Optode Or Optrode Patents (Class 422/82.06)
  • Patent number: 7897109
    Abstract: Apparatus or systems which employ luminescence quenching to produce an oxygen concentration indicative signal. Components of such systems include: (1) an airway adapter, sampling cell, or the like having a sensor which is excited into luminescence with the luminescence decaying in a manner reflecting the concentration of oxygen in gases flowing through the airway adapter or other flow device; (2) a transducer which has a light source for exciting a luminescable composition in the sensor into luminescence and a light sensitive detector for converting energy emitted from the luminescing composition as that composition is quenched into an electrical-signal indicative of oxygen concentration in the gases being monitored; and (3) subsystems for maintaining the sensor temperature constant and for processing the signal generated by the light sensitive detector. Sensors for systems of the character just described, methods of fabricating those sensors, and methods for installing the sensors in the flow device.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 1, 2011
    Assignee: RIC Investments, LLC
    Inventors: Lawrence L. Labuda, Perry R. Blazewicz, Leslie E. Mace, Jerry R. Apperson, Walter A. Cooke
  • Patent number: 7883900
    Abstract: A method of enhancing fluorescence emission in a fluorophore-mediated sensing, biosensing, imaging, and bioimaging. An example of biosensing is a fluorophore-mediated sandwich immunoassay with a 1° monoclonal antibody against a target analyte and a fluorophore-linked 2° monoclonal antibody, exposing the immunoassay to an enhancing agent, applying excitation light to the immunoassay, and measuring an emission signal from the immunoassay.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: February 8, 2011
    Assignee: University of Louisville Research Foundation, Inc.
    Inventor: Kyung A. Kang
  • Patent number: 7871573
    Abstract: A method of enhancing fluorescence emission in a fluorophore-mediated sensing, biosensing, imaging, and bioimaging. An example of biosensing is a fluorophore-mediated sandwich immunoassay with a 1° monoclonal antibody against a target analyte and a fluorophore-linked 2° monoclonal antibody, exposing the immunoassay to an enhancing agent, applying excitation light to the immunoassay, and measuring an emission signal from the immunoassay.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: January 18, 2011
    Assignee: University of Louisville Research Foundation, Inc.
    Inventor: Kyung A. Kang
  • Patent number: 7846390
    Abstract: The apparatus for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence is a fluorometer equipped with a sample container holder that is movable in the path of the beam from the light source. Fluorescent emissions from the sample mixture pass at 90° to the excitation light path through a slit that is narrow enough that the emission intensity is effectively produced by a thin layer of the sample and focused on a monochromator, with successive thin layers receiving nonuniform excitation radiation due to reduction of intensity along the excitation light source path with increasing depth penetration and due to reabsorption of emitted fluorescence from adjacent layers. The method has a first mode in which the emission spectrum is scanned at a fixed depth, and a second mode in which the sample is moved relative to the emission monochromator slit to vary the depth while keeping the emission wavelength fixed.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 7, 2010
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Ezzat M. Hegazi
  • Patent number: 7846384
    Abstract: A pathology distribution system 10 is provided for automated sample container 14, 15 distribution. The system 10 comprises a loading station 500 for loading samples in primary containers 14 of different types, a sample handling station 16 for receiving the containers 14 and identifying the container types and samples therein, and a container distribution station 38 for distributing the containers in areas or racks in the distribution station 38 marked for analyzing processes prescribed for the samples therein.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: December 7, 2010
    Assignee: A.I. Scientific Pty Ltd.
    Inventors: Leslie Robert Watson, Christoph Friedrich Tschopp, Ross Andrew Weaver, Ian David Henderson, Pieter Adriaan Kuiper
  • Patent number: 7842511
    Abstract: The present invention relates to the a new protecting group, 4-(O-nitrophthalimido)butyric acid (NPB) that may be attached to a monomer unit during oligosaccharide synthesis such that upon cleavage of this molecule, the solution turns orange. The orange color allows the simple colorimetric monitoring of the completion of the cleavage reaction and, upon collection of the colored fraction, quantification of the amount of the monomer unit that was successfully coupled to the solid phase.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: November 30, 2010
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Nicola Lucia Pohl, Kwang-Seuk Ko
  • Patent number: 7820107
    Abstract: An optical waveguiding optical format enables consistent optical analysis of small sample volumes with minimal variation in light path length among optical formats. The optical format is comprised of an input guide, an output guide, and a sample cavity adapted to allow light to pass through a sample on its way from the input guide to the output guide. A lid removed from the light pathway within the format may be provided with a reagent for assisting fluid analysis.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 26, 2010
    Assignee: Bayer HealthCare LLC
    Inventor: Allen J. Brenneman
  • Patent number: 7815853
    Abstract: Disclosed is a lateral flow quantitative assay method which can measure one or more analyte species at the same time, with high sensitivity. Also, the present invention relates to a strip which can measure one or more analyte species at the same time, with high sensitivity and a package in which the strip is integrated with a laser-induced surface fluorescence detector. The present invention can quantify multiple analytes with a minimum detection limit of pg/ml. Therefore, the present invention provides an advantage capable of quantifying a plurality of analytes at the same time using a simple lateral flow assay strip.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 19, 2010
    Assignee: Boditechmed Inc.
