Carbon Dioxide Or Carbonic Acid Patents (Class 423/437.1)
  • Patent number: 10213727
    Abstract: A CO2 recovery device includes: a CO2 absorption tower in which CO2 included in an exhaust gas is absorbed by a CO2 absorption liquid; and a CO2 absorption liquid regeneration tower that heats and regenerates the CO2 absorption liquid that has absorbed CO2. The CO2 absorption liquid regeneration tower includes: a main body part in which the CO2 absorption liquid is temporarily stored; a boot part provided downward from a tank end of the main body part, having a relatively smaller capacity than the main body part; a flowmeter provided to the boot part, and measuring the liquid surface level of the CO2 absorption liquid that changes between the main body part and the boot part; and a control device controlling the liquid surface level of the CO2 absorption liquid between the main body part and the boot part on the basis of the measurement result of the flowmeter.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: February 26, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Osamu Miyamoto, Takashi Kamijo, Tsuyoshi Oishi, Shimpei Kawasaki
  • Patent number: 9993767
    Abstract: A CO2 recovery device includes: a CO2 absorption tower in which CO2 included in an exhaust gas is absorbed by a CO2 absorption liquid; and a CO2 absorption liquid regeneration tower that heats and regenerates the CO2 absorption liquid that has absorbed CO2. The CO2 absorption liquid regeneration tower includes: a main body part in which the CO2 absorption liquid is temporarily stored; a boot part provided downward from a tank end of the main body part, having a relatively smaller capacity than the main body part; a flowmeter provided to the boot part, and measuring the liquid surface level of the CO2 absorption liquid that changes between the main body part and the boot part; and a control device controlling the liquid surface level of the CO2 absorption liquid between the main body part and the boot part on the basis of the measurement result of the flowmeter.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: June 12, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Osamu Miyamoto, Takashi Kamijo, Tsuyoshi Oishi, Shimpei Kawasaki
  • Patent number: 9969823
    Abstract: Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 15, 2018
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: David Luebke, Hunaid Nulwala, Krzysztof Matyjaszewski, Brian Adzima
  • Patent number: 9901875
    Abstract: Provided are a reclaimer that introduces a part of an absorbent that has absorbed CO2 or H2S in a flue gas through an introduction line and stores the absorbent, a heating section that heats the absorbent stored in the reclaimer to obtain recovered vapor, and a mixing tank disposed on the introduction line through which the absorbent is introduced into the reclaimer, and which introduces an absorbent (lean solution) and an alkaline agent for mixing thereof.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Patent number: 9878929
    Abstract: A process for producing a polyaluminum chlorosulfate (PACS) includes providing solid aluminum hydroxychloride, providing aluminum sulfate, mixing the solid aluminum hydroxychloride with the aluminum sulfate, in the presence of water, to form an aqueous milky suspension, wherein, on a dry weight basis, the ratio of the aluminum hydroxychloride to the aluminum sulfate is 0.75-20 parts aluminum hydroxychloride to 1 part aluminum sulfate, and maintaining the milky suspension for a period sufficient to allow the milky suspension to form a clear to slightly turbid solution including the PACS, the PACS having a basicity of 55 to 75%, the average molecular weight of the PACS is greater than or equal to 95 and less than or equal to 111, and salts present in the PACS comprise 0-1.0% sodium chloride by weight and 0-1.0% sodium sulfate by weight.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 30, 2018
    Assignee: USALCO, LLC
    Inventor: James M. Dulko
  • Patent number: 9851143
    Abstract: The present invention relates to a method for recovering carbon dioxide from a gaseous stream originating from a fermentation process by compression, absorption, condensation and distillation, wherein at least the absorption and condensation is performed under a high pressure of at least 30 bar.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 26, 2017
    Assignee: Union Engineering A/S
    Inventors: Rasmus Find, Jan Flensted Poulsen
  • Patent number: 9604892
