Chromium Containing Patents (Class 420/74)
  • Patent number: 11591675
    Abstract: Steel sheet low in cost and improved in fatigue characteristics without causing a drop in the cold formability, characterized in that it comprises an inner layer and a hard layer on one or both surfaces of the inner layer, a thickness of the hard layer is 20 ?m or more and 40% or less of the thickness of the steel sheet, an average micro-Vickers hardness of the hard layer is 240 HV or more and less than 400 HV, an amount of C of the hard layer is 0.4 mass % or less, an amount of N is 0.02 mass % or less, a variation of hardness measured by a nanoindenter at a depth of 10 from the surface of the hard layer is a standard deviation of 2.0 or less, an average micro-Vickers hardness of the inner layer is 80 HV or more and less than 400 HV, a volume rate of carbides contained in the inner layer is less than 2.00%, and the average micro-Vickers hardness of the hard layer is 1.05 times or more the average micro-Vickers hardness of the inner layer.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 28, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kengo Takeda, Riki Okamoto, Kazuo Hikida, Katsuya Nakano, Yuya Suzuki, Genki Abukawa
  • Patent number: 10508326
    Abstract: There is provided a high-manganese steel with superior coating adhesion and a method of producing a hot-dip galvanized steel sheet from same. According to an aspect of the present disclosure, a high-manganese steel is characterized by including, by weight, C: 0.3-1%, Mn: 8-25%, Al: 1-8%, Si: 0.1-3.0%, Ti: 0.01-0.2%, Sn: 0.06-0.2%, B: 0.0005-0.01%, with the remainder being Fe and inevitable impurities. The present disclosure can provide a high-manganese and hot-dip galvanized steel sheet with superior surface quality as well as with high strength and workability by preventing coating failures that may be caused by manganese.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: December 17, 2019
    Assignee: POSCO
    Inventors: Kwang-Geun Chin, Sun-Ho Jeon
  • Patent number: 9534280
    Abstract: An austenitic iron-based alloy containing manganese and at most 10% by weight and in particular at most 5% by weight nickel, based in each case on the overall weight of the iron-based alloy.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 3, 2017
    Assignee: BorgWarner Inc.
    Inventor: Antoine Claude
  • Patent number: 9039961
    Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Outokumpu Oyj
    Inventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
  • Publication number: 20150040636
    Abstract: Provided is a rod wire and a steel wire for a spring having superior corrosion resistance, the rod wire and the steel wire comprising, by weight %, 0.45 to 0.6% of C, 17.0 to 25.0% of Mn, the remainder being Fe and other inevitable impurities. Also provided is a method for manufacturing a steel wire for a spring having superior corrosion resistance by drawing the rod wire, the steel wire having a tensile strength of 1800 to 2100 MPa and a reduction of area of 25% ore more. Also provided is a method for manufacturing a spring having superior corrosion resistance, comprising the steps of drawing the rod wire so as to obtain steel wire having a tensile strength 1800 to 2100 MPa and a reduction of area of 25% or more; and a step of cold-forming the steel wire at room temperature.
