Waveguides Patents (Class 422/82.11)
  • Patent number: 8940523
    Abstract: The present invention relates to a pipette tip (100, 200, 201, 300) comprising a tip body (110) having an inner surface and an outer surface (112). The inner surface (111) defines an inner cavity (120, 320), which has an upper end and a lower end. The upper end has an upper opening (131); and the lower end has a lower opening (141). At least a part of the inner surface (111) is provided with capturing agents (151) of at least one type forming at least one capturing-agent region (150) on the at least one inner surface. The at least one capturing agent region (150) is capable of selectively binding target substances (152) of at least one type comprised in a sample to form at least agent-target conjugates (155), the arrangement of which define at least one agent-target region (156).
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 27, 2015
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique S.A.—Recherche et Developpement
    Inventors: Stéphane Follonier, Linsey Fan, Pierre Indermuhle
  • Patent number: 8940238
    Abstract: The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly comprises a waveguide, a monolithic substrate optically coupled to the waveguide, and a thin-film layer directly bonded to the sensing side of the monolithic substrate. The refractive index of the monolithic substrate is higher than the refractive index of the transparent material of the thin-film layer. A spectral interference between the light reflected into the waveguide from a first reflecting surface and a second reflecting surface varies as analyte molecules in a sample bind to the analyte binding molecules coated on the thin-film layer.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: January 27, 2015
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Yushan Tan, Erhua Cao, Ming Xia, Robert F. Zuk
  • Publication number: 20150023840
    Abstract: The disclosed subject matter provides a nanoaperture having a bottom surface and a side wall comprising gold. A surface of the side wall is passivated with a first functional molecule comprising polyethylene glycol. The bottom surface of the nanoaperture can be functionalized with at least one second molecule comprising polyethylene glycol, for example, a silane-PEG molecule. The second molecule can further include a moiety, such as biotin, which is capable of binding a target biomolecule, which in turn can bind to a biomolecule of interest for single molecule fluorescence imaging analysis. Fabrication techniques of the nanoaperture are also provided.
    Type: Application
    Filed: July 28, 2014
    Publication date: January 22, 2015
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Colin Kinz-Thompson, Ruben L. Gonzalez, JR., James C. Hone, Matteo Palma, Alexander Alexeevich Godarenko, Daniel Alexandre Chenet, Shalom J. Wind
  • Patent number: 8932874
    Abstract: The invention is directed towards methods and compositions for identifying the amount of ammonium acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of ammonium acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of ammonium acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the ammonium acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 13, 2015
    Assignee: Nalco Company
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert M. Mack
  • Patent number: 8920723
    Abstract: A sample support structure comprising a sample support manufactured from a semiconductor material and having one or more openings therein. Methods of making and using the sample support structure.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 30, 2014
    Assignee: Protochips, Inc.
    Inventors: John Damiano, Jr., Stephen E. Mick, David P. Nackashi
  • Patent number: 8920729
    Abstract: A sensor for sensing at least one biological target or chemical target is provided. The sensor includes a membrane includes a membrane material that supports generation and propagation of at least one waveguide mode, where the membrane material includes a plurality of voids having an average size <2 microns. The sensor also includes at least one receptor having structure for binding to the target within the plurality of voids, and an optical coupler for coupling light to the membrane sufficient to generate the waveguide mode in the membrane from photons incident on the optical coupler.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 30, 2014
    Assignee: Vanderbilt University
    Inventors: Guoguang Rong, Sharon M. Weiss, Raymond L. Mernaugh
  • Patent number: 8920749
    Abstract: A microchip capable of sending liquid in a micro flow channel to a predetermined place irrespective of the pressure difference and sending a mixture of two or more liquid masses to a predetermined place even if the channel structure is simple. The microchip comprises an intermediate reservoir portion provided in a micro flow channel and adapted for temporarily holding liquid sent through the micro flow channel. The microchip is characterized in that the intermediate reservoir portion has a side channel, the volume of the intermediate reservoir portion is smaller than the total volume of the liquid sent into the intermediate reservoir portion, the side channel is provided for communication of a micro flow channel on the upstream side of the intermediate reservoir portion with a micro flow channel on the downstream side thereof, and the cross-section area of the side channel is smaller than that of the micro flow channel.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Youichi Aoki, Akihisa Nakajima, Kusunoki Higashino, Yasuhiro Sando, Yoshikazu Kurihara
  • Patent number: 8906672
    Abstract: A single injection gradient with a biosensor, both structural and methodological, achieves the binding of analyte to immobilized ligand over a wide concentration range without the necessity of regeneration of the sensing area. A gradient of concentrations adjacent to or within a flow cell facilitates kinetic analysis of interactions without requiring multiple discrete volumes or injections to achieve a range of concentrations. A continuous gradient fluid is preferably formed directly adjacent to the flow cell inlet or a region of sample/buffer dispersion at an injection point into a flow channel of a flow cell. The analyte gradient may be flowed through the flow cell from a low analyte concentration. Multiple component gradients are also provided.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: December 9, 2014
    Assignee: Flir Systems, Inc.