    Abstract: A Plasma Arc Reformer for creating a useful fuel, such as Methanol, using any of Methane, Municipal Solid Waste, farm or forest waste, coal orchar rock from oil shale production, petrochemical hydrocarbons, (any carbon containing charge), water, and/or Municipal Sewage, as the source material. A High temperature Plasma Arc de-polymerizes the source material into atoms which, upon partial cooling, creates a gas stream rich in CO and H2 (syngas). Subsequent molecular filter and catalyst stages in the system remove contaminants and produce the output fuel. The system is closed loop with regard to the syngas production in that it recycles the residual unconverted gas and even the exhaust gases if desired. The large amount of heat produced is captured and converted to electric power using a supercritical CO2 Rankin cycle resulting in potentially high efficiencies.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 28, 2017
    Inventors: Stephen L. Cunningham, Martin A. Stuart
  • Patent number: 9593020
    Abstract: A carbon dioxide gas stream is purified of contaminants by feeding it through a non-thermal plasma reactor. The contaminants are hydrocarbons and sulfur compounds which will be decomposed. The non-thermal plasma reactor may be part of an overall carbon dioxide purification process that uses a pre-purification step prior to further purification.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: March 14, 2017
    Assignee: Linde Aktiengesellschaft
    Inventors: John Gouck, Michael Koch
  • Patent number: 9534265
    Abstract: Methods and systems for producing direct reduced iron (DRI), comprising: generating a syngas stream in a carbon dioxide (CO2) and steam reformer; and providing the syngas stream to a direct reduction (DR) shaft furnace as a reducing gas stream. The methods and systems also comprise combining the syngas stream with a recycled off-gas stream from the DR shaft furnace to form the reducing gas stream. The methods and systems further comprise removing carbon dioxide (CO2) from the recycled off-gas stream from the DR shaft furnace prior to combining it with the syngas stream to form the reducing gas stream. The methods and systems still further comprise feeding CO2 removed from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer. The methods and systems still further comprise feeding recycled off-gas from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: January 3, 2017
    Assignee: Midrex Technologies, Inc.
    Inventors: Gary E. Metius, Gregory D. Hughes, James M. McClelland, Jr.
  • Patent number: 9498748
    Abstract: A process for removing acid gases from a hydrocarbonaceous fluid stream or an oxygen-comprising fluid stream in which the fluid stream is contacted with an aqueous solution which is essentially free from inorganic basic salts and comprises (i) at least one amine and (ii) at least one metal salt of an aminocarboxylic acid and/or an aminosulfonic acid. Conjoint use of the aminocarboxylic and/or aminosulfonic salt reduces the coabsorption of hydrocarbons or oxygen without significantly impairing the absorption rate at which acid gases are absorbed, without significantly reducing the absorption capacity of the solution for acid gases, and without significantly increasing the energy demand required for regeneration.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 22, 2016
    Assignee: BASF SE
    Inventors: Rupert Wagner, Ute Lichtfers, Norbert Asprion
  • Patent number: 9441887
    Abstract: Pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput or process a desired type of biomass, are disclosed. According to representative methods, the use of a quench medium (e.g., water), either as a primary or a secondary type of heat removal, allows greater control of process temperatures, particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Quench medium may be distributed to one or more locations within the reheater vessel, such as above and/or within a dense phase bed of fluidized particles of a solid heat carrier (e.g., sand) to better control heat removal.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 13, 2016
    Assignee: Ensyn Renewables, Inc.
    Inventors: Sathit Kulprathipanja, Paolo Palmas, Daniel N Myers
  • Patent number: 9388528
    Abstract: The present invention provides processes for deconstructing biomass to produce aqueous and organic products using a solvent produced in a bioreforming reaction.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 12, 2016
    Assignee: VIRENT, INC.
    Inventors: Ming Qiao, Elizabeth Woods, Paul Myren, Randy Cortright, Sean Connolly
  • Patent number: 9228134
    Abstract: Described are methods for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons in a single reactor. The method includes reacting a water soluble oxygenated hydrocarbon in the presence of a catalyst at a temperature, pressure, and weight hour space velocity for a time sufficient to produce a self-separating, three-phase product stream comprising a vapor phase, an organic phase, and an aqueous phase. A portion of the organic phase can be reacted to produce alkanes, alkenes, alcohols, and aromatics.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: January 5, 2016
    Assignee: VIRENT, INC.
