melting point of the first particles. The braze alloy consists of, by weight, 3.5 to 15.0% silicon, 2.0 to 6.0% boron, and the balance cobalt and incidental impurities, and the second particles constitute at least 30 up to 90 weight percent of the first and second particles combined. Following a brazing cycle performed on the braze material, a wear-resistant coating is formed in which the first particles are dispersed in a matrix of the braze alloy.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Edwin Budinger, Jonathan Reid Biberstine
  • Publication number: 20130136948
    Abstract: A known protective layer has a high Cr content and additionally containing a silicon, forms brittle phases, which become additionally embrittled under the influence of carbon during use. A proposed protective layer has the following composition: 24% to 26% cobalt, 10.5% to 11.5% aluminum, 0.1% to 0.7% yttrium and/or at least one equivalent metal from the group of scandium and the rare earth elements, 12% to 15% chromium, optionally 0.1% to 3% tantalum, optionally 0.05% to 0.5% silicon, with the remainder being nickel.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 30, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130121871
    Abstract: A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt.%, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: The Argen Corporation
    Inventor: The Argen Corporation
  • Publication number: 20130115072
    Abstract: In an exemplary embodiment, a high temperature oxidation and hot corrosion resistant MCrAlX alloy is disclosed, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium. In these alloys, X may also optionally include silicon, including, by weight of the alloy, up to about 1.5 percent. In another exemplary embodiment, a coated article is disclosed. The coated article includes a substrate having a surface. The article also includes a bond coat disposed on the surface. The bond coat comprises a high temperature oxidation and hot corrosion resistant MCrAlX alloy, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kivilcim Onal, David Vincent Bucci, Canan Uslu Hardwicke, David Austin Wark
  • Patent number: 8409722
    Abstract: An alloy material having high-temperature corrosion resistance, which exhibits excellent oxidation resistance and ductility and can be applied to gas turbines used at ultra high temperatures, and a thermal barrier coating, a turbine member and a gas turbine each comprising the alloy material. An alloy material having high-temperature corrosion resistance, comprising, by weight, Co: 15 to 30%, Cr: 10 to 30%, Al: 4 to 15%, Y: 0.1 to 3%, and Re: 0.1 to 1%, with the balance being substantially Ni. Also, an alloy material having high-temperature corrosion resistance, comprising, by weight, Ni: 20 to 40%, Cr: 10 to 30%, Al: 4 to 15%, Y: 0.1 to 3%, and Re: 0.1 to 5%, with the balance being substantially Co.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Taiji Torigoe, Hidetaka Oguma, Ikuo Okada, Tomoaki Yunomura, Soji Kasumi
  • Publication number: 20130045129
    Abstract: A solder alloy including a base material, a solder, and an additive is provided. The solder alloy has the following formula: (1?x?y)*base material+x*solder+y*additive, where 0.2?x?0.8 and 0?y<0.8 and also (y<1?x)<(1?x). The base material includes chromium, cobalt, aluminum, and tungsten. The solder includes chromium, cobalt, aluminum, tungsten, germanium and/or gallium and nickel. The additive may include boron, zirconium, hafnium, niobium, and carbon.
    Type: Application
    Filed: April 12, 2010
    Publication date: February 21, 2013
    Inventors: Michael Ott, Sebastian Piegert