Processes Patents (Class 420/590)
  • Patent number: 7553382
    Abstract: The present invention relates to the addition of niobium to iron based glass forming alloys and iron based Cr—Mo—W containing glasses. More particularly, the present invention is related to changing the nature of crystallization resulting in glass formation that may remain stable at much higher temperatures, increasing the glass forming ability and increasing devitrified hardness of the nanocomposite structure.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 30, 2009
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel J. Branagan, M. Craig Marshall, Brian Meacham
  • Patent number: 7550029
    Abstract: A method is described for reclaiming an Al—B4C composite scrap material. The method involves heating a liquid pool of molten aluminum while also pre-heating the scrap material. The scrap material is then added to the molten aluminum and a predetermined melt temperature is maintained in the liquid pool until all of the scrap material melts into the molten aluminum to form a resultant composite melt. Finally, the resultant composite melt is stirred to promote uniformity. A method is also described for preparing a B4C-containing aluminum cast composite products that involves preparing a mixture of free-flowing B4C particles and molten aluminum and stirring the mixture to wet the aluminum to the B4C particles. The mixture is then cast into a cast composite material and processed to form the cast composite product and Al—B4C composite scrap material. The scrap material is then reclaimed by the method described above.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: June 23, 2009
    Assignee: Alcan International Limited
    Inventors: Xiao-Guang Chen, Jean-Yves Fortin
  • Publication number: 20090148334
    Abstract: A metal matrix composite material of a low coefficient of thermal expansion (CTE) alloy strengthened by nanophase dispersed particles. The low CTE alloy can be an iron-nickel alloy or an iron-nickel-cobalt alloy. The nanophase particles can be a refractory oxide, carbide or nitride. Also disclosed is a method of making a metal matrix composite material in which the nanophase particles are combined with the low CTE alloy to form a metal matrix composite material having the nanophase particles dispersed therein.
    Type: Application
    Filed: July 8, 2008
    Publication date: June 11, 2009
    Applicants: Space Administration
    Inventor: Timothy A. Stephenson
  • Patent number: 7537636
    Abstract: A method of making a superfine alloy comprises: incorporating a grain growth inhibitor polymeric precursor into a composition for synthesis of a superfine material; synthesizing the superfine material from the composition comprising the incorporated precursor; incorporating an alloy additive into the composition for synthesis of the superfine material before synthesizing the superfine material, or alternatively, into the as-synthesized superfine material to produce a superfine alloy-grain growth inhibitor polymeric precursor composite; and treating the superfine alloy-grain growth inhibitor polymeric precursor composite to convert the grain growth inhibitor polymeric precursor to a grain growth inhibitor.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 26, 2009
    Assignee: Inframat Corporation
    Inventors: Danny T. Xiao, Chris W. Strock, Donald M. Wang, Peter R. Strutt
  • Patent number: 7524356
    Abstract: A method for manufacturing a low-oxygen copper wire is provided, in which a dehydrogenating treatment can be performed without requiring a long moving distance of molten copper, and the generation of holes in solidification is suppressed, whereby high quality low-oxygen copper wire can be obtained having superior surface quality.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: April 28, 2009
    Assignee: Mitsubishi Materials Corporation
    Inventors: Haruhiko Asao, Yutaka Koshiba, Keiji Nogami, Tutomu Masui, Kazumasa Hori, Kenji Wakiguchi, Masahiko Wada, Yoshiaki Hattori
  • Publication number: 20090053100
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Application
    Filed: December 7, 2006
    Publication date: February 26, 2009
    Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Publication number: 20090033330
    Abstract: A superconductor exemplarily described herein includes a superconducting material containing magnetic impurities and non-magnetic disorders formed in the superconducting material. The superconductor described herein is suitable for use in magnet applications and power transmission.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 5, 2009
    Inventor: Yong Jihn Kim
  • Publication number: 20090008154
    Abstract: An earth boring bit formed from an alloy comprising a low carbon content and high molybdenum content is disclosed herein. The molybdenum content is greater than about 0.8% to about 1.15% by weight of the alloy. The carbon content may range up to about 0.16% by weight of the alloy. The alloy may further comprise alloy further comprises manganese, phosphorus, sulfur, silicon, nickel, chromium, copper, aluminum, vanadium, and calcium; with the balance being iron. The alloy experiences a relatively flattened hardenability curve and low martinsite formation.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Applicant: Baker Hughes Incorporated