    Inventors: Randy Cortright, Paul Blommel
  • Patent number: 9217114
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons to aromatics and gasonline range hydrocarbons where the oxygenated hydrocarbons are derived from biomass.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 22, 2015
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 9212104
    Abstract: The present invention provides processes for catalytic deconstruction of biomass using a solvent produced in a bioreforming reaction.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: December 15, 2015
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, Elizabeth Woods
  • Patent number: 9157030
    Abstract: The present invention provides processes for deconstructing biomass using a solvent produced in a bioreforming reaction.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 13, 2015
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Elizabeth Woods, Paul Myren, Randy Cortright
  • Patent number: 9120051
    Abstract: An object of the present invention is to provide a method for treating an exhaust gas containing CO2, that can adjust the concentration of an oxidation inhibitor in an absorbent to the concentration enough to inhibit oxidation, without measuring the concentration of the oxidation inhibitor in an alkanolamine contained in a CO2 absorbent. Disclosed are a method and a device for adjusting the compositional ratio of an absorbent, in which absorption and release of carbon dioxide are performed by adding an oxidation inhibitor to an alkanolamine absorbent when the sum of the concentrations of ammonia and an alkylamine in an absorber column outlet gas of a CO2 absorption equipment.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: September 1, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Koichi Yokoyama, Shigehito Takamoto, Eiji Miyamoto, Naoki Oda
  • Patent number: 9067173
    Abstract: The invention relates to a method for treating a gas stream comprising combustion fumes containing CO2 in an initial proportion, water vapor, one or more volatile acid compounds, and one or more additional impurities selected from among oxygen, nitrogen and argon, comprising the steps of: i) compressing the gas stream to a final pressure of 1 bar to 74 bar absolute; ii) cooling the gas stream to a temperature of around ?10° C. to around ?130° C. and eliminating at least one additional impurity; and iii) recovering a CO2-enriched gas stream containing a final proportion of CO2 greater than the initial proportion of CO2 in the stream to be treated. In addition, the method comprises, prior to step i), a step of pre-drying the stream for removing therefrom at least a portion of the water vapor which it contains.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 30, 2015
    Assignee: L'Air Liquide SociétéAnonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Bruno Alban, Philippe Arpentinier, Alain Briglia, Serge Moreau, Fabrice Del Corso, Benoit Davidian
  • Patent number: 9035117
    Abstract: This specification discloses an operational continuous process to convert lignin as found in ligno-cellulosic biomass before or after converting at least some of the carbohydrates. The continuous process has been demonstrated to create a slurry comprised of lignin, raise the slurry comprised of lignin to ultra-high pressure, deoxygenate the lignin in a lignin conversion reactor over a catalyst which is not a fixed bed without producing char. The conversion products of the carbohydrates or lignin can be further processed into polyester intermediates for use in polyester preforms and bottles.
    Type: Grant
    Filed: February 24, 2013
    Date of Patent: May 19, 2015
    Assignee: Biochemtex S.p.A.
    Inventors: Steven Ryba, Aaron Murray, Guliz Arf Elliott, Dan Gastaldo
  • Publication number: 20150125368
    Abstract: The present invention describes the process of preparing ceramics for the absorption of ACIDIC gases, which worsen the greenhouse effect, that are released in combustion systems, or that are present in closed environments. In relation to carbon dioxide, principal target of the present invention, the process of absorption, transport, processing and transformation of the gas into other products is described. The process uses ceramic materials prepared through the solid mixture of one or more metallic oxides, with one or more binding agents and an expanding agent. The product generated can be processed and the absorbent system regenerated. The carbon dioxide obtained in the processing can be used as analytic or commercial carbonic gas, various carbamates and ammonium carbonate.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 7, 2015
    Inventors: Jadson Cláudio BELCHIOR, Geraldo Magela DE LIMA, Geison VOGA PEREIRA, Rogério DE OLIVEIRA, Wellerson FONSECA RIBEIRO, Fabrício VIEIRA DE ANDRADE
  • Patent number: 9023243
    Abstract: Methods, systems, and/or devices for synthesis gas recapture are provided, which may include methods, systems, and/or devices for filtering a synthesis gas stream. In some cases, tars, particulates, water, and/or heat may be removed from the synthesis gas stream through the filtering of the synthesis gas stream. The filtered synthesis gas stream may then be captured and/or utilized in a variety of different ways. Some embodiments utilizing a C—O—H compound to filter a synthesis gas stream. In some embodiments, the C—O—H compound utilized to filter the synthesis gas stream may be utilized to produce additional synthesis gas. The additional synthesis gas may be filtered by additional C—O—H compound.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Proton Power, Inc.