    Inventors: Kie-Bong Nahm, Eui-Yeol Choi, Dong-Seok Jeong, Jin-Ha Jung, Joung-Dae Moon, Young-Min Kim, Keun-Woo Lee, Jae-Soon Ahn, Young-Eui Jeong, Sang-Yeol Park, Hyun-Mi Kim, Byung-Ryong Lee
  • Patent number: 7815854
    Abstract: An optical detection system that utilizes an electroluminescent (EL) illumination source is provided. Unlike illumination sources used with some conventional optical detection systems, an EL device is relatively homogeneous and diffuse, and thus may provide uniform illumination to the test sample. In addition, the emitted light intensity of the EL device may be easily controlled by simply varying the voltage or the frequency of the applied current. The relatively flexibility of EL devices may also allow them to be readily incorporated into a chromatographic-based assay device for detecting the presence or absence of an analyte within a test sample.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: October 19, 2010
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: David Samuel Cohen
  • Patent number: 7815861
    Abstract: The present invention relates to a technique for analyzing the concentration of a specific component in a sample liquid, such as a method for analyzing a sample. The analyzing method includes a first detection step for irradiating light from a light source (50) onto a reaction system to detect a response from the reaction system (56) as a first detection result. The reaction system contains a sample liquid and a reagent. The method also includes a second detection step for irradiating light onto a reference board (54) to detect a response from the reference board as a second detection result. The response from the reference board under light irradiation is dependent on wavelength. The method further includes a calculation step for calculating the concentration of the specific component in the sample liquid based on the first and second detection results.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: October 19, 2010
    Assignee: ARKRAY, Inc.
    Inventor: Hideki Tanji
  • Patent number: 7794659
    Abstract: An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 14, 2010
    Assignee: Gen-Probe Incorporated
    Inventors: Gary D. Lair, Thanh N. Nguyen, Haitao Li, Florence F. Li, Byron J. Knight, Robert E. Heinz, Jerzy A. Macioszek, Christopher B. Davis, Robert F. Scalese
  • Patent number: 7794660
    Abstract: A fluid content monitor including a cuvette, a calorimeter adapted to generate a signal indicative of contents of a fluid sample contained in the cuvette, a container for holding a reagent, and a pump assembly for delivering reagent from the container to the cuvette. The pump assembly includes a tube extending from the container to the cuvette, check valves preventing reverse flow in the tube, and a hammer driven by a solenoid for repetitively compressing the tube to pump reagent to the cuvette. The cuvette can be removed for cleaning and replacement.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: September 14, 2010
    Assignee: HF Scientific, Inc.
    Inventors: Rowan Connelly, Joel Leal
  • Patent number: 7784678
    Abstract: A detecting strip reader with a removable firmware device, comprising a detecting strip reader and a firmware device. The firmware device comprises a first electrical connecting end, a database module, and an operation module, the firmware device being removably electrically connected to a second electrical connecting end in the detecting strip reader via the first electrical connecting end, wherein the characteristic of detecting strip reader is in that: a plurality of light reaction equations of detecting strips are saved in the database module, and when the first electrical connecting end of the firmware device receives an input signal from the second connecting end, the operation module selects one specific light reaction equation from the plurality of light reaction equations saved in the database module and performs the operation of the specific light reaction equation.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: August 31, 2010
    Assignee: ACTherm Inc.
