Metal Or Ammonium Containing Patents (Class 423/305)
  • Patent number: 8663475
    Abstract: Disclosed herein are diatomaceous earth products containing reduced soluble metal levels, processes for reducing soluble metal levels in diatomaceous earth products, and methods of using the same. In particular, diatomaceous earth products are disclosed that have been treated with at least one surface metal blocking agent, and then subjected to at least one thermal treatment process to reduce the level of soluble metals associated therewith. Such diatomaceous earth products containing reduced soluble metal levels may be useful for various applications including, but not limited to, as filter aid materials.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 4, 2014
    Assignee: Imerys Filtration Minerals, Inc.
    Inventor: Jie Lu
  • Publication number: 20140037733
    Abstract: The invention relates to the application of inorganic polyphosphates (polyP) and complexes of polyP and calcium [polyP (Ca2+ complex)] for prophylaxis and treatment of osteoporosis and other bone diseases by inducing hydroxyapatite formation and decreasing osteoclastogenesis. PolyP and polyP (Ca2+ complex) can be used both as a drug or food supplement and as a material to be injected into bone tissue.
    Type: Application
    Filed: January 26, 2012
    Publication date: February 6, 2014
    Applicant: NANOTECMARIN GMBH
    Inventors: Werner E.G. Müller, Heinz C. Schröder, Xiahong Wang
  • Publication number: 20140024861
    Abstract: [Problem] Catalyst for use in selective reduction of propionaldehyde in acrolein and/or acrylic acid and/or acrylonitrile containing propionaldehyde and/or propionic acid and/or propionitrile at low concentration. In particular, a novel catalyst for selectively reducing propionaldehyde from acrolein containing the propionaldehyde. [Solution] Catalyst for use in selective reduction of propionaldehyde in acrolein containing the propionaldehyde, characterized in that the catalyst contains Mo as an indispensable component, and at least one element selected from a group comprising P, Si, W, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Tl, Sn, Ag, As, Ge, B, Bi, La, Ba, Sb, Te, Ce, Pb, Mg, K, Rb, Cs and Al.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 23, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kimito Okumura, Toru Kawaguchi, Yasushi Kobayashi
  • Patent number: 8623310
    Abstract: The present invention relates to a process for preparing a material having the formula: (MxHy)+4(P207)?4: where M is a cation selected from the group consisting of monovalent cations, divalent cations, and trivalent cations; H is hydrogen, P2O7 is the pyrophosphate anion, and y is a number between 2.2 and 3.8; and x is a value sufficient to balance the overall charge of said compound comprising mixing and heating 105-112% polyphosphoric acid or pyrophosphoric and a compound having a monovalent metal cation or a compound having a divalent metal cation or a compound having a trivalent metal cation.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: January 7, 2014
    Assignee: Innophos, Inc.
    Inventors: Angela Newbern, Robert Clyde Finn
  • Patent number: 8597604
    Abstract: Methods for the synthesis of tricalcium phosphates are presented, as well as a series of specific reaction parameters that can be adjusted to tailor, in specific ways, properties in the tricalcium phosphate precursor precipitate. Particulate tricalcium phosphate compositions having an average crystal size of about 250 nm or less are provided. Compositions of the invention can be used as prosthetic implants and coatings for prosthetic implants.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 3, 2013
    Assignee: Pioneer Surgical Technology, Inc.
    Inventor: Edward S. Ahn
  • Patent number: 8568686
    Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
  • Patent number: 8545784
    Abstract: A method for the synthesis of rare earth containing phosphates of the LaPO4:Ce,Tb type comprising providing an initial charge of phosphate having a pH above 2 to a reactor; subsequently commencing introduction of a rare earth solution to the reactor, and subsequently, continuing to introduce both the phosphate and the rare earth solution to the reactor to form a mixture; whereby a rare earth phosphate precipitate is produced, at least a portion of which is precipitated while the pH of the mixture is less than 2.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: October 1, 2013
    Assignee: Neo International Corp.