    Inventors: Samuel C. Weaver, Daniel L. Hensley, Samuel P. Weaver, Daniel C. Weaver
  • Patent number: 9011808
    Abstract: A process for removing impurities, in particular oxides of sulphur (SOx) and/or oxides of nitrogen (NOx) from oxygen-containing gas streams by scrubbing with at least one washing agent is described. In order to achieve effective gas purification in an economical manner even in the case of so-called large “oxyfuel” furnaces which operate with oxygen as fuel gas, it is proposed to convert the impurities at an elevated pressure of at least 2 bar with at least one basic constituent of the washing agent into salts and to wash out said impurities as dissolved salts.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: April 21, 2015
    Assignee: Linde AG
    Inventors: Nicole Schodel, Hans Jorg Zander, Florian Winkler, Roland Ritter, Torsten Stoffregen
  • Publication number: 20150104554
    Abstract: The present disclosure provides a method and apparatus for extracting carbon dioxide (CO2) from a fluid stream and for delivering that extracted CO2 to controlled environments for utilization by a secondary process. Various extraction and delivery methods are disclosed specific to certain secondary uses, included the attraction of CO2 sensitive insects, the ripening and preservation of produce, and the neutralization of brine.
    Type: Application
    Filed: April 21, 2014
    Publication date: April 16, 2015
    Applicant: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner
  • Publication number: 20150093319
    Abstract: A method comprises receiving a carbon dioxide recycle stream having carbon dioxide and hydrocarbons. The carbon dioxide recycle stream is fed to a catalytic reactor. The hydrocarbons are converted to carbon dioxide in the catalytic reactor by a catalytic reaction without combustion to form a purified carbon dioxide recycle stream. Electrical energy is generated by using heat produced by the catalytic reactor in the conversion. Another method comprises receiving a recycle stream having carbon dioxide, C1-C2 hydrocarbons, and C3+ hydrocarbons. The C3+ hydrocarbons are separated from the carbon dioxide and the C1-C2 hydrocarbons. The carbon dioxide and the C1-C2 hydrocarbons are fed to a catalytic reactor at a pressure greater than about 300 pounds per square inch (psi), and the C1-C2 hydrocarbons are converted to carbon dioxide, water, and heat.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventor: Eric Prim
  • Publication number: 20150071845
    Abstract: Provided herein are porous single-molecule trap materials with fixed pore sizes that are capable of trapping one molecule per cavity.
    Type: Application
    Filed: June 25, 2012
    Publication date: March 12, 2015
    Applicant: TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Hong-Cai Zhou, Mario Wriedt, Julian Sculley, Jian-Rong Li
  • Publication number: 20150073164
    Abstract: The present invention provides a method for adsorbing carbon dioxide onto porous metal-organic framework materials, a method for cooling porous metal-organic framework materials, a method for obtaining aldehyde using porous metal-organic framework materials and a method for warming porous metal-organic framework materials. In each method, porous metal-organic framework materials are used while an electric field or an electromagnetic field is applied to the porous metal-organic framework materials, or while a magnetic field or an electromagnetic field is applied to the porous metal-organic framework materials. If an electric field is applied, at least one organic compound included in the porous metal-organic framework materials is a polar compound. Instead, if a magnetic field is applied, at least one metal included in the porous metal-organic framework materials has an unpaired electron.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 12, 2015
    Inventors: TAKAIKI NOMURA, TAKASHI KOUZAKI, TAKAHIRO KURABUCHI, KAZUHITO HATO
  • Patent number: 8974699
    Abstract: The invention relates to a cyclic process for producing synthesis gas comprising: a first step of oxidation of an oxidizable oxygen-carrying solid; a second purge step; a third combustion step with production of CO2; a fourth step of production of synthesis gas; a fifth purge step.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 10, 2015
    Assignees: Total Raffinage Chimie, IFP Energies Nouvelles
    Inventors: Sebastien Rifflart, Gregory Patience, Francois Xavier Chiron
  • Publication number: 20150057417
    Abstract: The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 26, 2015
    Applicant: William Marsh Rice Universtiy
    Inventors: James M. Tour, Wei Lu, Bostjan Genorio
  • Publication number: 20150037238
    Abstract: Disclosed is a method for recovering carbon dioxide from exhaust gas, more particularly, a method for recovering carbon dioxide from exhaust gas for saving the cost for recovery of carbon dioxide by decreasing energy required for recycling a carbon dioxide absorbent solution. In particular, a circulating solvent, whose heat of vaporization and/or sensible heat is lower than that of a solvent of an absorbent solution introduced to a recycling tower, is supplied to the lower portion of the recycling tower and mixed with the heated absorbent solution. As a result, the pressure inside the recycling tower is maintained so that carbon dioxide released from the absorbent solution is discharged to a storage tank/drum.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Inventors: Sung Yeup Chung, Yoon Ji Lee, Sangjin Park, Ki Chun Lee