    Inventors: Carmel Z. El Hakam, Eric Sullivan, John F. Bradford, III, Don Q. Nguyen
  • Patent number: 7462577
    Abstract: A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 9, 2008
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Michael A. Fetcenko, Stanford R. Ovshinsky, Kwo Young
  • Patent number: 7442261
    Abstract: In a method of producing an iron-based alloy containing chromium carbide, pieces of cemented carbide are added to an iron-based melt containing carbon, e.g. cast iron. Chromium, which regulates the solution of WC into the melt, is also added. The molten alloy is then cast. An alloy comprising chromium-tungsten-carbide in a ferrous matrix is produced. Uses of the alloy are claimed.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: October 28, 2008
    Assignee: Proengco Tooling AB
    Inventors: Mikael Andersson, legal representative, Henrik Andersson, legal representative, Helena Andersson, legal representative, Anders Nilsson, Jan-Eric Ståhl, Carl-Håkan Andersson
  • Publication number: 20080241583
    Abstract: The application relates to the problem of improving the corrosion resistance and creep properties of standard Cr-steels like E911 (table 1) at high temperatures. To solve this problem, a method of adding up to 0.5 atomic % Hf both during casting or molding and by ion implantation is provided. The addition of Hf improves the corrosion resistance and creep properties inter alia, as it forms a finely distributed stable second phase and as the harmful M23C6 disappears, because all carbon is taken by Hf to form HfC.
    Type: Application
    Filed: April 1, 2005
    Publication date: October 2, 2008
    Applicant: LOUGHBOROUGH UNIVERSITY
    Inventor: Roy Faulkner
  • Publication number: 20080226528
    Abstract: The product of a molten alkali metal metalate phase separation can be processed into a purified metal from a metal source. Metal sources include native ores, recycled metal, metal alloys, impure metal stock, recycle materials, etc. The method uses a molten alkali metal metalate as a process medium or solvent in purifying or extracting high value metal or metal oxides from metal sources. Vitrification methods using the silicate glass separation phase can be prepared as is or can be prepared with a particulate phase distributed throughout the silica glass phase and encapsulated and fixed within the continuous glass phase. Tungsten metal can be obtained from an alkali metal tungstate. A typically finely divided tungsten metal powder can be obtained from a variety of tungsten sources including recycled tungsten scrap, tungsten carbide scrap, low grade tungsten ore typically comprising tungsten oxide or other form of tungsten in a variety of oxidation states.
    Type: Application
    Filed: December 7, 2007
    Publication date: September 18, 2008
    Inventor: RODNEY KIETH WILLIAMS
  • Publication number: 20080199350
    Abstract: Metastable ?-titanium alloy contains, in mass %: from 1.5 to 3.5 aluminum; from 4.5 to 8.0 molybdenum; from 1.0 to 3.5 vanadium; from 1.5 to 3.8 iron; titanium balance. This alloy combines high strength and ductility. This allows to use it for production of a wide range of critical parts including fastener components and different coil springs (e.g. in automobile industry).
    Type: Application
    Filed: February 11, 2008
    Publication date: August 21, 2008
    Inventors: Vladislav Valentinovich Tetyukhin, Igor Vasilievich Levin, Denis Valeryervich Sosnovsky
  • Patent number: 7413589
    Abstract: A melt of a hydrogen storage alloy having an arbitrary composition is cooled gradually at a cooling rate of 5° C./min or less and solidified. Alternatively an alloy having an arbitrary composition, after heating to a temperature equal to or more than a melting point thereof, is cooled gradually at a cooling rate of 5° C./min or less and solidified. Thereby a homogeneous alloy reduced in segregation, precipitates, or inclusions is obtained. The homogeneous alloy is excellent in the hydrogen storage amount, in the plateau property and in durability.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 19, 2008
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Hironobu Arashima, Takashi Ebisawa, Hideaki Itoh
  • Publication number: 20080193325
    Abstract: The invention relates to an alloy permitting to replace the current CuBe alloy, soon to be prohibited by the various environmental directives because of the presence of Be and for which there is currently no substitution alloy with similar desired thermal and mechanical properties for measuring physical parameters, notably in aeronautics. This alloy is a Cu—Al—Ni—Fe alloy and the balance is copper. It contains from 3.8 to 4.4 wt % aluminum, from 4.2 to 5 wt % nickel, from 1.7 to 5 wt % iron, additives including silicon, manganese, chromium and titanium, silicon being present at less than 0.8 wt %, manganese being present at less than 0.15 wt %, chromium being present at less than 0.3 wt %, titanium being present at less than 0.1 wt %, the other chemical elements having contents by weight of less than 1%, each being present at less than 0.05 wt % and the balance is copper.