    Inventors: Dimitrios Psaras, Weidong Shi, Ronghau Zhu, Rui Xiao
  • Patent number: 8540815
    Abstract: The invention relates to a preparation for a magnesium ammonium phosphate cement. There is provided a preparation comprising (a) a magnesium calcium phosphate of the formula MgxCay(PO4)2Oz, wherein x+y?4, x>1, y>0, z=x+y?3 and z?0; (b) an ammonium salt; and (c) water; wherein the ammonium salt and the water can be present partially or completely as an aqueous solution of the ammonium salt.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: September 24, 2013
    Assignee: InnoTERE GmbH
    Inventor: Uwe Gbureck
  • Patent number: 8535578
    Abstract: The present invention relates to wood-base materials made flame-retardant with halogen-free organic phosphorus compounds, and to compositions and processes for their production and their use.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: September 17, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Jan-Gerd Hansel, Otto Mauerer, Maria Gärtner
  • Patent number: 8518370
    Abstract: The present invention relates to metalloaluminophosphate (MeAPO) molecular sieve with lamellar crystal morphology having an empirical chemical composition on an anhydrous basis, after synthesis and calcination, expressed by the formula HxMeyAlzPkO2 wherein, y+z+k=1 x<=y said molecular sieve having predominantly a plate crystal morphology in which the width (W) and the thickness (T) are W/T is >=10 The above metalloaluminophosphate (MeAPO) molecular sieve can be made by a method which comprises: a) forming a reaction mixture containing a texture influencing agent (TIA), an organic templating agent (TEMP), at least a reactive inorganic source of MeO2 insoluble in the TIA, reactive sources of AI203 and P205, b) crystallizing the above reaction mixture thus formed until crystals of the metalloaluminophosphate are formed, c) recovering a solid reaction product, d) washing it with water to remove the TIA and e) calcinating it to remove the organic template.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 27, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Walter Vermeiren, Nikolai Nesterenko, Carolina Petitto, Francesco Di Renzo, Francois Fajula
  • Publication number: 20130217896
    Abstract: A catalyst for the gas phase oxidation of organic hydrocarbons comprises a multielement oxide which comprises at least one transition meal such as vanadium, wherein the catalyst has a charge transport activation energy Ec at a temperature of 375 to 425° C. of less than 0 kJ/mol. The catalyst serves for preparation of maleic anhydride.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 22, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130217897
    Abstract: An oxidation catalyst comprising vanadium, phosphorus, and oxygen having average vanadium valence less than about 4.10, and a method of preparing such catalyst, is provided. The catalyst has side crush strength of at least about 5 lbs. and improved yield of maleic anhydride from n-butane between about 1% and about 6% absolute. The catalyst is formed by exposing a conventional active VPO catalyst having average vanadium valence between about 4.10 and about 4.40 to an organic solvent having a dielectric constant between about 5 and about 55 under conditions that facilitate an oxidation-reduction reaction, reducing the valence of the vanadium below 4.10.
    Type: Application
    Filed: August 24, 2011
    Publication date: August 22, 2013
    Applicant: HUNTSMAN PETROCHEMICAL LLC
    Inventors: Zhiping Shan, Michael J. Mummey, William S. Frazee, Bennie A. Horrell
  • Patent number: 8506670
    Abstract: A water insoluble micronutrient fertilizer, methods of producing, and methods of using the same are provided. The fertilizer may comprise at least one first micronutrient selected from the group consisting of chromium, cobalt, copper, iron, manganese, and zinc; a polyphosphate; and optionally at least one second micronutrient selected from the group consisting of boron, chlorine, iodine, molybdenum or selenium. The fertilizer compounds are preferably water insoluble, dilute acid soluble, and free-flowing powders.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: August 13, 2013
    Assignee: Agtec Innovations, Inc.
    Inventor: Chandrika Varadachari
  • Publication number: 20130204025
    Abstract: A crystallisation facilitator for promoting crystal growth of a metal-organic framework, the crystallisation facilitator comprising at least one of: a metal or ionic form of that metal, or a compound including a metal, which is selected from the group consisting of Group 1 through 16 metals of the IUPAC Periodic Table of the Elements including actinides, and lanthanides, and combinations thereof. A method of synthesising a metal-organic framework using the crystallisation facilitator is also described.