    Inventors: Chien-Chih Kuo, Wen-Pin Hsieh
  • Patent number: 7781226
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 24, 2010
    Assignee: The Board of Regents of the University of Texas System
    Inventors: John T. McDevitt, Nick Christodoulides, Pierre Floriano, Karri L. Ballard, Bruce Bernard, Glenn Simmons
  • Publication number: 20100178208
    Abstract: Total analysis systems and methods for simultaneously monitoring a suite of biological and/or chemical species in water and/or other process systems are disclosed. The system provides a sample-volume controlled sensor array comprising a fluid delivery device and a plurality of optical sensor elements for determining the presence and total concentrations of multiple analytes in the process system simultaneously. Image identification algorithms are provided for identifying the analytes based on image intensity, color pattern, positional arrangement, and the like. The methods incorporate multivariate optimization algorithms to analyze multiple sensor responses. This produces analytical results that are typically difficult to obtain without full system or variable compensation. The improved array response may then be utilized to measure, monitor, and control the concentration of analytes in the chemical or biological sample or water system.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 15, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Caibin Xiao, Radislav A. Potyrailo, William G. Morris, Scott M. Boyette, LiJie Yu, Theodore J. Cecconie, Andrew M. Leach, Prashant V. Shrikhande
  • Patent number: 7754493
    Abstract: An object of the present invention is to suppress variations in measurement values when measuring a specific binding reaction between a physiologically active substance and a tested substance using a surface plasmon resonance measurement device, so that binding detection data with high reliability is obtained. The present invention provides a method for measuring a change in surface plasmon resonance, which comprises: using a surface plasmon resonance measurement device comprising a flow channel system having a cell formed on a metal film and a light-detecting means for detecting the state of surface plasmon resonance by measuring the intensity of a light beam totally reflected on the metal film; and exchanging the liquid contained in the above flow channel system, wherein a major axis of the metal film is 0.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 13, 2010
    Assignee: FUJIFILM Corporation
    Inventor: Hirohiko Tsuzuki
  • Patent number: 7754145
    Abstract: Provided photo-decontamination catalyst material comprising an optically active molecule embedded/incorporated/bridged in a periodic mesoporous organosilica (PMO). The optically active molecule is a typically a fluorophore or chromophore, more specifically, a porphyrin or phthalocyanine. The periodic mesoporous organosilica can be a template directed molecularly imprinted periodic mesoporous organosilica. The PMO material incorporating an optically active molecule is useful as a catalyst in photo-decontamination applications, as well as a detection element for stand-off point detection system.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: July 13, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Brandy J White, Mazyar Zeinali
  • Patent number: 7754498
    Abstract: A microsphere-based analytic chemistry system is disclosed in which self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which individual microsphere sensors are disposed in microwells at a distal end of the fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 13, 2010
    Assignee: Trustees of Tufts College
    Inventors: David R. Walt, Todd A. Dickinson
  • Patent number: 7749438
    Abstract: Periodic mesoporous organosilicas (PMO) which incorporate an optically active molecule into the material for use as an optical indicator of target binding. This material combines the stability, selectivity, and high density of binding sites characteristic of the PMO with the sensitivity and selectivity of the optically active molecule. The material undergoes a change when exposed to a sample containing a target molecule. The change can be observed by visual inspection or through the use of fluorescence spectra.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: July 6, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mazyar Zeinali, Brandy J White, Paul T Charles, Michael A Markowitz
  • Patent number: 7718130
    Abstract: Integrated photoluminescence (PL)-based chemical and biological sensors are provided comprising a photodetector (PD), a long-pass filter, an excitation source, and a sensing element, all based on thin films or structures. In one embodiment the light source is an organic light emitting device (OLED) and the sensing element is based on thin films or solutions in microfluidic channels or wells. The PD and optical filters are based on thin film amorphous or nanocrystalline silicon and related materials. In another embodiment, sensor components are fabricated on transparent substrates, which are attached back-to-back to generate a compact, integrated structure.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: May 18, 2010
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ruth Shinar, Joseph Shinar, Vikram L. Dalal
  • Patent number: 7718129
    Abstract: A bioassay substrate (1) takes a flat-plate shape in which the principal surface similar to that of optical disc such as CD, etc. is circular. At the center of the substrate (1), there is formed a center hole (2) into which a chucking mechanism for rotation and holding is inserted. The substrate (1) is rotationally driven with the center hole (2) being as center. On the substrate (1), there are formed two regions of a recording region (3) and a reaction region (4) which are formed in concentrical form in a radial direction. The recording region (3) is a region where, similarly to the optical disk information recording medium, laser beams are irradiated so that recording/reproduction of information is optically performed. The reaction region (4) is a region serving as the filed of mutual reaction between probe DNA (nucleotide chain for detection) and sample DNA (marked or labeled nucleotide chain), in concrete terms, the field of hybridization reaction.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventors: Takayoshi Mamine, Yasuhiro Sakamoto, Motohiro Furuki, Isamu Nakao
  • Patent number: 7713705
    Abstract: The present invention provides methods for the identification and use of diagnostic markers for differential diagnosis of diseases. In a various aspects, the invention relates to methods and compositions able to determine the presence or absence of one, and preferably a plurality, of diseases that exhibit one or more similar or identical symptoms. Such methods and compositions can be used to provide assays and assay devices for use in determining the disease underlying one or more non-specific symptoms exhibited in a clinical setting.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: May 11, 2010
    Assignee: Biosite, Inc.
