Sulfating Patents (Class 423/193)
-
Patent number: 11155896Abstract: A process is divulged for the recovery of lithium from metallurgic slags comprising the steps of roasting spodumene to convert it from the alpha to the beta variant; reacting the beta variant with sulfuric acid, using a stoichiometric excess of acid; repulping the reaction product with water, forming an acidic slurry; neutralizing the acidic slurry to a pH between 5 and 7, by addition of at least one neutralizing agent; filtrating the neutralized slurry, thereby obtaining a lithium bearing solution and a residue; characterized that, in either one or both of the steps of repulping and neutralizing the acidic slurry, lithium-bearing metallurgic slag is added as neutralization agent. The lithium-bearing metallurgic slag is used to substitute at least part of the classic neutralizing agent. The lithium in the slag is released, and added to the lithium liberated from the spodumene.Type: GrantFiled: October 24, 2017Date of Patent: October 26, 2021Assignee: UMICOREInventors: Harald Oosterhof, David Dupont
-
Patent number: 7858058Abstract: The invention pertains to removing soluble alkali metal or ammonium salt of a divalent anion from brine comprising following steps: obtaining brine with NaCl-concentration between 150g/L and saturation in the presence or absense of a cyrstal growth inhibitor for NaCl(GCI-NaCl),or with NaCl concentration above saturation in the presence of a CGI-NaCl, said brine optionally comprising a crystal growth inhibitor for the alkali metal or ammonium salt of the divalent anion(CGI-DA); if necessary, acidify the solution to pH<11.5; if the concentration of CGI-DA is less than 20 mg/L, adding CGI-DA to obtain at least 20 mg CGI-DA/L; subjecting the solution to a membrane filtration; if the concentration of CGI-DA in the concentration from the separation is less than 20 mg/L, adding CGI-DA to obtain at least 20 mg CGI-DA/L; crystalling the concentration; removing the crystallized alkali metal or ammonium salt of the divalent anion.Type: GrantFiled: October 18, 2005Date of Patent: December 28, 2010Assignee: Akzo Nobel N.V.Inventors: Gerrald Bargeman, René Lodewijk Maria Demmer, Boris Kuzmanovic, Cornelis Elizabeth Johannus Van Lare, Mateo Jozef Jacques Mayer, Maarten André Irène Schutyser, Jan Barend Westerink
-
Patent number: 7323150Abstract: A method for recovering at least one metallic element from ore or other material is described and includes reacting ore or other material with a salt capable of recovering the metallic element from the ore or other material to form a reaction product that includes the metallic element. The method also includes recovering the metallic element from the reaction product. To remove the metallic element from the reaction product, the method can involve crushing the reaction product to form a crushed material and dissolving the crushed material in a solvent to remove the precipitates, thereby leaving a sulfate solution containing the metallic element.Type: GrantFiled: May 23, 2003Date of Patent: January 29, 2008Assignee: Cabot CorporationInventors: Bart F. Bakke, David Madden
-
Publication number: 20040253157Abstract: A method for recovering at least one metallic element from ore or other material is described and includes reacting ore or other material with a salt capable of recovering the metallic element from the ore or other material to form a reaction product that includes the metallic element. The method also includes recovering the metallic element from the reaction product. To remove the metallic element from the reaction product, the method can involve crushing the reaction product to form a crushed material and dissolving the crushed material in a solvent to remove the precipitates, thereby leaving a sulfate solution containing the metallic element.Type: ApplicationFiled: May 23, 2003Publication date: December 16, 2004Inventors: Bart F. Bakke, David Madden
-
Patent number: 6267962Abstract: Novel compositions containing at least one biologically active component derived from peat or similar composition, methods for their preparation and therapeutic uses for a variety of diseases, injuries, and conditions, including wound healing, pain, itch, inflammation, abnormal cell proliferation, or infections caused by fungal, bacterial, rickettsial or viral agents, psoriasis, allergic and other dermatitis, pruritis, eczema, actinic keratosis and similar conditions. In addition, the compositions can be used as diuretics, antiarrhythmics, and cardiac-stimulating agents, as well as for the treatment of mammalian diseases and disorders, including multiple drug resistance, cancers, asthma, rheumatoid arthritis, pain, wound healing, fungal disorders, and other inflammatory disorders. The compositions are derivable from peat or peat-related substances and may alternatively be synthetically produced.Type: GrantFiled: June 30, 1997Date of Patent: July 31, 2001Assignee: C-P Technology Limited PartnershipInventors: Ralph M. Hart, Herman L. Jones, Veronica Lee Egelkrout Jones, Sohail Malik, Margaret A. Kenny, Bernard Loev, James P. Harnisch