    Type: Application
    Filed: August 19, 2010
    Publication date: August 8, 2013
    Applicant: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Dario Buso, Paolo Falcaro
  • Patent number: 8496901
    Abstract: A preparation method for a water-insoluble crystal form ammonium polyphosphate includes conveying crystal H-type phosphorus pentoxide and diammonium phosphate at a molar ratio of 1:1-1.5 into a malaxator with twin screws, and injecting ammonia gas for 3-40 minutes into the malaxator at 20-25 m3/h while preheating the material at a temperature between 100° C. and 300° C. Therafter one injects ammonia gas again at 8-15 m3/h for 4-8 hours. The resulting material is transferred to another sealed container and stirred while coupling agent is added. Stirring continues until the material drops below 60° C., the material then being transferred into organic solvent for washing for 30-50 minutes. Thereafter the material is first filter pressed, then subjected to low temperature drying, and then sieved to obtain the final product.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: July 30, 2013
    Assignee: Presafer (Qingyuan) Phosphor Chemical Company Limited
    Inventors: Sizheng Xie, Ken Zhou
  • Publication number: 20130189203
    Abstract: The invention relates to a cosmetic additive agent with complexing, dispersing, and antimicrobial effects. The additive includes at least one linear alkali polyphosphate with a chain length of at least 3, such as a sodium or potassium polyphosphate. The invention also relates to a cosmetic preparation containing the additive.
    Type: Application
    Filed: February 27, 2012
    Publication date: July 25, 2013
    Applicant: BK Giulini GmbH
    Inventors: Thauern Henrike, Gabriele Brix, Thomas Staffel
  • Patent number: 8486354
    Abstract: A method for extracting rare earth elements from monazite is disclosed. The method includes milling a mixture of monazite including phosphates and rare earth elements and sodium hydroxides inside a mill containing a plurality of balls to form powder by colliding the mixture into balls with each other, converting the mixture into rare earth hydroxides and sodium phosphates through the reaction occurring in the process of repeated collision, and extracting rare earth elements from the powder.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: July 16, 2013
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Hee-Young Shin, Whan-Tae Kim, In-Kook Bae, Soo-Chun Chae
  • Publication number: 20130165540
    Abstract: Porous calcium phosphate granules and methods of making the same are provided. Embodiments of the methods include producing a solid spherical granule precursor that includes: (i) a calcium phosphate component; and (ii) a porogen component; and (b) removing the porogen component from the solid spherical granule precursor to produce a spherical porous calcium phosphate granule. Granules of the invention find use in a variety of different applications.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 27, 2013
    Applicant: SKELETAL KINETICS, LLC
    Inventor: SKELETAL KINETICS, LLC
  • Patent number: 8470293
    Abstract: A method of preparing a silicoaluminophosphate molecular sieve which comprises the steps of combining a source of silica, a source of phosphorous, a source of alumina and water to form a primary mixture; adding a structure directing agent to said mixture and optional seeds to form a synthesis mixture. The synthesis mixture is synthesized by heating the mixture to a crystallization temperature to form the sieve. The molar ratio of the structure directing agent relative to the source of alumina may vary between 1.3 and 1.9 and the ratio of water to the source of alumina may vary between 20 to 34.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Chunshe Cao
  • Publication number: 20130158287
    Abstract: The invention relates to a method of producing an ethylenically unsaturated carboxylic acid or ester, preferably an ?, ? ethylenically unsaturated carboxylic acid or ester. The method includes contacting formaldehyde or a suitable source thereof with a carboxylic acid or ester in the presence of a catalyst and optionally in the presence of an alcohol. The catalyst comprises a nitrided metal oxide having at least two types of metal cations, M1 and M2, wherein M1 is selected from the metals of group 2, 3, 4, 13 (called also IIIA) or 14 (called also IVA) of the periodic table and M2 is selected from the metals of groups 5 or 15 (called also VA) of the periodic table. The invention extends to a catalyst system.