    Type: Application
    Filed: December 20, 2012
    Publication date: February 12, 2015
    Inventors: Sang-Woo Choi, Soo-Dong Park
  • Publication number: 20140373588
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 25, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hong-Ju Lee, In-Shik Suh, In-Gyu Park
  • Publication number: 20140356220
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 4, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, Hak-Cheol Lee, In-Gyu Park, Hong-Ju Lee
  • Patent number: 8900511
    Abstract: The present invention relates a high-strength nonmagnetic stainless steel, containing, by weight percent, 0.01 to 0.06% of C, 0.10 to 0.50% of Si, 20.5 to 24.5% of Mn, 0.040% or less of P, 0.010% or less of S, 3.1 to 6.0% of Ni, 0.10 to 0.80% of Cu, 20.5 to 24.5% of Cr, 0.10 to 1.50% of Mo, 0.0010 to 0.0050% of B, 0.010% or less of O, 0.65 to 0.90% of N, and the remainder being Fe and inevitable impurities; the steel satisfying the following formulae (1) to (4): [Cr]+3.3×[Mo]+16×[N]?30??(1), {Ni}/{Cr}?0.15??(2), 2.0?[Ni]/[Mo]?30.0??(3), and [C]×1000/[Cr]?2.5??(4), wherein [Cr], [Mo], [N], [Ni], [Mo] and [C] represent the content of Cr, the content of Mo, the content of N, the content of Ni, the content of Mo and the content of C in the steel, respectively, and {Ni} represents the sum of [Ni], [Cu] and [N], and {Cr} represents the sum of [Cr] and [Mo]. The present invention further relates to a high-strength nonmagnetic stainless steel part containing the steel and a process for producing the same.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 2, 2014
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Koichi Ishikawa, Tetsuya Shimizu
  • Patent number: 8858872
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 14, 2014
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20140209216
    Abstract: The present invention relates to high-manganese steel with superior weldability and to a method for manufacturing hot-dipped galvanized steel sheets from same. The high-manganese steel according to one aspect of the present invention is characterized by comprising, by weight %: C: 0.3-1%; Mn: 8-25%; Al: 1-8%; Si: 0.1-3.0%; Ti: 0.01-0.2%; Sn: 0.06-0.2%; and B: 0.0005-0.01%, with the remainder being Fe and unavoidable impurities. The present invention may provide high-manganese hot-dipped galvanized steel sheets, having high strength and processability and superior surface quality, which can prevent plating failures caused by manganese.
    Type: Application
    Filed: August 23, 2012
    Publication date: July 31, 2014
    Inventors: Kwang-Geun Chin, Sun-Ho Jeon
  • Publication number: 20140105780
    Abstract: Disclosed are non-magnetic metal alloy compositions and applications that relate to non-magnetic metal alloys with excellent wear properties for use in dynamic three-body tribological wear environments where an absence of magnetic interference is required. In one aspect, the disclosure can relate to a drilling component for use in directional drilling applications capable of withstanding service abrasion. In a second aspect, a hardbanding for protecting a drilling component for use in directional drilling can be provided. In a third aspect, a method for prolonging service life of a drilling component for use in directional drilling can be provided.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok, Kyle Walter Rafa
  • Publication number: 20130295409
    Abstract: Provided is an austenitic, lightweight, high-strength steel sheet having a high yield ratio and ductility and a method for producing the same, and more particularly, to a high-strength steel sheet for automotive interior panels, exterior panels, and structural parts, and a method for producing the steel sheet. The steel sheet may be a hot-rolled steel sheet, a cold-rolled steel sheet, or a plated steel sheet. The steel sheet includes, by weight %, C: 0.6% to 1.0%, Si: 0.1% to 2.5%, Mn: 10% to 15%, P: 0.02% or less, S: 0.015% or less, Al: 5% to 8%, Ti: 0.01% to 0.20%, N: 0.02% or less, and the balance of Fe and inevitable impurities, wherein the steel sheet has a specific gravity of 7.4 g/cm3 and a Mn/Al ratio of 2 to 3.
    Type: Application
    Filed: December 12, 2011
    Publication date: November 7, 2013
    Applicant: POSCO
    Inventors: Kwang-Geun Chin, Sang-Ho Han, Jai-Hyun Kwak
  • Publication number: 20130240520
    Abstract: An energy-storing container is made of a lightweight steel having the following chemical composition (in wt %): C 0.04-2%; Mn 14-30%; Al 1.5-12%; Si 0.3-3%; Cr 0.12-6%, and additionally one or more of the following elements: Ti, V, Nb, B, Zr, Mo, Ni, Cu, W, Co, P, N, each at up to 5% and in total at up to 10%, wherein the remainder is Fe including common steel tramp elements, wherein the concrete alloy composition is selected in order to limit the a?-martensite fraction before or after a forming process to no more than 3%, with the stipulation that the a?-martensite equivalent according to 0.1*wt % Mn+wt % C+0.05*wt % Si is between 3.4 and 10.5.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 19, 2013
    Applicant: SALZGITTER FLACHSTAHL GMBH
    Inventors: Michael Braun, Manuel Otto, Zacharias Georgeou, Bianca Springub
  • Patent number: 8535606
    Abstract: Disclosed are corrosion resistant, non-magnetic austenitic stainless steels containing alloying elements molybdenum, nickel, and copper and further containing small quantities of an additional element selected from the group consisting of a rare-earth element, calcium, cobalt, iridium, osmium, rhenium, rhodium, ruthenium, silver, and a combination thereof.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Baker Hughes Incorporated
    Inventor: Hendrik John
  • Publication number: 20130209831
    Abstract: High-strength, cold-formable steel and a flat steel product produced from such a steel, in which an optimal combination of weldability and a low tendency towards delayed cracking is ensured along with good strength and hot and cold deformability. In order to achieve this, a steel according to the invention contains (in % by weight) C: 0.1-1.0%, Mn: 10-25%, Si: up to 0.5%, Al: 0.3-2%, Cr: 1.5-3.5%, S: <0.03%, P: <0.08%, N: <0.1%, Mo: <2%, B: <0.01%, Ni: <8%, Cu: <5%, Ca: up to 0.015%, at least one element from the group “V, Nb” with the following proviso: Nb: 0.01-0.5%, V: 0.01-0.5% and optionally Ti: 0.01-0.5% and iron and unavoidable, production-related impurities as the remainder.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 15, 2013
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Jens-Ulrik Becker, Sinasi Göklü, Harald Hofmann, Christian Höckling, Matthias Schirmer, Ingo Thomas
  • Patent number: 8486204
    Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 16, 2013
    Assignee: Shin Zu Shing Co., Ltd.
    Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
  • Publication number: 20130039796
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
  • Patent number: 8337749
    Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(% C))?(% Nb+% Ti+% V+% Ta+% Zr)?1.5, Fe, and incidental impurities.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: December 25, 2012
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski
  • Patent number: 8313691
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 20, 2012
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20120288396
    Abstract: Provided is an austenite steel having excellent ductility including 8 wt % to 15 wt % of manganese (Mn), 3 wt % or less (excluding 0 wt %) of copper (Cu), a content of carbon (C) satisfying relationships of 33.5C+Mn?25 and 33.5C?Mn?23, and iron (Fe) as well as unavoidable impurities as a remainder. According to an aspect, austenite is stabilized and generation of carbides in a network form at austenite grain boundaries is inhibited by adding copper (Cu) favorable to inhibition of carbide formation with respect to manganese and appropriately controlling contents of carbon and manganese, and thus, high economic efficiency may also be achieved while ductility and wear resistance are improved.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hyun-Kwan Cho, Hee-Goon Noh
  • Publication number: 20120160363
    Abstract: Provided are high manganese containing ferrous based components and their use in oil, gas and/or petrochemical applications. In one form, the components include 5 to 40 wt % manganese, 0.01 to 3.0 wt % carbon and the balance iron. The components may optionally include one or more alloying elements chosen from chromium, nickel, cobalt, molybdenum, niobium, copper, titanium, vanadium, nitrogen, boron and combinations thereof.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Hyun Woo Jin, Raghavan Ayer, Douglas Paul Fairchild, Mario L. Macia
  • Publication number: 20120093677
    Abstract: The invention relates to a method for producing a hot strip from transformation-free ferritic steel, wherein a melt is cast into a roughed strip and the latter is subsequently rolled into a hot strip. For this purpose, it is provided that the melt is cast in a horizontal strip casting facility under conditions of a calm flow and free of bending into a roughed strip in the range between 6 and 20 mm and is subsequently rolled into hot strip having a degree of deformation of at least 50%.
