Liquid Moving Means Patents (Class 422/504)
  • Patent number: 9926521
    Abstract: The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 27, 2018
    Assignee: Fluidigm Corporation
    Inventor: Antoine Daridon
  • Patent number: 9901934
    Abstract: A detection method of detecting analytes of interest which are present in a liquid. The detection method including the steps of forming drops of liquid on a first surface by capillary breaking of a finger of liquid, which is initially formed by liquid dielectrophoresis. The thus formed drops each come into contact with a different detection surface, which is arranged facing the first surface. Analytes of interest which are present in each of the drops are detected at the corresponding detection surface.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: February 27, 2018
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Vincent Agache, Patrice Caillat, Pierre Puget
  • Patent number: 9880533
    Abstract: A system which controls a group of multiple arrays of actuator elements, each of the actuator elements including a moving element which moves between a first and a second extreme positions; the system including: a controller, configured to generate control commands for at least one array of the multiple arrays in each individual cycle out of a series of sampling cycles, based on obtained information; and (b) an interface configured to transfer the control commands to the at least one array, thereby resulting in releasing from the first extreme position during the intended cycle of at least one moving element that is included in the at least one array; wherein release of all moving elements of at least one restrained array out of the multiple arrays is prevented during the intended cycle.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: January 30, 2018
    Assignee: AUDIO PIXELS LTD.
    Inventors: Daniel Lewin, Yuval Cohen, Eric Andreas Haber, Shay Kaplan, Meir Ben Simon, Raanan Zacher
  • Patent number: 9845452
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 19, 2017
    Assignee: MEDRELIEF INC.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 9823249
    Abstract: A method of detecting a pathogen in a sample. The pathogen from the sample is captured with at least one recognition element. The sample is introduced to a paper-based microfluidic device having spaced electrodes disposed thereon. An impedance magnitude of the sample is measured across the spaced electrodes to detect a presence of the pathogen in the sample. A related paper-based microfluidic device and system are also disclosed.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: November 21, 2017
    Assignee: Brigham and Women's Hospital, Inc.
    Inventors: Utkan Demirci, Hadi Shafiee
  • Patent number: 9816987
    Abstract: The present invention provides an analyte detection system for detecting target analytes in a sample. In particular, the invention provides a detection system in a rotor or disc format that utilizes a centrifugal force to move the sample through the detection system. Methods of using the rotor detection system to detect analytes in samples, particularly biological samples, and kits comprising the rotor detection system are also disclosed.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: November 14, 2017
    Assignee: ABAXIS, INC.
    Inventors: Rajesh K. Mehra, Kenneth P. Aron
  • Patent number: 9782770
    Abstract: System configured to conduct designated reactions for biological or chemical analysis. The system includes a liquid-exchange assembly comprising an assay reservoir for holding a first liquid, a receiving cavity for holding a second liquid that is immiscible with respect to the first liquid, and an exchange port fluidically connecting the assay reservoir and the receiving cavity. The system also includes a pressure activator that is operably coupled to the assay reservoir of the liquid-exchange assembly. The pressure activator is configured to repeatedly exchange the first and second liquids by (a) flowing a designated volume of the first liquid through the exchange port into the receiving cavity and (b) flowing a designated volume of the second liquid through the exchange port into the assay reservoir. The system also includes a fluidic system that is in flow communication with the liquid-exchange assembly.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 10, 2017
    Assignee: Illumina, Inc.
    Inventors: Dale Buermann, Sebastian Bohm, Alexander Hsiao
  • Patent number: 9759664
    Abstract: A method of analyzing for the presence or concentration of an analyte in a liquid in microgravity is disclosed. The method includes removing a first quantity of the liquid from a first container and passing the removed liquid through a porous pad that includes a reagent that is responsive to the analyte. The presence or concentration of the analyte in the liquid is determined based on a response of the reagent. The removed quantity of liquid is transferred back to the first container or to a second container, and followed by disposal of the first or second container.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: September 12, 2017
    Assignee: HAMILTON SUNDSTRAND SPACE SYSTEMS INTERNATIONAL, INC.