    Inventor: John Gerard Quinn
  • Patent number: 8906670
    Abstract: The application relates to improved optical containment structures, methods of manufacture and use, and systems for employing same. The optical containment structures generally comprise zero-mode waveguide structures having non-reflective walls. The non-reflective walls allow the preparation of optical containment regions in which the optical containment dimensions can be decoupled from the solution containment dimensions. The application also relates to methods for producing islands of functionality within nanoscale apertures.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: December 9, 2014
    Assignee: Pacific Bioscience of California, Inc.
    Inventors: Jeremy Gray, Ronald L. Cicero, Annette Grot, Natasha Popovich, Stephen Dudek
  • Patent number: 8900515
    Abstract: The present invention provides a biosensing device, comprising an input unit, an analysis unit, a process unit, and a set unit for storing resulting data values as the basis for calibrating the biosensing device, to set up the calibration parameters of a strip of the biosensing device.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: December 2, 2014
    Assignee: Health & Life Co., Ltd.
    Inventor: Meng Yi Lin
  • Patent number: 8894934
    Abstract: Techniques, apparatus, material and systems are described for implementing a three-dimensional composite mushroom-like metallodielectric nanostructure. In one aspect, a surface plasmon based sensing device includes a substrate and a layer of an anti-reflective coating over the substrate. The surface Plasmon based sensing device includes a dielectric material on the anti-reflective coating shaped to form a 2-dimensional array of nanoholes spaced from one another. Also, the surface Plasmon based sensing device includes a layer of a metallic film formed on the 2-dimensional array of nanoholes to include openings over the nanoholes, respectively, wherein the sensing device is structured to support both propagating surface plasmon polariton (SPP) waves and localized surface plasmon resonant (LSPR) modes.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 25, 2014
    Assignee: The Regents of the University of California
    Inventors: Lin Pang, Haiping Matthew Chen, Yeshaiahu Fainman
  • Patent number: 8883079
    Abstract: A water-quality monitoring system for an aquatic environment that includes a monitoring unit and a chemical indicator wheel designed and configured to be submerged in the water being monitored. The chemical indicator wheel includes a holder that supports a number of chemical indicators selected for use in measuring levels of constituents of the water. When in use, the wheel is drivingly engaged with a monitoring/measuring unit that includes at least one reader for reading the chemical indicators. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo an optically detectable physical change as levels of one or more constituents of the water change. Also disclosed are a variety of features that can be used to provide the monitoring system with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 8883080
    Abstract: A device, a method of fabricating the device and a sample analysis system that includes the device are provided. The device includes an optical waveguide having a plurality of nanofeatures integrated thereon to influence at least one of evanescence and coupling of an optical field of the optical waveguide. The sample analysis system includes a fluidic actuation system for introducing sample specimen fluid into a microfluidic channel of the device for evanescence based detection.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 11, 2014
    Assignee: Concordia University
    Inventors: Muthukumaran Packirisamy, Arvind Chandrasekaran
  • Patent number: 8877129
    Abstract: The invention relates to a device for optical detection of substances in a liquid or gaseous medium, with a substrate with molecules for detecting the substances that are to be detected, wherein these molecules are immobilized at a surface of the substrate or in the substrate and wherein the substances that are to be detected can essentially be selectively bound to these molecules, wherein light waves can be coupled into the substrate and can be guided through this, and wherein the substrate is a foil element made of a transparent material in which a coupling structure for coupling the light waves is integrally formed and in which the coupled light waves can be guided.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: November 4, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Albrecht Brandenburg
  • Patent number: 8871148
    Abstract: Herein are disclosed methods and devices for detecting the presence of an analyte. Such methods and devices may comprise at least one sensing element that comprises at least one optically responsive layer that comprises at least a highly analyte-responsive sublayer and a minimally analyte-responsive sublayer. Methods of making and using such sensing elements are also disclosed.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: October 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Michael S. Wendland, Neal A. Rakow
  • Patent number: 8867038
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 21, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Patent number: 8865077
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light source and a waveguide. The waveguide comprises a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further comprises a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 21, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8865078