    Type: Application
    Filed: December 28, 2007
    Publication date: August 14, 2008
    Inventor: Bruno Lhuillier
  • Publication number: 20080175750
    Abstract: To achieve the object of providing a method by which the disadvantages entailed in the production of components made from materials that contain aluminum are avoided, a method for alloying aluminum to form components is described, the alloying of aluminum taking place by adding an aluminum-containing material, the component being surrounded by at least one means for receiving aluminum-containing material and the element that is formed in such a way being sintered. Preferably, the component is surrounded in at least one metal nonwoven material, aluminum foil being disposed between the nonwoven material and the component.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 24, 2008
    Inventors: Zi Li, Enrico Mahlig
  • Publication number: 20080175982
    Abstract: Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a method is provided for creating solid alloy particles. The method may include providing a first material containing at least one alloy comprising of: a) a group IIIA element, b) at least one group IB, IIIA, and/or VIA element different from the group IIIA element of a), and c) a group IA-based material. The group IA-based material may be included in an amount sufficient so that no liquid phase of the alloy is present in a temperature range between room temperature and a deposition temperature higher than room temperature, wherein the group IIIA element is otherwise liquid in that temperature range.
    Type: Application
    Filed: June 12, 2007
    Publication date: July 24, 2008
    Inventors: Matthew R. Robinson, Chris Eberspacher, Jeroen K. J. Van Duren
  • Publication number: 20080159901
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 12, 2005
    Publication date: July 3, 2008
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20080159906
    Abstract: A method for manufacturing a composite metal material combined with a nanocarbon material comprises heating a metal alloy to a half-melted state in which both liquid and solid phases are present. Next, a nongraphitized nanocarbon material is added to the half-melted metal alloy and stirred to form a composite metal material combined with a nanocarbon.
    Type: Application
    Filed: June 16, 2007
    Publication date: July 3, 2008
    Inventors: Masashi Suganuma, Tomoyuki Sato, Atsushi Kato
  • Publication number: 20080118394
    Abstract: A method of producing a liquid-solid metal composition (8), including the steps of charging a vessel (2) with a molten metal or alloy (3), charging the vessel (2) with a solid metal or alloy (6), stirring the molten metal or alloy (3) upon cooling thereof. The amount of solid metal or alloy (6) is chosen such that a substantial amount of solid particles (7) will be formed in the melt (3) due to the enthalpy exchange between the solid metal or alloy (6) and the molten metal or alloy (3), and at least a part of the added solid metal or alloy (6) is melted by the heat transferred to it by the molten metal or alloy (3).
    Type: Application
    Filed: December 9, 2005
    Publication date: May 22, 2008
    Inventors: Magnus Wessen, Haiping Cao
  • Publication number: 20080078484
    Abstract: A master metal composition adapted for alloying with silver to give an alloy containing at least 77 wt % Ag and at least 0.5 wt % Ge comprises Cu, Ge and boron together with any further ingredients for said alloy and any impurities. It further provides a process for making silver alloy containing silver in an amount of at least 77 wt % Ag, 1-7.2 wt % Cu copper, at least 0.5 wt % Ge and B together with any further ingredients for said alloy and any impurities, comprising the step of melting together fine silver and a master metal composition which is at least a ternary alloy of copper, germanium and boron, e.g. 92.5-92.8 wt % Ag, 6.0-6.3 wt % Cu, about 1.2 wt % Ge and 1-15 ppm boron as grain refiner. The resulting silver alloy exhibits good tarnish and firestain resistance and can exhibit significant precipitation hardening on gradual air cooling.