    Inventor: John W. Steele
  • Patent number: 9759649
    Abstract: Microfluidic cuvettes and a network of multiplexed channels including such cuvettes. The channels operationally share a main output channel defining an output of the network. A microfluidic channel includes an inlet, a cuvette, and an outlet that is coupled into the main output channel. The network is configured to provide a difference in resistances, to the fluid, by the main output channel and by an individual outlet is sufficient to prevent cross-contamination of different cuvettes, thereby operably isolating individual channels from one another. An individual cuvette is adapted to substantially prevent the formation of air-bubbles as part of the fluid flow through the cuvette and, therefore, to be fully filled and fully emptied. A system and method for photometric measurements of multiple fluid samples employing such network of channels.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 12, 2017
    Assignee: THE GENERAL HOSPITAL CORPORATION
    Inventors: Ramin Haghgooie, Kenneth T. Kotz, Robert Granier, Anne Celia Petrofsky
  • Patent number: 9696303
    Abstract: An assay device (1) for determining the presence and/or amount of an analyte present or potentially present in a liquid sample comprises: (i) a capillary tube (2) having an upstream region (3) into which the sample to be assayed is introduced for transfer by capillary action along the capillary tube to a downstream region thereof; (ii) a collection of first binding partners (5) immobilized within the capillary tube (2), said first binding partners (5) being capable of specifically binding to the analyte; (iii) a collection of second binding partners (6) displaceabley bound to a fraction of said first binding partners (5) whereby there are free first binding partners (5) immobilized within the capillary tube, said second binding partners (6) having a label and being displaceable from the first binding partners (5) by the analyte to be detected; and (iv) a detection region (4) for sample that has transferred to said downstream region of said capillary tube, said detection region being adapted to generate a dete
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 4, 2017
    Assignee: REVOLUGEN LIMITED
    Inventors: Stephen John Minter, Georgios Patsos
  • Patent number: 9677979
    Abstract: Systems and methods are described for isolation, separation and detection of a molecular species using a low resource device for processing of samples. Methods include isolation, separation and detection of a molecular species for protein-protein, DNA-DNA and other chemical interactions.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: June 13, 2017
    Assignee: VANDERBILT UNIVERSITY
    Inventor: Rick Haselton
  • Patent number: 9670478
    Abstract: The present invention pertains to a method for modifying a nucleic acid contained in a sample comprising a step for bringing the sample into contact with a nucleic acid-modifying agent in the presence of an acidic polysaccharide and/or a nucleotide; and a method for selectively detecting a nucleic acid derived from living cells contained in the sample, comprising the following steps: (a) a step for modifying a nucleic acid contained in a sample according to the method for modifying a nucleic acid contained in a sample, which includes a step for bringing the sample into contact with a nucleic acid-modifying agent in the presence of an acidic polysaccharide and/or a nucleotide; and (b) a step for selectively detecting an unmodified nucleic acid from the sample after step (a). The present invention further pertains to a kit and composition for use in these methods.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: June 6, 2017
    Assignee: TAKARA BIO INC.
    Inventors: Junko Yamamoto, Keiko Kubo, Takashi Uemori, Hiroyuki Mukai, Kiyozo Asada
  • Patent number: 9670456
    Abstract: The invention relates to a method for removing a viral contaminant from a preparation, being a cell culture medium or at least a component of a cell culture medium. The method comprises subjecting said preparation to filtration for at least about 24 hours through a virus filter having an effective pore size of maximum about 75 nm. Further, the invention relates to the use of a virus filter in filtration of at least about 24 hours, wherein the virus filter has an effective pore size of maximum about 75 nm for the removal of viral contaminant from a preparation, being a cell culture medium or at least a component of a cell culture medium. In some embodiments the filtration according to the invention operates at a volumetric capacity of at least about 2000 L/m2.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: June 6, 2017
    Assignees: BAXALTA GMBH, BAXALTA INCORPORATED
    Inventors: Wolfgang Mundt, Artur Mitterer, Manfred Reiter, Meinhard Hasslacher, Leopold Grillberger, Thomas Kreil
  • Patent number: 9664675
    Abstract: Stepped portions of a flow channel are reduced by completely fixing the channel that extends to the measuring unit, and reducing connections in the channel, thereby to suppress a disturbance in the flow of the liquid suctioned into the measuring unit. A means is provided so that the reaction solution and reagent suctioned will move towards the channel through which the liquids are suctioned.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: May 30, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Susumu Sakairi, Taku Sakazume, Katsuaki Takahashi
  • Patent number: 9651496