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus includes a light source and a waveguide. The waveguide includes a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further includes a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 21, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8859268
    Abstract: The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 14, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Harshini Mukundan, Hongzhi Xie, Basil I. Swanson, Jennifer Martinez, Wynne K. Grace
  • Patent number: 8858884
    Abstract: A sterilization indicator system and method of using the system to determine efficacy of a sterilization process. The system includes a vial having a first compartment containing spores of one or more species of microorganism; a second compartment containing a growth medium with a disaccharide, an oligosaccharide or a polysaccharide in which the vial is free of monosaccharide; an enzyme, capable of acting upon the monosaccharide to yield reaction products and electron transfer, disposed on two or more electrodes adapted to carry an electrical signal resulting from the electron transfer, the pair of electrodes positioned to contact the combined contents of the first compartment and the second compartment during incubation; and an apparatus linked or linkable to the electrodes and adapted to detect and measure the electrical signal resulting from electron transfer when the enzyme acts upon the monosaccharide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: American Sterilizer Company
    Inventors: Phillip P. Franciskovich, Tricia A. Cregger
  • Patent number: 8845981
    Abstract: A device for volumetric metering a liquid biologic sample is provided. The device includes an initial chamber, a second chamber, a third chamber, a first valve, a second valve and a third valve. The chambers are each configured so that liquid sample disposed in the respective chamber is subject to capillary forces. Each chamber has a volume, and the volume of the initial chamber is greater than the volume of either the second or the third chambers. The valves each have a burst pressure. The burst pressure of the first valve is greater than the third burst pressure. The first valve is in fluid communication with the second chamber. The second valve is disposed between, and is in fluid communication with, the initial chamber and the third chamber. The third valve is in fluid communication with the third chamber.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Abbott Point of Care, Inc.
    Inventor: Manav Mehta
  • Patent number: 8841137
    Abstract: Disclosed is a product that includes an optical sensor; a target-responsive hydrogel matrix on a surface of the optical sensor (where the hydrogel matrix comprises one or more target-specific receptors and one or more target analogs), and one or more high refractive index nanoparticles within the hydrogel matrix, where a detectable change occurs in a refractive index of the hydrogel matrix when contacted with one or more target molecules. Sterile packages and detection devices containing the product, and methods of detecting a target molecule using the product, are also disclosed.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: September 23, 2014
    Assignee: University of Rochester
    Inventors: Lisa DeLouise, Lisa Bonanno
  • Patent number: 8841119
    Abstract: A method of fabricating biochip sensor comprising providing a precursor; depositing the precursor on a substrate to form a coating; and rapid melting/quenching treatment of the coating with an energy source to form micro/nanotextured surface with enhanced reflectance for fast chemiluminescence response of E-Coli bacteria.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 23, 2014
    Assignee: Mridangam Research Intellectual Property Trust
    Inventors: Pravansu S. Mohanty, Ramesh K. Guduru
  • Patent number: 8835185
    Abstract: A substrate of a target substance-detecting element for detecting a target substance in a specimen based on localized surface plasmon resonance comprises a supporting member and a metal nano-dot group provided on the supporting member, metal nano-dots each of which is comprised in the metal nano-dot group and adjacent to each other are arranged with a gap between the metal nano-dots of not larger than 30 nm.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: September 16, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoru Nishiuma, Masaya Ogino
  • Patent number: 8831783
    Abstract: A biochemical processing apparatus is provided having a stage receiving a biochemical reaction cartridge which includes chambers and flow paths communicating therebetween, a moving system for moving liquid via the flow paths, and a detector for detecting the presence of the liquid in a chamber and/or the amount of the liquid. In addition, a determining device determines a result of the movement of the liquid from the information of the liquid in the chamber detected by the detector.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuyuki Numajiri
  • Patent number: 8802029
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 12, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder
  • Patent number: 8796012