  • Patent number: 8945351
    Abstract: A method of removing organic components from a mixture containing organic and inorganic components which method involves providing an induction heated screw conveyor having an auger and passing the mixture through the induction heated screw conveyor while inductively heating the auger so as to heat the mixture in the induction heated screw conveyor primarily from the center of the induction heated screw conveyor. The mixture is heated to a temperature that is sufficient to cause the organic components in the mixture to separate from the mixture as a vapor. The oxygen concentration in the induction heated screw conveyor is controlled so as to gasify the organic components. The gasified organic components are removed and the remaining inorganic components are collected.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 3, 2015
    Assignee: Heritage Environmental Services LLC
    Inventors: James E. Bratina, David Bowering, Anthony Kriech, Perry Eyster, Thomas Roberts
  • Publication number: 20150030524
    Abstract: Disclosed are systems and methods which provide a process stream comprising a gaseous component, capture the gaseous component from the process stream by an ionic liquid solvent of a separator, and recover a captured gaseous component from the ionic liquid solvent in a regenerator. A second gaseous component from the process stream may be captured by the ionic liquid solvent of the separator, and the second gaseous component may be recovered from the ionic liquid solvent in the regenerator. Alternatively, the second gaseous component from the process stream may be uncaptured by the ionic liquid solvent, and the uncaptured second gaseous component may be recovered from a membrane unit.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Inventors: Lei JI, Ai-Fu CHANG, Michael S. Driver, Hye-Kyung Timken
  • Publication number: 20140377158
    Abstract: A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Herbert E. Andrus, JR., Glen D. Jukkola, Paul R. Thibeault, Gregory N. Liljedahl
  • Patent number: 8911700
    Abstract: A process and an installation for reducing particulate material containing iron oxide are shown, wherein the material containing iron oxide is at least partially reduced with reducing gas in a reducing zone and the waste gas produced during the reduction is drawn off and subsequently subjected to CO2 cleaning in a CO2 separating device (1), in which a tail gas containing CO2 is separated. The tail gas is subjected to combustion and subsequent dewatering in a dewatering device (5), the substitute gas thereby formed being used as a substitute for inert gas.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: December 16, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Jan-Friedemann Plaul, Kurt Wieder
  • Publication number: 20140363361
    Abstract: The disclosure provides an LS methane hydrate containing a plurality of methane hydrate crystals and lignosulfonate. The disclosure also provides a method of making an LS methane hydrate by combining methane gas, liquid or solid water, and LS at controlled temperature and starting pressure for a time sufficient to form LS methane hydrate. The disclosure further provides a method of producing energy from an LS methane hydrate by providing an LS methane hydrate directly to a combustion chamber, whereby methane in the methane hydrate and LS are converted to energy in the combustion chamber and water in the methane hydrate is converted to steam. The disclosure additionally provides a method of releasing methane from an LS methane hydrate by heating an LS methane hydrate.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: THE TEXAS STATE UNIVERSITY-SAN MARCOS
    Inventors: Weixing Wang, Luyi Sun
  • Publication number: 20140356744
    Abstract: In one aspect, a method to convert a fuel into energy and specialized fuel includes, in a reactor, dissociating a fuel to produce hot carbon and hydrogen, the hot carbon having a temperature state in a range of 700 to 1500° C., in which the dissociating includes providing heat and/or electric energy to produce the hot carbon and the hydrogen; and removing the hot carbon and the hydrogen from the reactor, the removing including depositing the hot carbon to a chamber, in which the hot carbon includes an increased chemical potential energy and is capable of storing energy from an external source. In some implementations, the method can further include supplying an oxygen- and hydrogen-containing reactant to contact the hot carbon to produce carbon monoxide (CO) and hydrogen (H2); and obtaining the produced CO and H2, which, after the supplying, remaining deposited carbon forms a durable carbon-based good or product.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: MCALISTER TECHNOLOGIES, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20140322123
    Abstract: The invention provides novel Zr MOFs, in particular compounds having a surface area of at least 1020 m2/g or if functionalized, having a surface area of at least 500 m2/g.