    Inventors: Kenneth F. Buechler, Alan Maisel
  • Patent number: 7713479
    Abstract: A liquid analyser has a reactor portion and an associated measurement portion. A sample pump is operable to deliver a liquid sample to a reactor vessel. A base pump supplies a base solution to the reactor vessel. An ozone generator supplies ozone to the reactor vessel. The liquid sample is oxidised in the reactor vessel by means of hydroxyl radicals which are generated using the base solution and ozone to reduce complex components of the liquid sample to their lowest state in solution. The oxidised sample solution is delivered to an optical detector in the measurement portion to determine the concentration of one or more selected materials such as nitrogen, phosphorous or a heavy metal in the oxidised sample solution.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 11, 2010
    Assignee: Analytical Developments Limited
    Inventors: Martin Horan, Seamus O'Mahony
  • Patent number: 7704395
    Abstract: The invention provides a method and apparatus for separating blood into components, may be expanded to include other types of cellular components, and can be combined with holographic optical manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: April 27, 2010
    Assignee: Arryx, Inc.
    Inventors: Daniel Mueth, Amy Anderson, Jessica Shireman
  • Patent number: 7700303
    Abstract: The invention relates to biosensors, methods for obtaining them and their use for detecting, assaying or locating, in direct immunofluorescence, a ligand such as an antigen or hapten, in a heterogeneous population. The biosensor includes (i) at least one fragment of a receptor which is protein in nature, capable of binding to a ligand via an active site, where at least one amino acid residues of the fragment located in the proximity of the active site is naturally present in the form of a cystein (Cys) residue, or is substituted with a Cys residue, and (ii) a fluorophore coupled to the Cys residue.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: April 20, 2010
    Assignees: Institut Pasteur, Centre National de la Recherche Scientifique-CNRS
    Inventors: Martial Renard, Laurent Belkadi, Patrick England, Hugues Bedouelle
  • Patent number: 7695680
    Abstract: An assay system having a channel bounded by first and second reflective surfaces adapted to accommodate a fluid material therebetween and defining a plurality of regions in an array between those surfaces with each region defining a resonant cavity and adapted to receive a capturing material on a surface thereof whereby a source of radiation illuminates each region to provide a standing wave of radiation of within the cavity indicative of binding of said capturing agent to material under investigation, a binding thereof being detected in response to radiation from each cavity indicative of a change in the standing wave pattern.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: April 13, 2010
    Assignee: The Trustees of Boston University
    Inventors: M. Selim Unlu, David A. Bergstein, Michael F. Ruane, Bennett B. Goldberg
  • Patent number: 7695970
    Abstract: The present invention provides, a system and method for unobtrusively determining water content within a fuel cell. One embodiment of a system in accordance with the present invention includes a fuel cell body including an ionomeric membrane, water and a fluorophore contained therein. The system further includes a medium for permitting light transfer therein, such as an optical fiber, having opposing ends, wherein one end contacts or is disposed in a portion of the ionomeric membrane and the other end extends from the fuel cell body. The other end is preferably divided into at least two portions, one portion being operatively associated with a light source, and another portion being operatively associated with a spectrometer.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 13, 2010
    Assignee: University of Connecticut
    Inventors: Richard S. Parnas, Yatin P. Patil
  • Patent number: 7670844
    Abstract: A device and a method for measuring viscosity that includes attaching molecular rotors to a solid surface, exposing the solid surface to a fluid having a viscosity to be measured, and taking optical measurements to determine viscosity. The solid surface is preferably quartz, polystyrene or silicate glass, such as a fiber optic probe or a glass cuvette. The molecular rotors are of the type that includes an electron-donor group and electron-acceptor group that are linked by a single bond so that the groups may rotate with respect to one another, and that exhibit a fluorescence emission when rotation is hindered.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: March 2, 2010
    Assignees: The Curators of the University of Missouri, The Regents of the University of California, La Jolla Bioengineering Institute
    Inventors: Mark A. Haidekker, Sheila Grant, Emmanuel Theodorakis, Marcos Intaglietta, John A. Frangos
  • Patent number: 7666284
    Abstract: A sensor including a sensing layer is disposed over an electrode or an optode and a layer-by-layer assembled mass transport limiting membrane disposed over the sensing layer. The membrane includes at least one layer of a polyanionic or polycationic material. The assembled layers of the membrane are typically disposed in an alternating manner. The sensor also optionally includes a biocompatible membrane.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: February 23, 2010