    Abstract: A rare earth (RE) downconverting phosphor composition may contain two or more lanthanide materials each having a host and at least one downconverting emitter. Each lanthanide material emits a detectable electromagnetic radiation emission peak at an intensity, which is proportional to the amount of emitter present, upon excitation with an absorbable electromagnetic radiation, the emitted radiation having a lower energy, i.e., a longer wavelength than the absorbable radiation. One or more ratios of the intensities of the emitted detectable electromagnetic radiation may be used to uniquely identify the composition. Alternatively, the RE downconverting phosphor composition may contain a lanthanide material having a host and at least two emitters. The lanthanide material emits at least two different detectable electromagnetic radiation emission peaks each at an intensity upon excitation with an absorbable electromagnetic radiation, the emitted radiation having a lower energy, i.e.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 16, 2017
    Assignee: Parallel Synthesis Technologies
    Inventors: Robert W. Haushalter, Robert C. Haushalter
  • Patent number: 9643176
    Abstract: A channel mixer includes a substrate, a channel assembly, and a pressing assembly. The channel assembly is located on the substrate and has at least one channel, a first opening for accommodating at least two testing materials, and a second opening. Two ends of the channel are respectively communicated with the first opening and the second opening. The pressing assembly covers the second opening and has an air chamber communicated with the second opening. When the pressing assembly recovers to an initial position after been pressed and released, the air chamber generates a negative pressure to draw the testing materials in the first opening therein, such that the testing materials are moved toward the second opening along the channel and mixed with each other.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 9, 2017
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Shu-Hsien Liao, Ching-Yu Chang
  • Patent number: 9636674
    Abstract: A microfluidic chip for a microfluidic system includes a PDMS substrate having a first thickness, at least one microfluidic pathway in the substrate, a coating along the microfluidic pathway, and a glass layer having a second thickness on the substrate and above the microfluidic pathway, wherein the coating contains an optically transparent material, and the first thickness is greater than the second thickness. The coating includes cyanoacrylates, an UV curable epoxy adhesive, a gel epoxy or epoxy under trade name of EPO-TEK OG175, MasterBond EP30LV-1 or Locite 0151.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 2, 2017
    Assignee: FluxErgy, LLC
    Inventors: Tej Patel, Ryan Revilla, Matthew D'Ooge
  • Patent number: 9592505
    Abstract: Microfluidic systems and methods including those that provide control of fluid flow are provided. Such systems and methods can be used, for example, to control pressure-driven flow based on the influence of channel geometry and the viscosity of one or more fluids inside the system.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: March 14, 2017
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller
  • Patent number: 9562903
    Abstract: Provided herein is a large immuno-sorbent surface area assay (ALISSA) for the rapid and sensitive detection of botulinum neurotoxins (BoNTs) and anthrax toxin. This assay is designed to capture a low number of toxin molecules and to measure their intrinsic protease activity via conversion of a fluorogenic or luminescent substrate. Also provided herein are novel peptides that can be specifically cleaved by BoNT and novel peptides that are resistant to cleavage by BoNT. The combination of these cleavable and control peptides can be used for implementation of an exemplary ALISSA used to specifically detect BoNT enzymatic activity. Furthermore, the ALISSA as described herein may also be used in a column based format for use in a high-throughput system for testing large quantities of samples.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: February 7, 2017
    Assignee: CITY OF HOPE
    Inventors: Markus Kalkum, Karine Bagramyan
  • Patent number: 9557317
    Abstract: Systems, apparatus, methods, and kits are provided for automated mass spectrometric analysis of small volumes of liquid samples, such as biological samples. The systems, apparatus, and kits may be used in facilities where high throughput of samples, as well as reliable and repeatable assay results with little training of staff, are needed. Such facilities include hospital emergency wards.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 31, 2017
    Assignee: PureHoney Technologies, Inc.
    Inventor: Can Ozbal
  • Patent number: 9528995
    Abstract: Provided are high-throughput detection systems. The systems include a magnetic sensor device, a magnetic field source and a reservoir plate that includes a plurality of fluid reservoirs. The magnetic sensor device includes a support with two or more elongated regions each having a magnetic sensor array disposed at a distal end. Also provided are methods in which the subject high-throughput detection systems find use.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 27, 2016
    Assignee: MagArray, Inc.
    Inventors: Sebastian J. Osterfeld, Shan Xiang Wang
  • Patent number: 9527078
    Abstract: A fluid handling device (100) comprises: a first channel (130); an air reservoir (170); an air discharge port (180); a second channel (140); and a communication section (150). The first channel (130) is a channel through which a fluid can move by capillary action. The air reservoir (170) is connected to one end portion of the first channel (130), and is formed such that a through hole that communicates the air reservoir (170) with the outside can be formed. The air discharge port (180) communicates with the outside. The second channel (140) communicates with the air discharge port (180). The communication section (150) connects the first channel (130) and the second channel (140) with each other, and has a cross-sectional area smaller than the cross-sectional area of the second channel (140).