    Type: Application
    Filed: September 23, 2004
    Publication date: April 3, 2008
    Applicant: MIDDLESEX SILVER CO. LIMITED
    Inventor: Peter Gamon Johns
  • Patent number: 7261856
    Abstract: This invention takes advantage of the characteristics that the effective charge numbers of different metals have different values and even with different signs, and alloys are prepared with the metals of different signs of effective charge numbers. The effective charge numbers of the alloys are the summation of the mole fraction of each constituent metal times its respective effective charge number. Based on the knowledge of the calculated effective charge number, alloys are prepared with proper selection of constituent metals and proper ratios. When the alloy is under the influence of an electric field, the atoms, with the tendency to move in the same direction of the electron flow, interact with the atoms, with the tendency to move in the opposite. The alloys are thus electromigration effect-free or electromigration effect-insignificant.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 28, 2007
    Assignee: National Tsing Hua University
    Inventor: Sinn-Wen Chen
  • Patent number: 7226493
    Abstract: The present invention relates to a method for grain refining of steel. A grain refining alloy having a composition FeXY where X is one or more elements selected from the group consisting of Cr, Mn, Si, Ni, and Mo and where Y is one or more oxide and/or sulphide and or nitride and/or carbide forming elements selected from the group consisting of Ce, La, Nd, Pr, Ti, Al, Zr, Ca, Ba, Sr, Mg, C and N where X is between 0.001 and 99% by weight based on the weight of the alloy and where Y is between 0.001 and 50% by weight of the alloy, said alloy additionally containing between 0.001 and 2% by weight of oxygen and/or between 0.001 and 2% by weight of sulphur, said alloy containing at least 103 inclusion particles per mm3 consisting of oxides and/or sulphides and/or carbides and/or nitrides of one or more of the Y elements and/or one or more of the X elements Cr, Mn and Si in addition to Fe, said inclusion particles having a mean diameter of less than 10 ?m, is added to molten steel in an amount of between 0.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: June 5, 2007
    Assignee: Elkem ASA
    Inventors: Oystein Grong, Ole Svein Klevan
  • Patent number: 7169731
    Abstract: A method for forming a supported metal-containing powder. The method comprises forming a dispersion of a particulate support in a solution, which comprises a solvent and a dissolved metal. Heat is removed from the dispersion to precipitate the dissolved metal from the solution onto the particulate support. Preferably, enough heat is removed to freeze the solution. Also, the heat is removed is preferably removed from the dispersion by contacting a container containing the dispersion with a cryogenic liquid. After precipitating the dissolved metal onto the particulate support, the particulate support is separated from the solution, preferably by freeze-drying, to yield the supported metal-containing powder, which comprises the particulate support and a precipitated metal thereon.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: January 30, 2007
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Martin Devenney, Alexander Gorer
  • Patent number: 6986801
    Abstract: There is provided a method of producing reduced iron compacts with high crushing strength, low powderization and a high reduction rate in a solid reduction-type firing reducing furnace such as a rotary hearth-type reducing furnace, as well as reduced iron compacts obtained by the method and a method of melt-reducing the reduced iron compacts in a blast furnace.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: January 17, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Tetsuharu Ibaraki, Shouji Imura, Hiroshi Oda, Masaharu Takahashi, Yoichi Abe, Shigeki Takahashi, Satoshi Suzuki
  • Patent number: 6960319
    Abstract: Disclosed is a flow-softening tungsten alloy having the general formula: W100-pAiBjCkDe wherein W is tungsten; A is one or more elements selected from the group consisting of nickel, iron, chromium and cobalt; B is in or more elements selected from the group consisting of molybdenum, niobium and tantalum; C is one or more of the elements selected from the groups consisting of titanium and aluminum; D is one or more elements selected from the group consisting of boron, carbon, and silicon; i is from about 5 to about 8 weight percent; j is from 0 to about 4 weight percent; k is from about 0.1 to about 4 weight percent; 1 is from 0 to about 0.1 weight percent; and p is greater than or equal to about 7 weight percent and less than or equal to about 20 weight percent. In this alloy p is approximately equal to the sum of i, j, k and 1. A method of preparing this alloy and a kinetic energy penetrator manufactured from it are also disclosed.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Deepak Kapoor
  • Patent number: 6926755
    Abstract: An article of aluminum base-metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of the aluminum base-metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a precursor compound mixture. The alloying element may be, but is not necessarily, thermophysically melt incompatible with the aluminum base metal. The method further includes chemically reducing the precursor compound mixture to a metallic alloy, without melting the metallic alloy, and thereafter consolidating the metallic alloy to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6926754