    Type: Application
    Filed: June 24, 2011
    Publication date: June 20, 2013
    Applicant: Lucite International UK Limited
    Inventors: Ian Andrew York, Sabina Ziemian
  • Patent number: 8465716
    Abstract: The subject of the invention is a method of synthesizing a compound MxPy where M is an element belonging to one of columns II to XV of the Periodic Table of the Elements or to the family of lanthanides or to the family of actinides, characterized in that it includes the reaction of x moles of compound comprising the element M in its oxidation state 0 with y/4n moles of compound (P4)n. The method of the invention may be carried out at a temperature much lower than those necessary in the methods of the prior art. It also allows low-temperature formation of nanoparticles and stoichiometric reaction control. The applications of this method are numerous: magnetic ferro-magnets for MnP and FeP; hydrodesulfurization catalysts for Ni2P; luminescent nanoparticles for biological applications; microelectronics and optoelectronics for InP; and electronics for GaP. The latter two phosphides are also used in the photovoltaic energy field.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: June 18, 2013
    Assignee: Ecole Polytechnique
    Inventors: Pascal Le Floch, Nicolas Mezailles, Xavier Le Goff, Benoit Dubertret
  • Patent number: 8431221
    Abstract: Novel calcium phosphate core particles, methods of making them, and methods of using them as vaccine adjuvants, as cores, as carriers of biologically active material, and as controlled release matrices for biologically active material are disclosed. The core particles may have a surface modifying agent and/or biologically active material, such as antigenic material or natural immunoenhancing factor, polynucleotide material, or therapeutic proteins or peptides, partially coating the particle or impregnated therein. The core particles have a diameter between about 300 nm and about 4000 nm, more particularly between about 300 nm and about 2000 nm, and even more particularly between about 300 nm and about 1000 nm, are substantially spherical in shape, and have a substantially smooth surface.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 30, 2013
    Assignee: Captivate Pharmaceuticals, LLC
    Inventors: Steve J. D. Bell, Tulin Morcol, Qing He
  • Patent number: 8419974
    Abstract: Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Holly Ann Comanzo, Mohan Manoharan, Sergio Paulo Martins Loureiro, Anant Achyut Setlur, Alok Mani Srivastava
  • Patent number: 8399130
    Abstract: This invention relates generally to electrode materials, electrochemical cells employing such materials, and methods of synthesizing such materials. The electrode materials have a crystal structure with a high ratio of Li to metal M, which is found to improve capacity by enabling the transfer of a greater amount of lithium per metal, and which is also found to improve stability by retaining a sufficient amount of lithium after charging. Furthermore, synthesis techniques are presented which result in improved charge and discharge capacities and reduced particle sizes of the electrode materials.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: March 19, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Anubhav Jain, Geoffroy Hautier, Jae Chul Kim, Byoungwoo Kang, Robert Daniel
  • Patent number: 8399578
    Abstract: In a method of synthesizing a silicoaluminophosphate molecular sieve having 90+% CHA framework-type character, a reaction mixture is prepared comprising sources of water, silicon, aluminum, and phosphorus, as well as an organic template. In one aspect, the reaction mixture is heated at more than 10° C./hour to a crystallization temperature and is retained at the crystallization temperature or within the crystallization temperature range for a crystallization time from 16 hours to 350 hours to produce the silicoaluminophosphate molecular sieve. In another aspect, the reaction mixture is heated at less than 10° C./hour to a crystallization temperature from about 150° C. to about 225° C. and is then retained there for less than 10 hours to produce the silicoaluminophosphate molecular sieve. The molecular sieve can then be recovered from the reaction mixture and, preferably, used in a hydrocarbon conversion process, such as oxygenates to olefins.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: March 19, 2013
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 8383079
    Abstract: A crystalline molecular sieve comprises at least [AlO4] and [PO4] tetrahedral units and comprising a first framework structure defining a first set of uniformly distributed pores having an average cross-sectional dimension of from about 0.3 to less than 2 nanometers and further comprising a second framework structure defining a second set of uniformly distributed pores having an average cross-sectional dimension of from 2 to 50 nanometers. The first framework structure is preferably of the CHA framework type.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: February 26, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastien P. B. Kremer, Machteld Maria Mertens, Luc R.M. Martens
  • Patent number: 8357344