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Ting Chen, Keith A. Friedman
  • Patent number: 7655475
    Abstract: The invention provides a luminescent based sensor having a luminescent material optically coupled to a substrate, and adapted to be used in a medium or environment such as water or air. A detector is provided to detect light that is emitted into the substrate by the material. The substrate is adapted to redirect light that is emitted into the substrate at angles with the range ?esc ? ? ? ?lsc where ?esc is the critical angle of the environment/substrate interface and ?lsc is the critical angle of the luminescent layer/substrate interface. Examples of possible configurations are described.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: February 2, 2010
    Assignee: Fluorocap Limited
    Inventors: Brian MacCraith, Lubos Polerecky
  • Patent number: 7655428
    Abstract: The present invention relates to methods and compositions for measuring latent protein C in test samples, particularly patient samples. The methods and compositions described are sensitive for latent protein C, relative to activated protein C.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 2, 2010
    Assignee: Biosite, Inc.
    Inventors: Gunars E. Valkirs, Joseph A. Buechler, Seok-Won Lee, Uday Kumar Veeramallu
  • Patent number: 7628958
    Abstract: An object is to provide a reaction detecting device in which a height dimension of the device itself can be set to be small to realize space saving, unevenness of measurement sensitivity for each reaction container is minimized, and high-sensitivity and high-precision reaction detecting is possible, the device includes: a reflective plate disposed above a temperature controllable reaction block disposed in a reaction chamber constituted in a main body to reflect light; and a light source lamp and a camera arranged in the main body, the light from the light source lamp is reflected by the reflective plate to enter each reaction container from above, and light such as fluorescence directed upwards from a reaction specimen is reflected by the reflective plate to enter the camera.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: December 8, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yuichi Tamaoki, Tadahisa Saga, Takashi Arai, Yasuhiro Kikuchi
  • Patent number: 7608463
    Abstract: An optical assay apparatus having an optical filter, an optical sensor with a light ray redirection portion and an assay sensing portion, and a filter to block certain wavelengths of excitation light rays and to pass certain wavelengths of signal recovery light rays from the optical sensor. A method for performing an assay that includes providing at least one assay station, moving the optical sensor into position over a respective fluid in at least one assay station, immersing the assay sensing portion in the respective fluid, and removing the assay sensing portion from the respective fluid.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 27, 2009
    Assignee: Research International, Inc.
    Inventor: Elric W. Saaski
  • Patent number: 7604981
    Abstract: A variety of types of molecules are detected and/or analyzed using an integrated micro-circuit arrangement. According to an example embodiment of the present invention, a micro-circuit arrangement detects excitable target markers in response to an excitation source. The excitation source emits a first electromagnetic radiation to excite one or more target markers into emitting a second electromagnetic radiation. The excitation source and detector combination can be optimized to detect a specific characteristic of a biological specimen. In this manner, an excitation source can be combined with several optical-detectors or detection channels, where each optical-detector is measuring or sensing the same or different characteristic of the biological specimen.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: October 20, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: James S. Harris, Jr., Stephen J. Smith, Evan P. Thrush, Ofer Levi
  • Patent number: 7598087
    Abstract: This invention provides protein or polypeptide imprinted polymers with integrated emission sites (PIPIES) for detecting the presence of a protein or polypeptide analyte comprising templated sites which are specific for the analyte. At or near the templated sites are selectively placed reporter molecules. A method is also disclosed for the preparation of the PIPIES and the use of these for the detection of analytes.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: October 6, 2009
    Assignee: The Research Foundation of State University of New York
    Inventor: Frank V. Bright
  • Patent number: 7592184
    Abstract: There is disclosed an apparatus and method for detecting and measuring volatile acidic or basic components including ammonia, ammonium, or volatile amines (compound) in a gas or liquid state fluid. Specifically, the present invention provides a PTFE-carrier solid phase indicator film having an ammonia-sensitive indicator dye embedded therein, such that the dye moiety changes color or spectral properties upon exposure to the compound to be detected.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: September 22, 2009
    Assignee: Photonic BioSystems, Inc.