    Abstract: An article of a base metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of a base metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a compound mixture. The base metal is nickel, cobalt, iron, iron-nickel, or iron-nickel-cobalt. One or more of the alloying elements are thermophysically melt incompatible with the base metal. The method further includes chemically reducing the compound mixture to a metallic superalloy, without melting the metallic superalloy, and thereafter consolidating the metallic superalloy to produce a consolidated metallic article, without melting the metallic superalloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6918942
    Abstract: Titanium-aluminum alloy is prepared as a master alloy, and the aluminum master alloy and a pure titanium material are melted by an electron beam to yield titanium alloy.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: July 19, 2005
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Yoshihiro Hatta, Toshihiko Sakai, Takeshi Shiraki, Takeshi Sannohe, Osamu Tada
  • Patent number: 6916356
    Abstract: A method for preparing Al—Si alloys by introducing into the molten aluminum, at a temperature of between 700 and 850° C., metallurgical silicon particles having a granulometry of less than 10 mm. The silicon particles, upon reaching the temperature of the molten aluminum, have the property of fragmenting into smaller particles.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: July 12, 2005
    Assignee: Invensil
    Inventor: Thomas Margaria
  • Patent number: 6866818
    Abstract: A method for the manufacture of tools and components for the offshore field and the mining industry, in particular, for drilling installations, using a spray formed Cu—Ni—Mn alloy of 10 to 25% Ni, 10 to 25% Mn, the remainder being copper and common impurities. Due to the favorable characteristics of the combination, the alloy is suitable as a replacement material for Be-containing copper materials.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller, Frank Michael Keppeler, Hendrik John
  • Patent number: 6855189
    Abstract: In a method for removing chromium oxide and nickel oxide, and combinations thereof, from liquid slags or slag mixtures, in which the liquid slag is A charged onto a metal bath, in particular an iron bath, and reduced by feeding carbon or carbon carriers, the carbon feed into the metal bath is effected until a decrease of the Cr and/or Ni oxide contents of the slag to a value of between 0.8 wt.-% and 0.2 wt.-%. As the pregiven Cr and/or Ni oxide content range of the slag is reached, reductants having higher reduction potentials such as, e.g., Al, Ca, Si, Fe—Si or Ca—Si are added in order to lower the Cr and/or Ni oxide contents to below 0.15 wt.-%, preferably below 0.08 wt.-%.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 15, 2005
    Assignee: Holcim Ltd.
    Inventor: Alfred Edlinger
  • Patent number: 6835227
    Abstract: A process for manufacturing alloy powder with dual consumable rotary electrodes arc melting is suitable for manufacturing pure and low-surface-area powder of metal, active metals and their alloys. In the process, rotary electrode and tungsten electrode adopted by conventional rotary electrode and arc process for manufacturing powder are respectively replaced with a rotary or anodic electrode containing a first metal and a feed or cathodic electrode containing a second metal. An inert gas is supplied into equipment for implementing the process to serve as a protective atmosphere and stabilize generated electric arc. The cathodic electrode melts under the high temperature of the arc at a cathodic spot, and droplets of the molten cathodic or second metal are sprayed toward the anodic electrode to mix with molten anodic or first metal and thrown-out by a centrifugal force of the rotary electrode to produce round-shaped alloy powder containing the first and the second metal.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 28, 2004
    Assignee: National Taiwan University
    Inventors: Shuang-Shii Lian, Ming Lung Shih
  • Patent number: 6824585
    Abstract: A method for refining a titanium metal containing ore such as rutile or ilmenite or mixtures to produce titanium ingots or titanium alloys and compounds of titanium involves production of titanium tetrachloride by processing the ore with a chlorinating procedure and removing various impurities by a distillation or similar procedures to form a relatively pure titanium tetrachloride. Thereafter, the titanium tetrachloride is introduced continuously into a reactor at the focal point of a plasma under atmospheric pressures of inert gas along with molten metallic reductant for the initial reduction of gas phase titanium tetrachloride into molten titanium drops which are collected in a set of skulled crucibles. Thereafter, further processing is carried out at atmospheric pressures in under inert gas where the titanium is heated by plasma guns to maximize titanium purity and, in a final optional stage, alloying compounds are added under the same controlled environment and high temperature conditions.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: November 30, 2004
    Assignee: Adrian Joseph
    Inventors: Adrian A. Joseph, John G. Whellock
  • Patent number: 6821500
    Abstract: An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which “freezes” the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: November 23, 2004