    Abstract: A technique for high sensitivity evanescent field molecular sensing employs a detection scheme that simultaneously couples a polarized beam to a single mode of a waveguide, and couples the polarized beam out of the waveguide to specularly reflect the beam by the same grating. Strong interaction with the single (preferably TM) mode is provided by using a silicon on insulator (SOI) wafer having a waveguide thickness chosen between 10-400 nm so that the majority of the mode field strength spans the evanescent field. Well known, robust techniques for producing a grating on the waveguide are provided. Interrogation from a backside of the SOI wafer is taught.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: August 5, 2014
    Assignee: National Research Council of Canada
    Inventors: Bill Sinclair, Jens Schmid, Philip Waldron, Dan-Xia Xu, Adam Densmore, Trevor Mischki, Greg Lopinski, Jean Lapointe, Daniel Poitras, Siegfried Janz
  • Patent number: 8784749
    Abstract: This invention provides a digital microfluidic manipulation device and a manipulation method thereof. This device comprises a PDMS membrane having a surface comprising a plurality of hydrophobic microstructures; a plurality of air chambers arranged in an array and placed under the PDMS membrane; and a plurality of air channels, each of which connects to a corresponding one of the plurality of air chambers. When a suction force is transmitted via one of the plurality of air channels to the corresponding air chamber, a portion of the PDMS membrane above the air chamber deforms toward the air chamber, so that the surface morphology and the contact angle of the liquid/solid interface of the surface comprising the plurality of hydrophobic microstructures are altered and thereby to drive droplets.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: National Taiwan University
    Inventors: Jing-Tang Yang, Chao-Jyun Huang, Chih-Yu Hwang
  • Patent number: 8778279
    Abstract: The present disclosure relates to microfluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough. In certain embodiments, the microfluidic devices have onboard sterilization capabilities. In other embodiments, microfluidic devices have integral collection bags and methods for keeping the microfluidic channels clean.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 15, 2014
    Assignees: Sony Corporation, Sony Corporation of America
    Inventor: Gary P. Durack
  • Patent number: 8765058
    Abstract: The invention concerns an analyzer, typically for analyzing body fluids, which has one or several exchangeable cassettes (consumables) that contain operating liquids, operating materials and/or consumables and can be inserted into corresponding holders of the analyzer, wherein the analyzer has a system for exchanging ambient air which has a filter unit on the inlet side of the analyzer to filter the ambient air that needs to be exchanged. The filter unit is integrated into at least one of the exchangeable cassettes in order to minimize the amount of maintenance for the analyzer.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Wolfgang Sprengers, Berndt Ebner, Andreas Riegelnegg
  • Publication number: 20140178861
    Abstract: The invention provides methods and devices for generating optical pulses in one or more waveguides using a spatially scanning light source. A detection system, methods of use thereof and kits for detecting a biologically active analyte molecule are also provided. The system includes a scanning light source, a substrate comprising a plurality of waveguides and a plurality of optical sensing sites in optical communication with one or more waveguide of the substrate, a detector that is coupled to and in optical communication with the substrate, and means for spatially translating a light beam emitted from said scanning light source such that the light beam is coupled to and in optical communication with the waveguides of the substrate at some point along its scanning path. The use of a scanning light source allows the coupling of light into the waveguides of the substrate in a simple and cost-effective manner.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Inventor: Reuven DUER
  • Publication number: 20140170024
    Abstract: [Problem] To provide a target substance detection chip, a target substance detection device, and a target substance detection method, that can be manufactured easily in a small size at low costs with reduction of the number of parts involved in the detection chip constituted by an optical prism and a detection plate used for a SPR sensor and an optical waveguide mode sensor, that can detect a target substance quickly with high sensitivity, and in which an analyte liquid is easily delivered.
    Type: Application
    Filed: July 3, 2012
    Publication date: June 19, 2014
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Makoto Fujimaki, Nobuko Fukuda, Kenichi Nomura, Hidenori Nagai, Toshihiko Ooie
  • Patent number: 8753872
    Abstract: A method and apparatus for assay of multiple analytes. The method uses a sensing element comprising a substrate upon which is arranged a multiplicity of recognition elements, such that each element is laid out in a predetermined pattern. Each pattern is unique in that it can give rise to a characteristic diffraction pattern in the assay. The patterns may or may not be interpenetrating on the substrate surface. The method of detecting multiple analytes includes contacting the medium of analytes with the patterned substrate, illuminating the substrate by a light source, and detecting any resultant diffraction image. The pattern of diffraction and the intensity of the diffracted signal provides information about the existence of specific analytes and their quantification.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 17, 2014
    Assignee: Axela Inc.