    Inventors: Gamal E. Khalil, David L. Putnam, Todd W. Hubbard
  • Patent number: 7569188
    Abstract: A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: August 4, 2009
    Assignees: Ramot At Tel-Aviv University Ltd, The Georgia State University Research Foundation
    Inventors: Mark I. Stockman, David J. Bergman
  • Patent number: 7537732
    Abstract: Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: May 26, 2009
    Assignee: University of Washington
    Inventors: Richard Gustafson, James B. Callis, Jeffrey D. Mathews, John Robinson, Carsten A. Bruckner, Kuntinee Suvamakich
  • Patent number: 7524459
    Abstract: Techniques for integrating optoelectronic system and microfluidic system. An apparatus for optical analysis includes a detector system and a microfluidic system on the detector system. The apparatus is free from any lens system between the microfluidic system and the detector system. Methods of making such an apparatus and using such an apparatus are also disclosed.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: April 28, 2009
    Assignee: California Institute of Technology in Pasadena
    Inventors: Mark L. Adams, Stephen R. Quake, Axel Scherer
  • Patent number: 7521019
    Abstract: The present invention provides a device and methods for detecting the presence of an analyte in a sample using an encapsulated sensor. Methods for manufacturing the sensor are also disclosed.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 21, 2009
    Assignee: Lifescan, Inc.
    Inventors: Anthony J. Polak, Ralph Ballerstadt, Allyson Beuhler, Claudia Gamboa
  • Patent number: 7517695
    Abstract: A method for detecting local shear stress values using molecular rotors that allows for an extremely sensitive determination of a shear stress field or a flow field, even at very low flow rates. In one embodiment, molecular rotors may be adhered to a fiber optic probe or other solid surface, and the fluorescence emission of those molecular rotors may be probed at a location of the fiber optic probe tip or other solid surface. In another preferred embodiment, rotors may be adhered to another solid surface, such as any glass or polymer substrate that may be pre-functionalized (e.g., quartz, polystyrene or silicate glass) to create a probe that may then be used for in vivo as well as in vitro viscosity measurements. In another embodiment, molecular rotors may be dissolved in a target solution, and emission intensity obtained by one of several techniques.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: April 14, 2009
    Assignee: The Curators of the University of Missouri
    Inventor: Mark A. Haidekker
  • Patent number: 7513983
    Abstract: Methods and insulator electrode devices for performing electrochemical reactions are disclosed. The devices consist of high specific surface area electrodes based on a channeled conducting base material that has been coated with an organic or inorganic insulating film or multiple layers of such films. The chemical reactions are exemplified by exciting one or several label compounds into an excited state which is spontaneously de-excited by emission of ultraviolet, visible or infrared light, in aqueous solution. This provides the basis for reproducible analytical applications in bioaffinity assays such as immunoassays and DNA-probing assays.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: April 7, 2009
    Assignee: Labmaster Ltd.
    Inventors: Timo Ala-Kleme, Philip Canty, Jarkko Eskola, Timo Korpela, Sakari Kulmala, Piia Vainio
  • Patent number: 7507582
    Abstract: A method of fluorescence measurement on analytes, marked with different fluorescent markers, which have spectrally different fluorescence emissions, in a sample is described, having the following steps: illumination of the sample in the measurement volume using a laser to excite the fluorescence emission of the at least two fluorescent markers, the illumination of the measurement volume being performed with a maximum of one single laser line, having an excitation intensity sufficiently high that the fluorescent markers are jointly excited through 2-photon absorptions, detection of the fluorescence emission using at least two detector devices which are designed for light detection in different spectral ranges in accordance with the spectral fluorescence properties of the fluorescent markers, and performance of a cross-correlation and/or coincidence analysis of detector signals of the detector devices. A measurement device for performing the method is also described.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: March 24, 2009
    Assignee: Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.