    Type: Application
    Filed: December 30, 2013
    Publication date: October 30, 2014
    Applicant: Universitetet i Oslo
    Inventors: Jasmina HAFIZOVIC, Unni OLSBYE, Karl Petter LlLLERUD, Soren JAKOBSEN, Nathalie GUILLOU
  • Patent number: 8865100
    Abstract: The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Bruce T. Kelley, Harry W. Deckman, Stephen Mark Davis, Frank Hershkowitz
  • Publication number: 20140271433
    Abstract: A method for improving the reaction rate and better utilize the storage capacity of water in gas hydrate formation processes in which heterogeneous nucleation seeds in the form of mineral particles dispersed in the water phase are used.
    Type: Application
    Filed: April 16, 2012
    Publication date: September 18, 2014
    Applicant: INSTITUTT FOR ENERGITEKNIKK
    Inventor: Berit Nuland
  • Publication number: 20140262284
    Abstract: A method and apparatus to form and compress relatively pure carbon dioxide includes a syngas generator which forms syngas and directs it into a combustion chamber where it is combined with oxygen and combusted to form relatively pure carbon dioxide. A first portion of the formed carbon dioxide is directed to a compressor which is powered by an internal combustion engine. A second portion of the formed carbon dioxide is combined with oxygen and used in combination with a carbonaceous fuel to power the internal combustion engine. This produces exhaust gas which is relatively high purity carbon dioxide which is combined with the carbon dioxide formed by combusting the syngas.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Enerjetik LLC
    Inventors: JAMES E KLEPPER, Kenneth L. Klepper, Ron Stites
  • Patent number: 8828347
    Abstract: Gasification of carbon-containing raw material into gasified gas and recovery of CO2 are enabled at the same pressure throughout a system.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 9, 2014
    Assignee: IHI Corporation
    Inventor: Toru Ishii
  • Publication number: 20140248206
    Abstract: A CO2 recovery system includes an absorption apparatus that brings a CO2 absorption liquid into contact with an exhaust gas treated by a pre-treatment apparatus so that CO2 in the exhaust gas is absorbed into the CO2 absorption liquid; a regeneration apparatus that separates CO2 from the CO2 absorption liquid; an absorption liquid circulation path that circulates the CO2 absorption liquid between the absorption apparatus and the regeneration apparatus; and an impurity removal unit that removes impurities having a high concentration in the absorption liquid circulation path, in the absorption liquid circulation path and/or in the pre-treatment apparatus in advance.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Takahito Yonekawa, Shintaro Honjo, Masayuki Inui, Koji Nakayama, Takashi Kamijo, Hiromitsu Nagayasu
  • Publication number: 20140234946
    Abstract: Aspects of the invention include methods of removing carbon dioxide (CO2) from a CO2 containing gas. In some instances, the methods include contacting CO2 containing gas with a bicarbonate buffered aqueous medium under conditions sufficient to produce a bicarbonate rich product. Where desired, the resultant bicarbonate rich product or a component thereof may then be stored or further processed, e.g., combined with a divalent alkaline earth metal cation, under conditions sufficient to produce a solid carbonate composition. Aspects of the invention further include systems for practicing the methods, as well as products produced by the methods.