    Abstract: The gaseous effluent to be treated is contacted in column C1 with an absorbent solution selected for its property of forming two separable phases when it is heated. The regenerated absorbent solution is separated into two phases in drum B1; a fraction rich in water and a fraction rich in reactive compounds. Separation allows to optimize the operations performed on the regenerated absorbent solution. On the one hand, separation allows to carry out vaporization, through reboiler R1, of a fraction of the absorbent solution, preferably containing a limited reactive compound concentration in relation to the absorbent solution, thus limiting their degradation. On the other hand, separation of the phases allows to reduce the amount of solution to be treated in order to remove the non-regeneratable salts and thus to reduce the costs linked with their elimination. Finally, separation allows to eliminate the degradation products by carrying out a specific and suitable purification for each phase.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 22, 2013
    Assignee: IFP
    Inventors: Pierre-Antoine Bouillon, Marc Jacquin
  • Publication number: 20130017233
    Abstract: Methods for preparing a tricalcium phosphate coarse particle composition are provided. Aspects of the methods include converting an initial tricalcium phosphate particulate composition to hydroxyapatite, sintering the resultant hydroxyapatite to produce a second tricalcium phosphate composition and then mechanically manipulating the second tricalcium phosphate composition to produce a tricalcium phosphate coarse particle composition. The subject methods and compositions produced thereby find use in a variety of applications.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 17, 2013
    Inventors: Sahil Jalota, David C. Delaney, Duran N. Yetkinler
  • Patent number: 8337904
    Abstract: A stable, phase-pure magnesium-substituted crystalline hydroxyapatite containing from about 2.0 to about 29 wt % magnesium, wherein at least 75 wt % of the magnesium content is substituted for calcium ions in the hydroxyapatite lattice structure.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: December 25, 2012
    Assignees: Rutgers, The State University of New Jersey, Ethicon, Inc.
    Inventors: Richard E. Riman, Wojciech Suchanek, Pavel Shuk, Kevor S. TenHuisen, Chun-Wei Chen
  • Publication number: 20120323021
    Abstract: An object of the present invention is to provide a high-purity aromatic methyl alcohol compound having reduced a bis(arylmethyl)ether compound as a side product mixed thereinto and a high-purity aromatic methyl alcohol composition having excellent preservation stability and methods for producing them. The object of the present invention is achieved by a method for producing a high-purity aromatic methyl alcohol compound, which comprises obtaining a high-purity aromatic methyl alcohol compound in high yield from an aromatic methyl alcohol-containing crude product by subjecting the crude product to distillation in the presence of an anti-decomposition agent. Further, the object for the preservation stability is achieved by producing a high-purity aromatic methyl alcohol composition using the obtained high-purity aromatic methyl alcohol compound.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 20, 2012
    Inventors: Takashi Doi, Yoshihiro Yoshida, Daisuke Douyama, Ryousuke Katsura, Satoru Fujitsu, Shinji Yasuda, Keisuke Kimura, Kiyoshi Oomori
  • Publication number: 20120321573
    Abstract: The present invention relates to compositions and methods for inhibiting metal exposure to tissues.
    Type: Application
    Filed: October 1, 2010
    Publication date: December 20, 2012
    Applicants: THE GENERAL HOSPITAL CORPORATION, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Jeffrey M. Karp, Praveen Kumar Vemula, Richard Rox Anderson
  • Publication number: 20120315226
    Abstract: The present invention provides compositions including saturated calcium phosphate (sCaP) solutions, that may be prepared from mixtures of calcium deficient apatite and one or more of sodium fluoride and zinc chloride, or F or Zn ions. The solutions may be prepared from mixtures of calcium compounds and one or more of sodium or potassium phosphates, sodium or potassium fluoride and zinc salts with, for instance, either phosphoric or hydrochloric acids. Such compositions may be useful for increasing occlusion of dentin tubules, decreasing bacterial attachment to dentin tubules, decreasing bacterial growth or colonization on tooth surfaces such as enamel and dentin surfaces including on dentin tubules, increasing resistance to acid dissolution, inhibiting dental caries formation and progression and tooth decay and inhibiting development of tooth hypersensitivity.
    Type: Application
    Filed: March 29, 2012
    Publication date: December 13, 2012
    Inventors: Racquel Z. LeGeros, Haijing Gu, Dindo Mijares, Deepak Saxena, Sudharani Bodepudi
  • Patent number: 8329762
    Abstract: The present invention provides calcium phosphate platelets with a length between 250 nm and 800 nm and methods for producing the calcium phosphate platelets. The platelets may be used to provide dispersions or colloidal dispersions obtained by suspending the platelets in the presence of a dispersing agent. The platelets may be used in reinforcing fillers, polishing agents, building materials, additives for oral formulations, in dentrifices or in encapsulating agents.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 11, 2012
    Assignee: Innophos, Inc.