    Type: Application
    Filed: March 11, 2009
    Publication date: April 19, 2012
    Applicants: SMS SIEMAG AG, Salzgitter Flachstahl GMBH
    Inventors: Karl-Heinz Spitzer, Bianca Springub, Joachim Konrad, Hellfried Eichholz, Markus Schäperkötter
  • Publication number: 20120045358
    Abstract: Provided is a high manganese nitrogen-containing steel sheet. The high manganese nitrogen-containing steel sheet according to the present invention comprises 0.5 to 1.0 wt % of carbon, 10 to 20 wt % of manganese, 0.02 to 0.3 wt % of nitrogen, with a remainder of Fe and unavoidable impurities. The high manganese nitrogen-containing steel sheet according to the present invention produces an austenite phase at room temperature, in which the stacking fault energy is effectively controlled by adding chrome and nitrogen. Accordingly, the high manganese nitrogen-containing steel sheet of the present invention produces a mechanical twin during the plastic deformation of the steel sheet, thereby increasing the work hardening rate, tensile strength, and workability.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 23, 2012
    Applicant: HYUNDAI STEEL COMPANY
    Inventors: Young Kook Lee, Yeon Seung Jung, Sin Gon Kang, Dong Joon Min
  • Publication number: 20110305591
    Abstract: A low density high ductility alloy for making a golf club head is composed of 31 to 36 w. t. % of Manganese (Mn), 6 to 10 w. t. % of Aluminum (Al), 0.3 to 1 w. t. % of Carbon (C), 4 to 8 w. t. % of Chromium (Cr), 0.2 to 0.6 w. t. % of Silicon (Si), and other component is iron (Fe). The density of the alloy is 6.8˜7 g/cm3. The elongation of the alloy is from 33 to 55.4%. The tensile strength of the alloy is 61 to 67% f/mm2. The yield strength of the alloy is greater than 35 kgf/mm2.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 15, 2011
    Inventors: Yu-Chi WU, Chung-Le YEN
  • Patent number: 8002909
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charles Horace Craig
  • Publication number: 20100253006
    Abstract: A steel product having a composition which contains by mass C: 0.01 to 1.9%, Si: 0.01 to 1.9%, Mn: 5.0 to 24.0% with balance consisting of Fe and unavoidable impurities and a steel product described above which further contains Cr: 18.0% or below and/or Ni: 12.0% or below in addition to the above essential elements. The above steel products may each further contain Al: 1% or below and/or N: 0.3% or below and the above steel products may each further contain one or more elements selected from among Nb, Ti, Zr, Mo and Cu in a total amount of 4.0% or below. The steel products can sufficiently follow the thermal expansion of a cylinder made of an aluminum alloy and thus enables the production of a piston ring which is suitable for use as a piston ring to slide on the inner face of a cylinder bore made of an aluminum alloy in an internal combustion engine and which can retain excellent sealing properties.
    Type: Application
    Filed: November 28, 2008
    Publication date: October 7, 2010
    Applicant: NIPPON PISTON RING CO., LTD
    Inventors: Yoshiki Ishikawa, Seisuke Takaki, Motonobu Onoda
  • Patent number: 7780908
    Abstract: An austenitic stainless steel includes (a) 0.03 wt % to 0.12 wt % of C, (b) 0.2 wt % to 1.0 wt % of Si, (c) 8.55 wt % to 10.12 wt % of Mn, (d) 14.0 wt % to 16.0 wt % of Cr, (e) 4.05 wt % to 4.31 wt % of Ni, (f) 0.04 wt % to 0.07 wt % of N, (g) 1.0 wt % to 3.5 wt % of Cu, (h) trace amount of Mo, and the balance being Fe and incidental impurities. The austenitic stainless steel has a ?-ferrite content less than 8.5 and equal to 6.77[(d)+(h)+1.5(b)]?4.85[(e)+30(a)+30(f)+0.5(c)+0.3(g)]?52.75.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Yieh United Steel Corp.
    Inventors: Meng-Hsin Hsieh, Yi-Cheng Wu, Pei-Te Huang, Hao-Shang Liu
  • Patent number: 7749431
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, is used as a container or other device for high-pressure hydrogen gas, and consists of, by mass %, C: not more than 0.04%, Si: not more than 1.0%, Mn: 7 to 30%, Cr: 15 to 22%, Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the relationship, 2.5Cr+3.4Mn?300N. The weld metal of the welded joint of the container or other device made of the said stainless steel satisfies the relationship, ?11?Nieq?1.1×Creq??8.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: July 6, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Patent number: 7708841