-
Patent number: 6210583Abstract: A process for pre-treating a spent caustic stream prior to oxidation which includes countercurrent multi-stage elevated temperature solvent extraction of dissolved organic material from the spent caustic using a solvent to yield a spent caustic raffinate containing only residual amounts of organic solute and steam distilling the spent caustic raffinate to remove the residual organic solutes, yielding a pretreated spent caustic stream substantially free of organic material which is then subjected to wet air oxidation and thereafter to ozonolysis to yield a wastewater stream having a low COD and BOD, which is neutralized to a pH of 8.5 to 9.0.Type: GrantFiled: December 17, 1998Date of Patent: April 3, 2001Assignee: Stone & Webster EngineeringInventors: Sabah A. Kurukchi, Joseph M. Gondolfe, Stephen Z. Masoomian
-
Patent number: 5221528Abstract: In a purification process for brine, impurities such as calcium, magnesium and/or sulphate are precipitated by the addition of calcium hydroxide (Ca(OH).sub.2) and sodium carbonate (Na.sub.2 CO.sub.3). Following NaCl crystallization by evaporation of the brine, a mother liquor is obtained which still contains among others sulphate, potassium and bromide ions. Further concentration of this mother liquor by evaporation results in the precipitation of both NaCl and Na.sub.2 SO.sub.4 and a more strongly concentrated mother liquor with respect to both potassium and bromide remains. This concentrated mother liquor is drained off. Either the precipitated NaCl and Na.sub.2 SO.sub.4 are dissolved in water or the Na.sub.2 SO.sub.4 is dissolved in purified brine or crude brine and then returned to the brine purification process, thereby lowering both the potassium and bromide ion levels in the purified brine. As a consequence the contents of both potassium and bromide of the NaCl are reduced.Type: GrantFiled: December 27, 1991Date of Patent: June 22, 1993Assignee: Akzo N.V.Inventor: Pieter Jongema
-
Patent number: 5135734Abstract: Process for removing an industrial residue containing sodium sulphate, in which the sodium sulphate in the residue 7 is treated with a calcium salt 12 to precipitate calcium sulphate 13, which is sent to a rock salt deposit 15, from which an aqueous solution of sodium chloride 16 is withdrawn.The process applies to the residues from the desulphurization of fumes by means of sodium bicarbonate.Type: GrantFiled: October 13, 1989Date of Patent: August 4, 1992Assignee: Solvay & Cie (Societe Anonyme)Inventor: Leon Ninane
-
Patent number: 5093089Abstract: Process for separating sulphate from a contaminating chromium component contained in an aqueous liquor by the crystallization of a sulphate compound. The sulphate may be separated substantially free of chromium component by adjustment of the pH to the range of from about 2.0 to about 6.5, followed by cooling of the liquor to precipitate the sulphate compound from solution which sulphate is subsequently removed. The process provides an effective method for the separation of sulphate from dichromate, and is particularly useful in the production of chlorate.Type: GrantFiled: July 16, 1990Date of Patent: March 3, 1992Assignee: Chemetics International Company Ltd.Inventors: Raymond E. Alford, Felix M. Mok
-
Patent number: 4900535Abstract: A process for the treatment of waste materials such as spent cathode liners involving combustion of the contained carbonaceous material, decomposition of the contained cyanides, sulphides and nitrides, and recovery of fluoride values by a sulpholysis reaction, is characterized in that the sulpholysis reaction is carried out in a separate stage. The process enables a recovgery of fluoride values from smelter wastes which is especially favourable environmentally. A further advantage of the invention is that recovery of the contained fluoride values, initially in the form of gaseous fluoride species, may subsequently be treated with alumina to produce aluminium trifluoride, which is of significant economic importance.Type: GrantFiled: November 18, 1987Date of Patent: February 13, 1990Assignee: Comalco Aluminum LimitedInventors: Christopher G. Goodes, Grant A. Wellwood, Howard W. Hayden, Jr.