    Inventors: Katrin Heinze, Petra Schwille, Andre Koltermann, Ulrich Kettling
  • Publication number: 20090075321
    Abstract: A sensor for measuring the concentration of an assay substance, such as oxygen in tissue. The sensor comprises an optical fibre (2) which passes through, a gas isolation collar (11) into a cavity (15) defined by a needle tube (13) attached to the gas isolation collar. Both the optical fibre (2) and the needle tube (13) are bonded to the gas isolation collar (11) in gas-tight fashion. The cleaved end (8) of the optical fibre within the cavity is provided with an optically active substance (9) having optical properties, such as fluorescence, dependent on the concentration of the assay substance. The cavity (15) is filled with a polymer (16) which is permeable to the assay substance. Lateral flow passages (18) are provided for the assay substance to pass into the permeable polymer (16) and to the fluorophor (9). Light is supplied to the fluorophor via the optical fibre, and functions of its fluorescence are measured to calculate the concentration of the assay substance.
    Type: Application
    Filed: March 13, 2006
    Publication date: March 19, 2009
    Inventors: Andrew Obeid, Neville Davies, Suzanne Douglas, Trevor DuPlooy, Geoffrey Ward
  • Patent number: 7504068
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A sensor of a ring down cell formed from an optical fiber is exposed to the sample gas or liquid. A coherent source emits radiation into the optical fiber loop, which in turn is received at an output coupler. The fiber optic ring is coupled to a sensor which has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. The sensor has an enhanced evanescent region. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 17, 2009
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Patent number: 7504263
    Abstract: A method for detection and measurement of trace species in a gas or liquid sample is provided. The method comprises forming a sensor from an optical fiber by tapering a portion the optical fiber along a length thereof, exposing the tapered portion of the optic fiber to the sample gas or sample liquid, emitting radiation from a coherent source, coupling at least a portion of the radiation emitted from the coherent source into the fiber optic ring, receiving a portion of the radiation traveling in the fiber optic ring, and determining the level of trace species in the gas or liquid sample based on a rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 17, 2009
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Patent number: 7501092
    Abstract: The present relates in general to upconversion luminescence (“UCL”) materials and methods of making and using same and more particularly, but not meant to be limiting, to Mn2+ doped semiconductor nanoparticles for use as UCL materials. The present invention also relates in general to upconversion luminescence including two-photon absorption upconversion, and potential applications using UCL materials, including light emitting diodes, upconversion lasers, infrared detectors, chemical sensors, temperature sensors and biological labels, all of which incorporate a UCL material.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 10, 2009
    Assignee: Nomadics, Inc.
    Inventor: Wei Chen
  • Patent number: 7435386
    Abstract: The biosensor comprises a modular biorecognition element and a modular flexible arm element. The biorecognition element and the flexible arm element are each labeled with a signaling element. The flexible arm contains an analog of an analyte of interest that binds with the biorecognition element, bringing the two signaling elements in close proximity, which establishes a baseline fluorescence resonance energy transfer (FRET). When an analyte of interest is provided to the biosensor, the analyte will displace the analyte analog, and with it, the signaling module of the modular flexible arm, causing a measurable change in the FRET signal in a analyte concentration dependent manner. The modularity of different portions of the biosensor allows functional flexibility. The biosensor-operates without additional development reagents, requiring only the presence of analyte or target for function.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: October 14, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Igor L. Medintz, Ellen R. Goldman, George P. Anderson, J. Matthew Mauro
  • Patent number: 7419636
    Abstract: A detector for detecting vapors emitted from analytes includes a housing, a pump and a sensing assembly. The housing has an inlet, an outlet and an enclosed sensing volume therebetween. The pump communicates with the housing for moving a carrier sequentially through the enclosed sensing volume at a predetermined flow rate. The sensing assembly senses the vapors of the analyte delivered by the carrier as the carrier passes through the housing. The sensing assembly includes a sensing unit constructed of an amplifying fluorescent polymer, a source of excitation, a detector, and a convertor assembly.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: September 2, 2008
    Assignee: Nomadics, Inc.
    Inventors: Craig A. Aker, Colin J. Cumming, Mark E. Fisher, Michael J. Fox, Marcus J. IaGrone, Dennis K. Reust, Mark G. Rockley, Eric S. Towers
  • Patent number: 7416701
    Abstract: A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: August 26, 2008
    Assignee: Ecolab Inc.
    Inventors: Eugene Tokhtuev, Anatoly Skirda, Viktor Slobodyan, Christopher Owen