    Inventors: Jean-Yves Chane-Ching, Albert Lebugle
  • Patent number: 8318118
    Abstract: A process for the treatment of gas phase alkaline chlorides in a combustion plant that is arranged for combustion of solid fuel and which includes a combustion chamber from which a flue-gas flow is directed to pass a heat transfer device. A phosphorous substance is added to the flue-gas flow, separate from the fuel, the substance chosen from a group of substances that form phosphorous oxide at combustion temperatures of approx. 500° C. or above, wherein the phosphorous substance is distributed in the flue-gas at a location upstream of the heat transfer device. The phosphorous substance is added to an amount which results in phosphatising of gas phase alkaline chlorides included in the flue-gas flow before the chlorides reach the heat transfer device. A corresponding combustion plant is disclosed, as well as the use of a phosphorous substance for phosphatising alkaline chloride in gaseous phase in a flue-gas flow.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: November 27, 2012
    Assignee: Vattenfall AB
    Inventors: Matts Ahlmark, Magnus Berg
  • Patent number: 8313719
    Abstract: The present invention provides for the preparation of an “optimized” VPO4 phase or V—P—O/C precursor. The VPO4 precursor is an amorphous or nanocrystalline powder. The V—P—O/C precursor is amorphous in nature and contains finely divided and dispersed carbon. Throughout the specification it is understood that the VPO4 precursor and the V—P—O/C precursor materials can be used interchangeably to produce the final vanadium phosphates, with the V—P—O/C precursor material being the preferred precursor. The precursors can subsequently be used to make vanadium based electroactive materials and use of such precursor materials offers significant advantages over other processes known for preparing vanadium phosphate compounds.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 20, 2012
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, Aiden Bryan, Paul Burns, Richard Gover
  • Publication number: 20120288569
    Abstract: Phosphate depletion, a physiological condition commonly seen in certain patient populations, including alcoholics, malnourished, acutely ill patients, patients receiving parenteral nutrition, patients being re-fed after prolong fasting, and dialysis patients, requires intravenous supplementation when oral repletion is not feasible. This invention provides a method and pharmaceutical composition for therapeutic administration of pyrophosphate, instead of phosphate, for phosphate or pyrophosphate repletion. During hemodialysis or peritoneal dialysis significant removal of phosphate and pyrophosphate occurs. Pyrophosphate depletion predisposes patients to vascular calcification. This invention further provides a method and pharmaceutical composition for therapeutic administration of pyrophosphate for phosphate or pyrophosphate repletion by addition of pyrophosphate to hemodialysis or peritoneal dialysis solutions.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 15, 2012
    Inventor: Ajay Gupta
  • Publication number: 20120276452
    Abstract: A negative electrode active material for an electricity storage device comprises at least SnO as a composition thereof. When a binding energy value of an electron on a Sn 3d5/2 orbital of a Sn atom in the negative electrode active material for an electricity storage device is defined as Pl and a binding energy value of an electron on a Sn 3d5/2 orbital of a metal Sn is defined as Pm, (Pl?Pm) is 0.01 to 3.5 eV.