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: May 4, 2010
    Assignees: Boehler Edelstahl GmbH & Co KG, Schoeller-Bleckmann Oilfield Technology GmbH
    Inventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
  • Patent number: 7658883
    Abstract: Novel carbon-plus-nitrogen corrosion-resistant ferrous and austenitic alloys, apparatus incorporating an inventive alloy, and methods of making and using the apparatus are described. The corrosion-resistant ferrous and austenitic alloys comprise no greater than about 4 wt. % nickel, are characterized by a strength greater than about 700 MPa (100 ksi), and, when being essentially free of molybdenum (<0.3 wt. %), have minimum Pitting Resistance Equivalence (PRE) numbers of 20 and minimum Measure of Alloying for Corrosion Resistance numbers (MARC) of 30 because of the use of both carbon and nitrogen. The ferrous and austenitic alloys are particularly formulated for use in oilfield operations, especially sour oil and gas wells and reservoirs. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: February 9, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Manuel Marya, Rashmi Bhavsar
  • Publication number: 20100003159
    Abstract: The present invention discloses a low-density high-toughness alloy and the fabrication method thereof. The alloy of the present invention consists essentially of: by weight percent, equal to or greater than 23% but lower than or equal to 33% manganese, equal to or greater than 8.1% but lower than or equal to 9.8% aluminum, equal to or greater than 3% but lower than or equal to 5.0% chromium, equal to or greater than 0.6% but lower than or equal to 1.2% carbon, equal to or greater than 0.1% but lower than or equal to 0.24% silicon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any heat treatment, or any hot/cold working, such as forging and rolling; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 7, 2010
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Publication number: 20090202382
    Abstract: A high-ductility, high-strength and high Mn steel strip used for steel strips of automobiles requiring superior formability and high strength, a plated steel strip produced by using the same, and a manufacturing method thereof are disclosed. The high Mn steel strip comprises, by weight %, 0.2˜1.5% of C, 10˜25% of Mn, 0.01˜3.0% of Al, 0.005˜2.0% of Si, 0.03% or less of P, 0.03% or less of S, 0.040% or less of N, and the balance of Fe and other unavoidable impurities. The high-ductility, high-strength and high Mn steel strip, and the plated steel strip produced by using the same have superior surface properties and plating characteristics.
    Type: Application
    Filed: December 22, 2006
    Publication date: August 13, 2009
    Applicant: POSCO
    Inventors: Seong-Ju Kim, Kwang-Geun Chin, Hyun-Gyu Hwang, Sung-Kyu Kim, Il-Ryoung Sohn, Young-Kook Lee, Oh-Yeon Lee
  • Publication number: 20090010793
    Abstract: A method for producing cold-formable, high-strength steel strips or sheets with TWIP properties, wherein in successive working steps are carried out without interruption, uses a molten material of the following composition (mass %): C: 0.003-1.50%, Mn: 18.00-30.00%, Ni: ?10.00%, Si: ?8.00%, Al: ?10.00%, Cr: ?10.00%, N: ?0.60%, Cu: ?3.00%, P: ?0.40%, S: ?0.15%, selectively one or more components from the Se, Te, V, Ti, Nb, B, REM, Mo, W, Co, Ca and Mg group provided that the total content of Se, Te is ?0.25%, the total content of V, Ti, Nb, B, REM is ?4.00%, the total content of Mo, W, Co is ?1.50% and the total content of Ca, Mg is ?0.50%, the rest being iron and melting conditioned impurities, wherein the content of Sn, Sb, Zr, Ta and As, whose total content is equal to or less than 0.30% is included in said impurities.
    Type: Application
    Filed: November 3, 2004
    Publication date: January 8, 2009
    Applicant: THYSSENKRUPP STEEL AG
    Inventors: Jens-Ulrik Becker, Harald Hofmann, Manfred Menne, Jochen Wans
  • Publication number: 20080226490
    Abstract: A low-density alloy and the fabrication method thereof are disclosed. The alloy comprises, in weight percent, equal to or greater than 15 wt. % but lower than or equal to 22.5 wt. % manganese, equal to or greater than 7.2 wt. % but lower than or equal to 9.0 wt. % aluminum, equal to or greater than 5.1 wt. % but lower than or equal to 7.8 wt. % chromium, equal to or greater than 0.6 wt. % but lower than or equal to 1.2 wt. % carbon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any hot/cold working process, such as forging, rolling, etc.; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: October 17, 2006