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 27, 2016
    Assignee: ENPLAS CORPORATION
    Inventor: Koichi Ono
  • Patent number: 9517255
    Abstract: The present invention is related to the field of tissue regeneration. It concerns more particularly new processes, tubes and devices for thrombin, platelet concentrate and wound healant preparations, alone or in combination with cell extracts, cell compositions and uses thereof.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: December 13, 2016
    Inventor: Antoine Turzi
  • Patent number: 9508823
    Abstract: In a method for manufacturing a chemical sensor with multiple sensor cells, a substrate is provided and an expansion inhibitor is applied to the substrate for preventing a sensitive material to be applied to an area on the substrate for building a sensitive film of a sensor cell to expand from said area. The sensitive material is provided and the sensitive film is built by contactless dispensing the sensitive material to said area.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: November 29, 2016
    Assignee: Sensirion AG
    Inventors: Felix Mayer, Markus Graf, Lukas Burgi
  • Patent number: 9475049
    Abstract: Devices and methods for the detection of analytes are disclosed. Devices and methods for detecting food-borne pathogens are disclosed.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 25, 2016
    Assignee: Invisible Sentinel, Inc.
    Inventors: Nicholas A. Siciliano, Martin Joseph Bouliane, Louis Leong
  • Patent number: 9448249
    Abstract: A dispensing apparatus includes: a dish mounting portion having a mounting surface configured to be mounted with a dish having a bottom surface and a side surface surrounding the bottom surface; a syringe, arranged above the dish mounting portion, having a nozzle configured to discharge liquid toward an interior of the dish; and a first driving portion configured to rotate an inner bottom surface of the dish mounted on the dish mounting portion with respect to a first axis as a center of rotation, wherein the first axis is parallel to the mounting surface of the dish mounting portion.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 20, 2016
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventor: Tomoyoshi Tokumaru
  • Patent number: 9409170
    Abstract: A microfluidic mixing device comprises a main channel and a number of secondary channels extending from a portion of the main channel and entering another portion of the main channel. A number of actuators are located in the secondary channels to pump fluids through the secondary channels. A microfluidic mixing system comprises a microfluidic mixing device. The microfluidic mixing device comprises a main fluid mixing channel, a number of main channel actuators to pump fluid through the main fluid mixing channel, a number of secondary channels fluidly coupled to the main fluid mixing channel, and a number of secondary channel actuators to pump fluids through the secondary channels. The microfluidic mixing device also comprises a fluid source, and a control device to provide fluids from the fluid source to the microfluidic mixing device and activate the main channel actuators and secondary channel actuators.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: August 9, 2016
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexander Govyadinov, Pavel Kornilovich, Erik D. Torniainen, David P. Markel
  • Patent number: 9283561
    Abstract: The present invention relates to a liquid channel device capable of easily opening the liquid channel from the closed mode, including a base plate in which a liquid channel, through which a liquid containing at least one of a sample and a reagent, flows, and a metering chamber for holding the liquid, are formed to at least one side thereof, the metering chamber has a liquid transport section for transporting the liquid inside the chamber downstream, and this liquid transport section is operated by means of external pressing on a cover plate in the area opposite the metering chamber.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 15, 2016
    Assignee: Fujikura Kasei Co., Ltd.
    Inventors: Shigeru Takahashi, Masaaki Sakurai, Jiro Wakamatsu
  • Patent number: 9205396
    Abstract: The present invention is to provide a microfluidic device capable of allowing a fluid to stably flow in a microchannel without using an external source such as a pump or a suction device, and the microfluidic device, provided with a microchannel to which a sample liquid is transported, includes: an inlet reservoir which reserves a sample liquid to be introduced into said microchannel; an inlet which is provided on a sample-introduced side of the microchannel, and communicates with the inlet reservoir; an outlet provided on a sample-discharged side of the microchannel; and an open channel which is provided as communicating with the outlet, and part of at least one surface of which is opened to the outside atmosphere, wherein the inlet is provided at a higher position in a gravity direction than the outlet.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: December 8, 2015
    Assignee: SUMITOMO BAKELITE CO., LTD.