    Type: Application
    Filed: October 21, 2010
    Publication date: November 1, 2012
    Inventors: Hideo Yamauchi, Tomohiro Nagakane, Akihiko Sakamoto, Tetsuo Sakai, Meijing Zou
  • Patent number: 8293854
    Abstract: In a method of synthesizing a silicoaluminophosphate molecular sieve having 90%+CHA framework type character, a reaction mixture is prepared comprising first combining a reactive source of aluminum with a reactive source of phosphorus to form a primary mixture that is aged. A reactive source of silicon and a template for directing the formation of the molecular sieve can then be added to form a synthesis mixture. Crystallization is then induced in the synthesis mixture. Advantageously, (i) the source of silicon comprises an organosilicate, (ii) the source of phosphorus optionally comprises an organophosphate, and (iii) the crystallized silicoaluminophosphate molecular sieve has a crystal size distribution such that its average crystal size is not greater than 5 ?m. The molecular sieve can then preferably be used in a hydrocarbon (oxygenates-to-olefins) conversion process.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: October 23, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Stephen N. Vaughn, Guang Cao, Luc R. M. Martens, Mobae Afeworki
  • Publication number: 20120237425
    Abstract: The present invention relates to ferric phosphate hydrate particles for use as a precursor of olivine type lithium iron phosphate particles, wherein the ferric phosphate hydrate particles exhibit at least one crystal structure selected from the group consisting of a strengite crystal structure and a meta-strengite (phosphosiderite) crystal structure, and have a sodium (Na) content of not more than 100 ppm and a molar ratio of phosphorus to iron (phosphorus/iron) of not less than 0.9 and not more than 1.1. The ferric phosphate hydrate particles according to the present invention are suitable as a precursor of olivine type lithium iron phosphate particles for a positive electrode substance of non-aqueous electrolyte secondary batteries, and are in the form of fine particles and have a very small content of impurities.
    Type: Application
    Filed: September 8, 2010
    Publication date: September 20, 2012
    Inventors: Takahisa Nishio, Yuji Mishima, Shingo Honda, Hiroshi Yamamoto
  • Patent number: 8268277
    Abstract: In a method of synthesizing a silicoaluminophosphate molecular sieve having 90+% CHA framework-type character, a reaction mixture is prepared comprising sources of water, silicon, aluminum, and phosphorus, as well as an organic template. In one aspect, the reaction mixture is heated at more than 10° C./hour to a crystallization temperature and is retained at the crystallization temperature or within the crystallization temperature range for a crystallization time from 16 hours to 350 hours to produce the silicoaluminophosphate molecular sieve. In another aspect, the reaction mixture is heated at less than 10° C./hour to a crystallization temperature from about 150° C. to about 225° C. and is then retained there for less than 10 hours to produce the silicoaluminophosphate molecular sieve. The molecular sieve can then be recovered from the reaction mixture and, preferably, used in a hydrocarbon conversion process, such as oxygenates to olefins.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: September 18, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 8268278
    Abstract: Phosphorus-calcium-strontium compound of formula (I); method for preparing same; composition for the extemporaneous preparation of a cement comprising a solid phase (SP) and a liquid phase (LP), wherein the solid phase comprises a mixture of inorganic compounds of formula (II); use as an endodontic cement.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: September 18, 2012
    Assignees: Centre National de la Recherche Scientifique, Universite de Montpellier I
    Inventors: Philippe Boudeville, Pierre Michailesco, Emmanuel Castany, Michel René Vert
  • Publication number: 20120232164
    Abstract: Fibrous calcium pyrophosphate particles with a unique fibrous nanostructure are disclosed. The invention includes a composition, comprising fibrous particles, wherein the fibrous particles include fibers and the fibers include calcium and pyrophosphate. Also included are methods for making calcium pyrophosphate particles wherein solutions of calcium salt and pyrophosphate salt are combined to form the particles. Pharmaceutical compositions and methods for treating a patent using the disclosed particles are also described.
    Type: Application
    Filed: November 30, 2011
    Publication date: September 13, 2012
    Applicant: NANUNANU LTD.