    Publication date: September 18, 2008
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Patent number: 7067020
    Abstract: Iron based amorphous steel alloy having a high Manganese content and being non-ferromagnetic at ambient temperature. The bulk-solidifying ferrous-based amorphous alloys are multicomponent systems that contain about 50 atomic percent iron as the major component. The remaining composition combines suitable mixtures of metalloids (Group b elements) and other elements selected mainly from manganese, chromium, and refractory metals. Various classes of non-ferromagnetic ferrous-based bulk amorphous metal alloys are obtained. One class is a high-manganese class that contains manganese and boron as the principal alloying components. Another class is a high manganese-high molybdenum class that contains manganese, molybdenum, and carbon as the principal alloying components. These bulk-solidifying amorphous alloys can be obtained in various forms and shape for various applications and utlizations. The good processability of these alloys can be attributed to the high reduced glass temperature Trg (e.g., about 0.6 to 0.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: June 27, 2006
    Assignee: University of Virginia Patent Foundation
    Inventors: S. Joseph Poon, Gary J. Shiflet, Vijayabarathi Ponnambalam
  • Patent number: 6824672
    Abstract: An austenitic stainless steel with a composition comprising: at most 0.15% of C; 2% to 10% of Mn; at most 2% of Ni; at most 4% of Cu; 0.1% to 0.4% of N; 10% to 20% of Cr; at most 1% of Si; at most 3% of Mo; and at most 0.7% of Ti; is used to manufacture equipment, for example furnaces, reactors or ducts, or elements of this equipment, or to coat the internal walls of this equipment, said equipment being used to implement petrochemical processes conducted at temperatures of 350° C. to 1100° C. and in which coke can be formed.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: November 30, 2004
    Assignees: Institute Francais du Petrole, USINOR
    Inventors: Philippe Lecour, Xavier Longaygue, François Ropital, Laurent Antoni
  • Patent number: 6692838
    Abstract: The invention includes a composition of matter which is resistant to metal dusting and a method for preventing metal dusting on metal surfaces exposed to carbon supersaturated environments.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 17, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Trikur Anantharaman Ramanarayanan, ChangMin Chun
  • Patent number: 6620377
    Abstract: Disclosed is a high hardness stainless steel suitable as the material for screws used in fastening parts of magnetic memory devices such as hard disk drives. The stainless steel consists essentially of, by weight %, C: 0.03-0.15%, Si: 0.1-1.2%, Mn: 11.0-19.0%, P: up to 0.06%, S: up to 0.03%, Ni: 2.0-7.0%, Cr: 16.5-19.0%, N: 0.20-0.45% and the balance of Fe and inevitable impurities. This stainless steel exhibits improved hardness and anti-seizure property better than those of conventionally used SUS XM7. The steel may further contain at least one member of Al: up to 0.05%, Mg: 0.001-0.05%, Ca: 0.001-0.05%, V: 0.03-0.30% and Nb: 0.03-0.30%; and one or both of Cu: 1.0-4.0% and Mo: 0.5-5.0%.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: September 16, 2003
    Inventor: Hideyuki Ohma
  • Patent number: 6617050
    Abstract: An alloy for golf club head include by weight 25 to 31 wt % manganese, 6.3 to 7.8 wt % aluminum, 0.65 to 0.85 wt % carbon and 5.5 to 9.0 wt % chromium, and the balance being iron. Additions of 0.8 to 1.5 wt % silicon, 2.0 to 5.0 wt % titanium, or 0.5 to 1.0 wt % molybdenum are optionally included in the alloy. Due to the chromium, titanium and molybdenum, the alloy has a good resistance to corrosion, a good finished surface quality after being forged at a temperature from 800° C. to 1050° C. A combination of high ductility and high tensile strength is achieved after the alloy has been treated at a temperature from 980° C. to 1080° C. for 1 to 24 hours.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 9, 2003
    Assignee: O-Ta Precision Casting Co., Ltd.