    Inventors: M. Cynthia Goh, Jane B. Goh, Richard Mcaloney, Richard Loo
  • Patent number: 8747779
    Abstract: A microfluidic cartridge including on-board dry reagents and microfluidic circuitry for determining a clinical analyte or analytes from a few microliters of liquid sample; with docking interface for use in a host workstation, the workstation including a pneumatic fluid controller and spectrophotometer for monitoring analytical reactions in the cartridge.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Micronics, Inc.
    Inventors: Isaac Sprague, John E. Emswiler, C. Frederick Battrell, Joan Haab, Sean M. Pennell, Justin L. Kay, Zane B. Miller, Troy D. Daiber
  • Patent number: 8747751
    Abstract: A system and methods of sequencing a nucleic acid by detecting the identity of a fluorescent nucleotide analogue incorporated at the 3? end of a growing nucleic acid strand are provided. The system may include a substrate comprising a plurality of substantially parallel excitation waveguides, and a plurality of substantially parallel collection waveguides, the excitation waveguides and collection waveguides crossing to form a two-dimensional array of intersection regions, a plurality of optical sensing sites in optical communication with the intersection regions, one or more switchable light sources and a detector coupled to the light dispersive module. Methods of using these systems are also described.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: June 10, 2014
    Assignee: PLC Diagnostics, Inc.
    Inventors: Reuven Duer, James Herron
  • Patent number: 8735165
    Abstract: A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Purdue Research Foundation
    Inventors: Agbai Agwu Nnanna, Ahmed Hasnain Jalal
  • Patent number: 8721969
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light source and a waveguide. The waveguide comprises a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further comprises a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 13, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8716028
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Nalco Company
    Inventors: Amy Tseng, Brian V. Jenkins, Robert M. Mack
  • Patent number: 8709356
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 29, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8703070
    Abstract: Apparatus for immunoassay includes: a cartridge, including at least one test unit; a pin-film assembly, having a second sealing film, a plurality of pierce mechanisms, and a first actuation unit; a plurality of magnetic particles; at least one first magnetic unit; and at least one second magnetic unit. The test unit includes a plurality of fluid chambers, a plurality of pin chambers, a microchannel structure, a buffer chamber, a detection chamber and a waste chamber. The first actuation unit drives the pierce mechanisms to enable a working fluid to flow into the detection chamber storing the magnetic particles. As the second magnetic unit has a magnetic force larger than that of the first magnetic unit and can move reciprocatingly between a third position and a fourth position, the magnetic particles are driven to move reciprocatingly inside the detection chamber, thereby fully mixing the magnetic particles with the working fluid.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: April 22, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Shaw-Hwa Parng, Chih-Wen Yang, Yu-Yin Tsai, Yi-Chau Huang
  • Publication number: 20140105789
    Abstract: An optical-waveguide sensor chip includes an optical waveguide having a first substance immobilized on the surface thereof, the first substance being specifically reactive with an analyte substance, and fine particles dispersed on the optical waveguide and having a second substance immobilized on the surface thereof, the second substance being specifically reactive with the analyte substance.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shingo KASAI, Ikuo UEMATSU, Ichiro TONO, Tomohiro TAKASE, Isao NAWATA, Kayoko OOMIYA, Yuriko OYAMA, Tsutomu HONJOH
  • Patent number: 8696992
    Abstract: Disclosed is a highly reliable optical fiber measurement device and measurement method having a simple and compact structure.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 15, 2014
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima
  • Patent number: 8697435
    Abstract: A system for sample preparation and analyte detection includes a cartridge, with a fluidic channel, a waveguide, and a capture spot. The system further includes a force field generator, an imaging system, and a fluid, which includes a sample potentially containing a target analyte, first type particles, which include binding moieties specific for the target analyte and are responsive to a force field, and second type particles, which include binding moieties specific for the target analyte and are capable of generating a signal. When the sample contains the target analyte, specific binding interactions between the target analyte and binding moieties link first and second type particles via the target analyte to form multiple-particle complex capturable at a capture spot. The force field allows manipulation of the particles and multiple-particle complex such that the detected signal from the second type particles is indicative of the target analyte within the sample.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 15, 2014
    Assignee: MBio Diagnostics, Inc.