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: James R. Fincke, Brent A. Detering
  • Patent number: 6805723
    Abstract: A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 19, 2004
    Assignees: Alcoa Inc., Elkem ASA
    Inventors: Jan Arthur Aune, Kai Johansen
  • Patent number: 6805759
    Abstract: A shaped part or article of manufacture is formed of a selected gamma titanium aluminide alloy with outstanding mechanical properties which can be produced particularly economically. First, a semi-finished article is formed in a hot forming process with a degree of deformation of greater than 65%. Then the semi-finished article is shaped with the alloy being in a solid-liquid phase by applying mechanical forming forces during at least part of the shaping process.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: October 19, 2004
    Assignee: Plansee Aktiengesellschaft
    Inventors: Andreas Hoffmann, Heinrich Kestler
  • Patent number: 6733566
    Abstract: A method for preventing oxidation of molten aluminum alloy and magnesium alloy surfaces, the method comprising providing a molten aluminum alloy or magnesium alloy having a molten aluminum or magnesium alloy surface; covering the molten aluminum or magnesium alloy surface with an initial layer of petroleum coke, the initial layer of petroleum coke having an initial layer thickness of about 0.75 inches; oxidizing a portion of the initial layer of petroleum coke to form a working layer of petroleum coke covering the molten metal surface, the working layer of coke having a working layer thickness of about 0.5 inches, and a layer of carbon dioxide immediately adjacent to and contiguous with the working layer of petroleum coke; and adding additional petroleum coke to the working layer of petroleum coke to maintain the working layer thickness at about 0.5 inches.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: May 11, 2004
    Assignee: Alcoa Inc.
    Inventors: Que-Tsang Fang, Jen C. Lin, Timothy A. Kuhn, Holger Haddenhorst
  • Patent number: 6723282
    Abstract: A novel method for producing a ceramic phase particle dispersoid in metal and a novel product composed thereof. The method includes (a) providing a molten composition consisting essentially of molten aluminum alloy containing molten metal selected form the group consisting of Zr, V and combinations thereof; (b) providing a chloride salt containing fine carbon particles; and (c) reacting the chloride salt containing fine carbon particles in the molten aluminum metal liquid with the molten metal liquid to form a uniform distribution of finely sized carbide particles formed and dispersed in-situ in an aluminum alloy matrix.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: April 20, 2004
    Assignee: Alcoa Inc.
    Inventors: Men Glenn Chu, Siba P. Ray
  • Patent number: 6699306
    Abstract: This method controls a copper density in a dip solder bath holding a molten solder alloy containing at least copper as an essential composition thereof during a dip soldering step of one of a printed circuit board with a surfaced copper foil and a component part having a copper lead attached thereto. The method includes a step of introducing a replenished solder containing no copper at all or a copper content having a density lower than that of the molten solder in the bath prior to the supply of the replenished solder to the bath so that the copper density in the bath is controlled to a predetermined constant density or lower. The molten solder alloy in the bath contains tin, copper and nickel as the major compositions thereof, and the replenished solder contains nickel and balanced tin, for example. Alternatively, the molten solder alloy in the bath contains tin, copper, and silver as the major components thereof, and the replenished solder contains silver and balanced tin.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: March 2, 2004
    Assignees: Nihon Superior Sha Co., Ltd., Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuro Nishimura, Masuo Koshi, Kenichirou Todoroki
  • Patent number: 6682585
    Abstract: An improved method of processing both primary and secondary nonferrous metal and alloys of said metals using a refining gas is provided. The improvement involves refining said non-ferrous metal and alloys with a gaseous mixture including at least one compound selected from the group consisting of ClF3, ClF, COF2, F3COF, CF2(OF)2, SO2F2, NF3, SO2ClF, SOF2, SOF4, NOF, F2 and SF4.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: January 27, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Peter Hobbs, James Francis Heffron, Zbigniew Zurecki
  • Patent number: 6613276
    Abstract: Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: September 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Zuhair A. Munir, Joseph N. Woolman, John J. Petrovic
  • Patent number: 6595266
    Abstract: Molten aluminum alloy at a temperature between Tl and Tl+60° C. is contacted with a cooling unit to form a semi-solid melt portion containing primary particles, and is maintained at a temperature between (Tl−Ts)/2+Ts and Tl+40° C. by the cooling unit. The semi-solid melt portion is conveyed to a holding furnace where it is maintained at a solid-liquid coexisting temperature for a time that allows the primary particles to grow and stabilize in a globularized state.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: July 22, 2003
    Assignee: Ahresty Corp.