    Inventor: Chih-Yeh Chao
  • Publication number: 20030082067
    Abstract: A low density iron based alloy for making heads of golf clubs, the alloy consisting of essentially 28.0 to 31.5 wt % manganese, 7.8 to 10.0 wt % aluminum, 0.90 to 1.10 wt % carbon and 0.35 to 2.5 wt % titanium, and the balance being iron. Additions of 0.8 to 1.5 wt % silicon and 5.0 to 7.0 wt % chromium are optionally included in the alloy of the invention. Due to the additions of silicon and chromium, the alloy of the invention has an excellent resistance to corrosion. After the alloy has been forged or plastic worked, and then treated under a temperature from 950 degrees Celsius to 1270 degrees Celsius for 1 to 24 hours, an austenitic phase with (Ti, Fe)Cx precipitated in different content rate, the alloy obtains a low density below 6.6 g/cm3 and distributed within a range of 6.1 to 6.6 g/cm3, therefore the alloy with a low density, a high ductility, excellent resistance to corrosion and good finished surface quality is obtained to satisfy requirements of mechanical properties of heads of golf clubs.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 1, 2003
    Inventor: Chih-Yeh Chao
  • Publication number: 20030077479
    Abstract: An alloy for golf club head include by weight 25 to 31 wt % manganese, 6.3 to 7.8 wt % aluminum, 0.65 to 0.85 wt % carbon and 5.5 to 9.0 wt % chromium, and the balance being iron. Additions of 0.8 to 1.5 wt % silicon, 2.0 to 5.0 wt % titanium, or 0.5 to 1.0 wt % molybdenum are optionally included in the alloy. Due to the chromium, titanium and molybdenum, the alloy has a good resistance to corrosion, a good finished surface quality after being forged at a temperature from 800° C. to 1050° C. A combination of high ductility and high tensile strength is achieved after the alloy has been treated at a temperature from 980° C. to 1080° C. for 1 to 24 hours.
    Type: Application
    Filed: October 19, 2001
    Publication date: April 24, 2003
    Inventor: Chih-Yeh Chao
  • Patent number: 6500279
    Abstract: A material having capacity of absorbing vibration contains maximum amounts of 0.03% of C by weight, 0.2˜0.6% of Si by weight, maximum amounts of 0.15% of Mn by weight, maximum amounts of 0.03% of P by weight, maximum amounts of 0.03% of S by weight, 10.5˜13.5% of Cr by weight, 0.8˜1.4% of Mo by weight, 0.8˜1.4% of Al by weight, 0.8˜1.4% of Ni by weight, 0.02˜0.1% of Nb by weight, maximum amounts of 0.01% of N by weight, maximum amounts of 0.03% of Cu by weight, and the rest being Fe. The material being made by a metallurgical method involving vacuum melting process and normalizing process, whereby the main crystal structure of the material is Fe.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 31, 2002
    Inventor: Archer C. C. Chen
  • Publication number: 20020119069
    Abstract: Iron-manganese-silicon-based shape memory alloys comprising:
    Type: Application
    Filed: October 25, 2001
    Publication date: August 29, 2002
    Inventors: Zuyao Xu, Shipu Chen, Jianfeng Wan, Zhenghong Guo, Jihua Zhang, Yonghua Rong
  • Patent number: 6361740
    Abstract: A high-damping, corrosion resistant and substantially non-magnetic material having high damping properties has been developed for use in dynamic applications, specifically, a disk drive suspension arm and load beam. A disk drive assembly includes a disk having a readable and writeable surface, a motor operable for rotating the disk, and an actuator assembly that includes a transducer mounted on a load beam. The actuator assembly is operable for positioning the transducer in transducing relationship with the surface of the disk. When the disk spins, shear forces create turbulence in the fluidic medium adjacent to the surface of the disk. The turbulence exerts unbalanced and variable forces on the load beam, inducing vibrational motion therein. If the vibrational energy stored in the load beam is not quickly damped, the surface of the disk, load beam or transducer can be damaged. The present invention discloses alloy compositions of the form (14-21)Mn, (10-13)Cr, (0-6)Si, (4-10)Ni, (0-6)Co, and (0-0.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: March 26, 2002
    Assignee: Intri-Plex Technologies, Inc.
    Inventors: Mehrooz Zamanzadeh, Ronald Noebe
  • Publication number: 20020006349
    Abstract: Disclosed is a high hardness stainless steel suitable as the material for screws used in fastening parts of magnetic memory devices such as hard disk drives. The stainless steel consists essentially of, by weight %, C: 0.03-0.15%, Si: 0.1-1.2%, Mn: 11.0-19.0%, P: up to 0.06%, S: up to 0.03%, Ni: 2.0-7.0%, Cr: 16.5-19.0%, N: 0.20-0.45% and the balance of Fe and inevitable impurities. This stainless steel exhibits improved hardness and anti-seizure property better than those of conventionally used SUS XM7. The steel may further contain at least one member of Al: up to 0.05%, Mg: 0.001-0.05%, Ca: 0.001-0.05%, V: 0.03-0.30% and Nb: 0.03-0.30%; and one or both of Cu: 1.0-4.0% and Mo: 0.5-5.0%.