-
Patent number: 4562058Abstract: An improved process for the production of potassium sulfate crystals by the reaction of saturated solution of potassium chloride with langbeinite in the solid phase at a temperature of from 45.degree.-55.degree. C., thereby forming potassium sulfate crystals and magnesium chloride solution comprising the step of conducting the reaction in the presence of a growth enhancer comprising monosulfonated or monosulfated surfactant and a neutralized disulfonated surfactant in a weight ratio of from about 0.14 to 0.69.Type: GrantFiled: March 25, 1985Date of Patent: December 31, 1985Assignee: International Minerals & Chemical Corp.Inventors: William B. Dancy, Hsi Meng
-
Patent number: 4554139Abstract: A process for producing K.sub.2 SO.sub.4 from potassium chloride salts, calcium sulfate salts and another sulfate source wherein syngenite is formed and then decomposed with mineral acid to produce crystalline K.sub.3 H(SO.sub.4).sub.2. The K.sub.3 H(SO.sub.4).sub.2 crystals are recrystallized to produce K.sub.2 SO.sub.4 crystals.Type: GrantFiled: June 7, 1984Date of Patent: November 19, 1985Assignee: Prodeco, Inc.Inventors: Ralph E. Worthington, Alex Magdics
-
Patent number: 4131642Abstract: Isobutylene, hydrogen cyanide and sulfuric acid are reacted to produce tertiary butyl formamide, which is hydrolyzed by sodium hydroxide to produce tertiary butyl amine. The tertiary butyl amine is removed by vaporization and the residue is treated with sulphuric acid and methanol and is distilled to recover formate values as methyl formate or sodium formate. There is additionally recovered crystalline sodium sulfate and a water immiscible yellow organic phase.Type: GrantFiled: August 12, 1977Date of Patent: December 26, 1978Assignee: Ciba-Geigy CorporationInventors: Ralph Miller, Harry D. Gregg, Jr.
-
Patent number: 4046865Abstract: Contacting rock salt containing at least one member of the group consisting of anhydrite and calcium sulfate as an impurity with an aqueous sodium chloride solution initially containing from about 200 to about 300 g/l of sodium chloride and having a calcium ion concentration of 0.01 to 0.5 g/l and a sulfate ion concentration of 0.1 to 15 g/l, the multiplication product of said calcium ion concentration and said sulfate ion concentration having a maximum value of 2, and discontinuing said contact after the sodium chloride brine has formed.Type: GrantFiled: November 22, 1976Date of Patent: September 6, 1977Assignee: Bayer AktiengesellschaftInventor: Rolf Schafer
-
Patent number: 3970528Abstract: Brine is purified prior to electrolysis by dividing it into two streams, removing sulfate from one of the streams by precipitation with calcium chloride to form calcium sulfate, removing the precipitate and re-combining the streams. Alkali hydroxide plus sodium carbonate are added to the re-combined streams to precipitate calcium carbonate which is removed. Any magnesium comes down as the hydroxide. The brine is then pure enough for electrolysis The calcium sulfate first precipitate is reacted with sodium hydroxide and carbon dioxide to form calcium carbonate which is then reacted with hydrochloric acid to form calcium chloride which is recycled to the process for precipitating calcium sulfate.Type: GrantFiled: October 20, 1975Date of Patent: July 20, 1976Assignee: Bayer AktiengesellschaftInventors: Eberhard Zirngiebl, Alfred Irlenkauser