    Inventor: Shin Orii
  • Patent number: 6592686
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 15, 2003
    Assignee: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6571857
    Abstract: A process for casting and preparing an ingot of a beta-phase NiAl-based material, particularly for use in PVD coating processes. The method entails melting a nickel-aluminum composition having an aluminum content below that required for stoichiometric beta-phase NiAl intermetallic so as to form a melt that includes nickel and Ni3Al. Aluminum is then added to the melt, causing an exothermic reaction between nickel and aluminum as the melt equilibrium shifts from Ni3Al to NiAl. However, the aluminum is added at a rate sufficiently low to avoid a violent exothermic reaction. The addition of aluminum continues until sufficient aluminum has been added to the melt to yield a beta-phase NiAl-based material. The beta-phase NiAl-based material is then solidified to form an ingot, which is then heated and pressed to close porosity and homogenize the microstructure of the ingot.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: June 3, 2003
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney
  • Patent number: 6569268
    Abstract: A process and an alloy for galvanizing non-reactive steel and mixed or moderately reactive steel for providing a decorative spangle to the galvanized coating. The alloy contains 0.1 to less than 0.8 wt % tin, 0.05 to 0.2 wt % bismuth, 0.001 to 0.008 wt % aluminum, and optionally 0 to 0.1 wt % nickel, the balance zinc of commercial purity.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: May 27, 2003
    Assignee: Teck Cominco Metals Ltd.
    Inventors: John Zervoudis, Victor M. Duarte, Graham W. Poag
  • Publication number: 20030091460
    Abstract: High molybdenum, corrosion-resistant alloys are provided with greatly increased thermal stability by controlling the atom concentrations to be NiaMobXcYdZe, where:
    Type: Application
    Filed: September 13, 2001
    Publication date: May 15, 2003
    Inventor: Dwaine L. Klarstrom
  • Patent number: 6562471
    Abstract: The metal alloy based on aluminium and titanium includes an aluminium content between 80 and 90 atomic percent and a titanium content between 10 and 20 atomic percent. The alloy is microcrystalline and outside thermodynamic equilibrium, the alloy is thereby resistant to oxidation and corrosion and has at the same time remarkable adhesion to polymer materials. The metal alloy can be in the form of a reflecting coating of a thickness ranging between 0.01 and 3 &mgr;m, covered with a protective film of a polymer material. A mirror having specular reflectivity not less than about 65%, good resistance to corrosion and oxidation includes a substrate of a polymer material supporting the reflecting coating.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: May 13, 2003
    Assignee: Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement
    Inventors: Michel Martin, Frédéric Faverjon, Janick Moreau, Jean-Marc Poirson, Jean-Paul Terrat
  • Publication number: 20030085016
    Abstract: A method of preparing a metal alloy comprising a dispersion of particles of a first metallic material consisting of one or more refractory hard metals in a matrix of a second metallic material includes establishing a molten body of the second metallic material and introducing solid particles of the first metallic material into the molten body. Alternatively solid particles of a metalloid which reacts with the second metallic material to form particles of the first metallic material may be introduced into the molten body. The first metallic material has a higher melting point than the second metallic material and is substantially insoluble therein. The molten body is then stirred at a rate sufficient to effect shearing of the surfaces of the particles such that the surfaces are wetted by the molten body, and the molten body containing the resultant dispersion is cast in any desired manner.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 8, 2003
    Inventor: Martin R. Reeve
  • Patent number: 6544314
    Abstract: A metal alloy, such as steel, is manufactured in an electric arc furnace system equipped with at least one sensor, at least one a controller including a logic program and a variable valve in fluid communication with the furnace and a material source. The nature and quality of the slag formed over a molten metal during manufacture of steel is dynamically controlled by continuously adjusting the addition of one or more material to the arc furnace through the variable valve.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 8, 2003
    Assignee: Specialty Minerals (Michigan) Inc.
    Inventors: James Stendera, David Viers, Mark Duchnak