    Type: Application
    Filed: May 14, 2001
    Publication date: January 17, 2002
    Inventor: Hideyuki Ohma
  • Patent number: 5910285
    Abstract: The invention relates to an Al--Mn--Si--N stainless acid-resisting steel substantially free of both Cr and Ni elements, which comprises the following elements: 0.06-0.12 C, 4-5 Al, 16-18 Mn, 1.2-1.5 Si, 0.15-0.30 N, 0.1-0.2 Re and the balance Fe. The corrosion resistance and mechanical properties of the steel can be further improved by adding a small amount of element(s) selected from the group consisting of Cr, Ni, Co, Ti, Nb, Cu, Mo, Zr, Hf, W and the like. The stainless steel has good corrosion resistance, pressure processing characteristics and welding performance, which can be made into a variety of stainless steel product and can be used in a broad field.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: June 8, 1999
    Inventor: Xuesheng Zhao
  • Patent number: 5891388
    Abstract: An Fe--Mn Vibration Damping alloy steel having a superior tensile strength is disclosed. The alloy steel consists of, by weight percent: 10 to 24% of Manganese(Mn); up to 0.2% of carbon(C); at least one element selected from the group consisting of 0.1 to 2.0% of Titanium(Ti), 0.1 to 2.0% of Molybdenium(Mo), 0.1 to 1.0% of Vanadium(V), and 0.1 to 0.7% of Tungsten(W), the element increasing a tensile strength of the vibration damping alloy steel; and remaining iron(Fe) and incidental impurities. Further, an Fe--Mn vibration damping alloy steel having a good corrosion resistance is disclosed. The alloy steel consists of, by weight percent: 10 to 24% of Manganese(Mn); up to 0.2% of carbon(C); at least one element selected from the group consisting of 0.1 to 4.5% of Chromium(Cr), 0.1 to 1.5% of Copper(Cu), and 0.1 to 1.1% of Niobium (Nb), the element increasing a corrosion resistance of the vibration damping alloy steel; and remaining iron (Fe) and incidental impurities.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: April 6, 1999
    Assignee: Woojin Inc.
    Inventors: Seung-Han Baik, Yong-Chul Son, Jung-Chul Kim, Dong-Woon Han
  • Patent number: 5833919
    Abstract: The present invention provides a Fe--Mn--Cr--Al cryogenic alloy having high ductility, strength, toughness and corrosion-resistance, and a process for preparing the same. The cryogenic structural alloy of the invention is prepared by the steps of: air-induced melting of a metallic alloy composition which consists of Fe 48.6 to 64.7 wt %, Mn 25.0 to 35.0 wt %, Cr 10.0 to 13.0 wt %, Al 0.1 to 2.0 wt %, C 0.1 to 0.4 wt % and Si 0.1 to 1.0 wt %; hot-rolling of the melted alloy at 1,090.degree. to 1,110 .degree. C.; and, solution heat treatment of the hot-rolled alloy at 1,040.degree. to 1,060.degree. C. for 50 to 70 minutes.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: November 10, 1998
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Soon-Hyung Hong, Young-Soo Han
  • Patent number: 5601782
    Abstract: The abrasive resistant high manganese cast steel of the present invention has a high wear resistance and a high shock resistance, and contains 1.3-1.4 weight % of C, 0.05-0.20 weight % of Si, 14.0-15.0 weight % of Mn, 0.5-1.5 weight % of Cr, 0.3-0.8 weight % of V, 0.2-0.4 weight % of Ti, and 0.5-1.0 weight % of Mo, and a balance of Fe and inevitable impurities.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: February 11, 1997
    Assignee: Shinhokoku Steel Corporation
    Inventors: Saburo Kunioka, Hiroshi Toriyama
  • Patent number: 5529604
    Abstract: The present invention relates to a modified stainless steel powder composition from which moldings can be formed. The modified stainless steel powder composition comprises from about 1% to about 3% by weight of tin, from about 0.5% to about 1.5% by weight of an additive consisting essentially of from about 2% to about 30% by weight tin and the balance consisting essentially of at least one element selected from copper and nickel, and the balance essentially a stainless steel powder. A process for forming the modified stainless steel powder composition is also described.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: June 25, 1996
    Assignee: AMETEK, Specialty Metal Products Division
    Inventor: John H. Reinshagen