    Inventor: Susumu Arai
  • Patent number: 9176090
    Abstract: This sensor chip (11) comprises a substrate (15) in the form of a flat board, a sample inlet (20) that is provided in the thickness direction of the substrate (15) and into which flows the blood (3) used for measurement, a supply path (21) that communicates with this sample inlet (20), and detection electrodes (17, 18, 19) provided to this supply path (21), wherein the substrate (15) is provided with a surplus blood reservoir (25) that draws in surplus blood (3a) and holds this drawn surplus blood (3a).
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 3, 2015
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventor: Masaki Fujiwara
  • Patent number: 9164024
    Abstract: An optofluidic platform is constructed to comprise a vertical integration of optical and fluidic layers. The optical layer enables interaction of light with a fluid for a variety of purposes, including particle detection, manipulation, and analysis. The vertical integration allows layers to be permanently or temporarily attached to each other. Temporary attachments provide the advantage of reusing the same optical layer with different fluidic layers. Most preferably, the optical layer comprises antiresonant reflecting optical waveguide. Further, a fluidic layer can be configured to act as an interface between the optical layer and other fluidic layers attached thereon. Moreover, the fluidic layers can be configured to perform fluidic functions. The optofluidic platform can also comprise a protective layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: October 20, 2015
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 9115340
    Abstract: A microfluidic continuous flow device comprising a channel which comprises a first and a second area wherein the first area of the channel is a compartment which is defined by partitioning elements and the second area of the channel is a space outside the compartment; wherein through passages which are formed between the partitioning elements are dimensioned such as to retain a biological material and optionally a sustained release composition which can be comprised in the compartment within the compartment; wherein the channel has a first inlet to the compartment through which biological material can be introduced into the compartment; a second inlet for introducing a cultivation medium into a space of the channel arranged outside of the compartment, and an outlet. The present invention further refers to methods of using the devices of the present invention and kits comprising the microfluidic continuous flow devices of the present invention.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 25, 2015
    Assignee: AGENCY FOR SCIENCE TECHNOLOGY & RESEARCH
    Inventors: Chi Zhang, Danny van Noort, Hanry Yu
  • Patent number: 9110017
    Abstract: Apparatuses and methods for manipulating droplets are disclosed. In one embodiment, an apparatus for manipulating droplets is provided, the apparatus including a substrate, multiple arrays of electrodes disposed on the substrate, wherein corresponding electrodes in each array are connected to a common electrical signal, and a dielectric layer disposed on the substrate first side surface and patterned to cover the electrodes.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: August 18, 2015
    Assignee: DUKE UNIVERSITY
    Inventors: Michael G. Pollack, Vamsee K. Pamula, Richard B. Fair
  • Patent number: 9097723
    Abstract: The invention provides methods and apparatuses that allow a protein sample to undergo reduction, alkylation, and digestion in a continuous flow process carried out within a microfluidic device. Methods and apparatuses in accordance with the invention can be employed as part of an automated proteomics analysis carried out in an integrated proteomics system.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: August 4, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Bahram Fathollahi, Javier A. Farinas, Andrea W. Chow, Stephane Mouradian
  • Patent number: 9051604
    Abstract: Systems and methods for preventing or reducing unwanted heat in a microfluidic device while generating heat in selected regions of the device are described. Current can be supplied to a heating element through electric leads that are designed so that the current density in the leads is substantially lower than the current density in the heating element. Unwanted heat in the microfluidic complex can be reduced by thermally isolating the electric leads from the microfluidic complex by, for example, running each lead directly away from the microfluidic complex. Unwanted heat can be removed from selected regions of the microfluidic complex using one or more cooling devices.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: June 9, 2015
    Assignee: HandyLab, Inc.
    Inventor: Kalyan Handique
  • Publication number: 20150148549
    Abstract: The present disclosure sets forth incorporating microfluidic chips Interfaces for use with digital microfluidic processes. Methods and devices according to the present disclosure utilize compact, integrated platforms that interface with a chip upstream and downstream of the reaction, as well as between intermediate reaction steps if needed. In some embodiments these interfaces are automated, including automation of a multiple reagent process. Various reagent delivery systems and methods are also disclosed.