    Type: Application
    Filed: September 4, 2013
    Publication date: August 21, 2014
    Applicant: BLUE PLANET, LTD.
    Inventors: Brent Richard Constantz, Mark Bewernitz, Jacob Schneider, Chris Camire
  • Publication number: 20140227161
    Abstract: An organosolv process for producing bio-products by decomposing lignocellulosic materials comprises providing an initial lignin solvent with water, an acid, and a lignin dissolving chemical comprising at least one of an organic ester, butyl acetate, an organic furan, and furfural. The process also includes placing the lignin solvent in contact with a biomass to form a circulation solvent, and recycling at least a portion of the circulation solvent by circulating the circulation solvent back into contact with the biomass. The circulating of the circulation solvent occurs for a period of time, after which, the process then includes separating material such as chemicals and lignin from the circulation solvent. The chemicals can be recycled as new solvent or sold while lignin can be used as natural and renewable colorant for polymers such as poly lactic acid.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: AMERICAN SCIENCE AND TECHNOLOGY CORPORATION
    Inventors: Ali Manesh, Reza Hemyeri, Susanta Mohapatra, John Guenther, Edwin Zoborowski, Mohammad Ali Manesh
  • Publication number: 20140219901
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Daryl R. Brown, Praveen K. Thallapally
  • Patent number: 8795413
    Abstract: The object of the invention is a method for dissolving carbon dioxide from flue or other gas and for the neutralization of the solution obtained. The gas, in which the partial pressure of carbon dioxide is at least 0.4 bar, is led to a dissolution process, where the major part of the carbon dioxide is dissolved into a flow of water. The aqueous solution of carbon dioxide thus obtained is neutralized by passing it through a material containing feldspar minerals, at which time the hydrogen ions of said solution are replaced by ions of alkali or alkaline earth metals, and the aluminum in said material is converted into aluminum compounds that can be separated and utilized.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Cuycha Innovation Oy
    Inventor: Matti Nurmia
  • Publication number: 20140212944
    Abstract: A series of MOF-based hierarchical porous material, namely IPD-mesoMOF-1˜9, based on nanoscale MOFs of MIL-100(Al, Fe, Cr, Sc and In), MIL-53(Al), HKUST-1, DUT-5, DUT-4, MIL-101(Cr), MIL-101NDC(Cr), MIL-101BPDC(Cr) and MIL-110 respectively, forming the permanent interparticle porosities by using close (or relatively close) packing, and preparation methods thereof. Modulated or functionalized IPD-mesoMOFs can be applied for gas adsorption and molecule separation (such as CH4- and CO2-adsorption, gasoline/diesel desulfurization and purification), catalyst loadings and molecular recognition/immobilization of biological macromolecules and enzymes.
    Type: Application
    Filed: April 6, 2014
    Publication date: July 31, 2014
    Applicant: BEIJING STAR NEW MATERIAL CO., LTD.
    Inventors: Yunqi Tian, Yan Chen, Xun Liu
  • Publication number: 20140194658
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Patent number: 8771637
    Abstract: Disclosed herein is a process for the production of hydrogen by autothermal reforming of natural gas, with simultaneous recovery of carbon dioxide using carbon dioxide-selective membrane separation. Residual gas from the hydrogen and carbon dioxide recovery is recycled back to the autothermal reformer.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Nicholas P. Wynn, Douglas E Gottschlich, Haiqing Lin
  • Patent number: 8771636
    Abstract: Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials and associated systems and methods. A representative process includes dissociating a hydrogen donor into dissociation products by adding energy to the hydrogen donor, wherein the energy includes waste heat generated by a process other than dissociating the hydrogen donor. The process can further include providing, from the dissociation products, a structural building block and/or a hydrogen-based fuel, with the structural building block based on carbon, nitrogen, boron, silicon, sulfur, and/or a transition metal.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 8, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20140186255
    Abstract: The invention involves the use of a temperature swing adsorption process in steam methane reforming or autothermal reforming H2-production processes to capture CO2 and produce nearly pure off gas streams of CO2 for sequestration or enhanced oil recovery (EOR). The hydrogen stream output is substantially pure and can be recycled as a fuel to the steam methane reformer furnace or used in other petroleum and petrochemical processes.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventor: Raja A. Jadhav