    Inventors: Liam M. GROVER, Jake E. BARRALET
  • Patent number: 8262936
    Abstract: A phosphor is formed with a glass coating layer on a surface of a phosphor grain to have improved moisture and/or thermal stability. A method for manufacturing the phosphor comprises preparing phosphor gains excitable by light, and forming a glass coating layer on a surface of each phosphor grain. The glass coating layer may be formed by mixing the phosphor grains with a glass composition; heat-treating a mixture of the phosphor grains and the glass composition to make the glass composition melt and surround the phosphor grains; and cooling and breaking the heat-treated mixture to provide phosphors, each comprising the phosphor grain having the glass coating layer formed on a surface of the phosphor grain.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: September 11, 2012
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Kyung Nam Kim, Tomizo Matsuoka, Mi Youn Chang
  • Patent number: 8246924
    Abstract: The present application is directed to methods of manufacturing calcium phosphate particles. In particular, the method is directed at eliminating the requirement for a sintering step in the manufacturing process. The method involves the atomization and combustion of one or more antecedent compositions containing calcium precursors, phosphorus precursors and hydrogen peroxide.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 21, 2012
    Assignee: HKPB Scientific Limited
    Inventor: Donncha Haverty
  • Patent number: 8187498
    Abstract: A phosphor is formed with a glass coating layer on a surface of a phosphor grain to have improved moisture and/or thermal stability. A method for manufacturing the phosphor comprises preparing phosphor gains excitable by light, and forming a glass coating layer on a surface of each phosphor grain. The glass coating layer may be formed by mixing the phosphor grains with a glass composition; heat-treating a mixture of the phosphor grains and the glass composition to make the glass composition melt and surround the phosphor grains; and cooling and breaking the heat-treated mixture to provide phosphors, each comprising the phosphor grain having the glass coating layer formed on a surface of the phosphor grain.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: May 29, 2012
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Kyung Nam Kim, Tomizo Matsuoka, Mi Youn Chang
  • Patent number: 8182780
    Abstract: In a method of synthesizing a silicoaluminophosphate molecular sieve having 90%+CHA framework type character, a reaction mixture is prepared comprising first combining a reactive source of aluminum with a reactive source of phosphorus to form a primary mixture that is aged. A reactive source of silicon and a template for directing the formation of the molecular sieve can then be added to form a synthesis mixture. Crystallization is then induced in the synthesis mixture. Advantageously, (i) the source of silicon comprises an organosilicate, (ii) the source of phosphorus optionally comprises an organophosphate, and (iii) the crystallized silicoaluminophosphate molecular sieve has a crystal size distribution such that its average crystal size is not greater than 5 ?m. The molecular sieve can then preferably be used in a hydrocarbon (oxygenates-to-olefins) conversion process.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 22, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Stephen N. Vaughn, Guang Cao, Luc R. M. Martens, Mobae Afeworki
  • Patent number: 8178066
    Abstract: The present invention provides a method for stabilizing fine particles of calcium phosphates without lowering their solid phase forming activity. It is possible to stabilize the fine particles of calcium phosphates by stopping the growth of the fine particles formed in an aqueous solution supersaturated with respect to calcium phosphates. More specifically, the fine particles of calcium phosphates were stabilized by lowering the inorganic ion concentration of a fine-particle-forming solution containing fine particles of calcium phosphates by dialysis, ion exchange, dilution, or the like, or by separating the fine particles of calcium phosphates from the fine-particle-forming solution by filtration, centrifuging, or the like.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: May 15, 2012
    Assignee: Kyoto University
    Inventors: Takeshi Yao, Mitsuhiro Hibino, Seiji Yamaguchi, Hidetaka Okada
  • Patent number: 8167995
    Abstract: A method is provided for making inexpensive synthetic inorganic resins that are stable, mix easily with water and may be conveniently diluted to form an easy-to-use paste for commercial applications. The method uses environmentally friendly techniques to provide improved efficiencies in the commercial production of these resins. The resins are produced by the partial reaction of phosphoric acid with sparsely-soluble oxides, or sparsely-soluble oxide minerals, that are added to the phosphoric acid under controlled conditions. In certain specific embodiments, methods are provided for modifying synthetic inorganic resins so as to produce rapid-setting phosphate cements and ceramics having high flexural strength. Unique synthetic inorganic resin formulations are also disclosed.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: May 1, 2012
    Assignee: Latitude 18, Inc.
    Inventor: Arun S. Wagh
  • Patent number: 8163259
    Abstract: A molecular sieve comprises at least one intergrown phase of an AFX framework-type molecular sieve and a CHA framework-type molecular sieve and is conveniently synthesized using a combination of N,N,N?N?-tetramethylhexane-1,6-diamine and N,N-dimethylcyclohexylamine as organic directing agents.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20120073184
    Abstract: Disclosed herein are methods and processes for the recovery of nutrients from non-organic phases produced during recovery of oleaginous compounds from biomass. The nutrients recovered can then be utilized to grow additional biomass.
    Type: Application
    Filed: November 16, 2011
    Publication date: March 29, 2012
    Applicant: SAPPHIER ENERGY,INC.
    Inventors: RICHARD J. CRANFORD, Alex M. Aravanis, Stilianos G. Roussis