    Inventors: James R. Heil, Michael J. Lochhead, Kevin D. Moll, Christopher J. Myatt
  • Patent number: 8697008
    Abstract: A method and device for periodically perturbing the flow field within a microfluidic device to provide regular droplet formation at high speed.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Eastman Kodak Company
    Inventors: Andrew Clarke, Nicholas J. Dartnell, Christopher B. Rider
  • Patent number: 8691153
    Abstract: A fluorescence reader for an optical assay arrangement includes a polymeric sample substrate having a reaction site-surface and a substrate surface. A light source is arranged to illuminate the reaction site-surface through the substrate surface, and a detector device is arranged to detect fluorescent light emitted from the reaction site-surface and transmitted through the substrate surface, the substrate surface provided, for example, as a light-collecting body to allow fluorescent light rays exceeding a critical emission angle for total internal reflection to escape the substrate and enter the body.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 8, 2014
    Assignee: Johnson & Johnson AB
    Inventors: Tomas Lindstrom, Ib Mendel-Hartvig, Ove Öhman, Johan Backlund, Kennet Vilhelmsson
  • Patent number: 8691151
    Abstract: This invention provides an apparatus for particle sorting, particle patterning, and methods of using the same. The sorting or patterning is opto-fluidics based, in that particles are applied to individual chambers in the device, detection and/or analysis of the particles is carried out, such that a cell or population whose removal or conveyance is desired is defined, and the cell or population is removed or conveyed via application of an optical force and flow-mediated conveyance or removal of the part.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: April 8, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph Kovac, Joel Voldman
  • Publication number: 20140093432
    Abstract: The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly comprises a waveguide, a monolithic substrate optically coupled to the waveguide, and a thin-film layer directly bonded to the sensing side of the monolithic substrate. The refractive index of the monolithic substrate is higher than the refractive index of the transparent material of the thin-film layer. A spectral interference between the light reflected into the waveguide from a first reflecting surface and a second reflecting surface varies as analyte molecules in a sample bind to the analyte binding molecules coated on the thin-film layer.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Inventors: Hong Tan, Yushan Tan, Erhua Cao, Min Xia, Robert F. Zuk
  • Patent number: 8685710
    Abstract: A photodetector detects fluorescence emitted from a sample placed on a substrate of a DNA chip. There is an irradiation optical system for guiding irradiation light by a first optical waveguide, gathering the irradiation light by a first lens and irradiating the sample. A reception optical system gathers fluorescence at an input-side end surface of a second optical waveguide by a second lens and guides the fluorescence to a measuring unit. The irradiation optical system and the reception optical system are separate light guiding paths. The reception optical system is of a confocal optical system in which a focal point on the sample is identical to a focal point at the input-side end surface of the second optical waveguide of the reception optical system.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 1, 2014
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kenichi Kimura, Ken Tsukii, Shinichi Taguchi, Jie Xu, Motosuke Kiyohara
  • Patent number: 8673215
    Abstract: The invention relates to the test device for platelet aggregation detection comprising: —an element (1) for receiving a blood sample—a capillary tube (3) connected at a first end (31) to said element (1) and at a second end (32) to a pressure lowering device (5) to pump said blood sample through said capillary tube (3)—at least a pair of facing electrodes (8) on the capillary tube—a device for measuring an impedance between said pair of facing electrodes. The invention also relates to a process for using this device, comprising: a) receiving a blood sample and pumping it through the capillar tube (3) b) determining a dynamic change of the value of the impedance between at least one pair of electrodes (8).
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: March 18, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Francine Rendu, Daniel Fruman, Jaime Levenson
  • Patent number: RE44788
    Abstract: Test element analysis system for the analytical investigation of a sample, in particular of a body liquid of human beings or animals, comprising test elements (2) with a carrier film (5) and a test field (7) fixed to the flat side (6) of the carrier film (5), the test field (7) containing a reagent system the reaction of which with the sample (21) leads to an optically measurable change in the detection zone (24) which is characteristic for the analysis, and an evaluation instrument with a measuring device for measuring the optically measurable change.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 4, 2014
    Assignee: Roche Diagnostics GmbH
    Inventors: Wolfgang Petrich, Wilfried Schmid, Gerrit Kocherscheidt, Jean-Michel Asfour