    Type: Application
    Filed: June 10, 2013
    Publication date: May 28, 2015
    Inventors: R. Michael Van Dam, Gaurav Shah, Pei-Yuin Keng
  • Patent number: 9039973
    Abstract: The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: May 26, 2015
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Michael W. L. Watson, Mohamed Abdelgawad, Mais Jebrail, Hao Yang, Aaron R. Wheeler
  • Patent number: 9028756
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Publication number: 20150118741
    Abstract: A microfluidic valve system is disclosed that includes a matrix, a hydrophilic acceptor region a hydrophilic transfer region, and a hydrophobic gap between the acceptor region and the transfer region.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 30, 2015
    Inventors: Hong Chen, Constantine Anagnostopoulos, Mohammed Faghri, Jeremy Cogswell
  • Patent number: 9018556
    Abstract: There is provided a microparticle sorting method, including a procedure of collecting a microparticle in a fluid that flows through a main channel in an area that is formed in a manner that a vertical cross-section increases in a flow direction of the fluid at a branch channel which is in communication with the main channel by generating a negative pressure in the branch channel.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: April 28, 2015
    Assignee: Sony Corporation
    Inventor: Tatsumi Ito
  • Publication number: 20150110689
    Abstract: The present invention relates to a method for manufacturing a module type microfluidic chip comprising: (a) printing electrode patterns on a substrate using a conductive ink and inkjet printing; (b) cutting the printed electrode patterns; and (c) assembling the cut electrode patterns to manufacture the module type microfluidic paper chip. Unlike the traditional method for manufacturing printed circuit substrate using a patterning agent or device, the method of the present invention only incorporates a simple printing process using an inkjet printer, and thus patterning can be simplified and various types of chips can be manufactured depending on the assembly type of electrode patterns. Accordingly, inexpensive, economical, and highly utilizable microfluidic chips can be provided using the method of the present invention.
    Type: Application
    Filed: May 2, 2013
    Publication date: April 23, 2015
    Applicant: Industry-University Cooperation Foundation Sogang University
    Inventors: Kwan Woo Shin, Hyo Jin Ko, Oh-Sun Kwon, Han-Su Kim, Jae Hak Choi, Byeong No Lee, Ju Mi Lee
  • Patent number: 9012236
    Abstract: The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 21, 2015
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, David S. Cohen, Michael Recknor, Mattias Vangbo, Ezra Van Gelder, Omar El-Sissi
  • Patent number: 9011796
    Abstract: A device for analysing a clinical sample comprises at least one depot chamber for receiving one or more reagents and at least one process chamber, whereas the process chamber is integrated in a first support member and the depot chamber is integrated in at least a second support member, whereas the support members are arranged in that the process chamber is connectable with the depot chamber by a relative movement of the first and second support member with respect to each other. According to the invention, the device further includes a pump element for transferring the substances inside the device from one chamber to another.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 21, 2015
    Assignees: Carpegen GmbH, Systec Elektronik und Software GmbH
    Inventors: Max Koltzscher, Antje Rötger, Krzysztof-Wlodzimierz Siemieniewicz, Jens Heitmann, Christoffer Mai, Klaus-Gerd Schoeler, Tilmann Wolter
  • Patent number: 9011797
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 21, 2015
    Assignee: Cytonome/ST, LLC
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 9011795
    Abstract: Provided are a valve unit and a microfluidic device including the valve unit. The valve unit includes: a valve substance container containing a valve substance, the valve substance including a phase change material that is solid at ambient temperature and melts by absorbing energy; a valve connection path connecting the valve substance container to a channel forming a fluid passage; and a pair of drain chambers formed along the channel at both sides of the valve connection path.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-seok Lee, Yoon-kyoung Cho, Jeong-gun Lee, Jong-myeon Park
  • Patent number: 9005544
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 14, 2015
    Assignee: The Regents of the University of California
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Patent number: 9005545
    Abstract: The present invention relates to a method for detecting the presence and/or the reaction of a biomolecule by monitoring changes of electrical property accurately according to the biological, biochemical or chemical reaction of the biomolecule, and a biochip provided for this purpose.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 14, 2015
    Assignee: Digital Genomics Inc.
    Inventor: Jae-Hoon Lee
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8999239
    Abstract: Devices, systems, and methods for conducting chemiluminescent immunoassay testing and, more particularly, to initiating and monitoring a chemiluminescent reaction in a plurality of such assays, of different types, on a single immunoassay instrument, in a single procedure, using a plurality of labels and a triggering reagent combination are disclosed. Moreover, by including a base reagent injector assembly having an “e-channel” to provide a swirling turbulence to the base reagent immediately before it is introduced into the well of a cuvette containing a sample and an acid reagent. The added turbulence addresses the phenomenon referred to as “RLU shift,” in which the luminescence output can increase or decrease between assays.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: William Carpenter, Martin Fletcher