Metal Containing Patents (Class 423/592.1)
  • Publication number: 20130161262
    Abstract: The current invention provides a novel process for the treatment and reclamation of drilling frac flowback and produced wastewater from the drilling industry. The wastewater is delivered to the EMC/F System from a frac tank or other reservoir. The wastewater is pumped into the system and is treated sequentially by passing through a mechanical hydrocavitation unit, an electromagnetic unit, an electrocoagulation unit and/or a hydrocyclone and a flocculation-sedimentation tank. Polishing of the final effluent is accomplished by passing the water through a mixed media tank.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 27, 2013
    Inventor: Donald E. Henley
  • Publication number: 20130158322
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are prepared by polymer templated methods and are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethane and/or ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 20, 2013
    Applicant: SILURIA TECHNOLOGIES, INC.
    Inventor: Siluria Technologies, Inc.
  • Publication number: 20130153830
    Abstract: Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.
    Type: Application
    Filed: August 3, 2011
    Publication date: June 20, 2013
    Inventors: Dong-Kyun Seo, Alex Volosin
  • Publication number: 20130140485
    Abstract: In the production method for abrasive grains according to the invention, an aqueous solution of a salt of a tetravalent metal element is mixed with an alkali solution, under conditions such that a prescribed parameter is 5.00 or greater, to obtain abrasive grains including a hydroxide of the tetravalent metal element.
    Type: Application
    Filed: January 31, 2013
    Publication date: June 6, 2013
    Inventors: Tomohiro IWANO, Hisataka MINAMI, Hirotaka AKIMOTO
  • Publication number: 20130136687
    Abstract: A high pressure tubular reactor for production of nanoparticles by precipitation has unidirectional fluid flows of precursor and supercritical water directed from inner and outer coaxial inlets to an outlet via a reaction zone immediately downstream of the inlets. The inner inlet is for supercritical fluid, and the outer inlet is for a precursor.
    Type: Application
    Filed: May 17, 2011
    Publication date: May 30, 2013
    Applicant: UCL BUSINESS PLC
    Inventors: Jawwad Darr, Christopher James Tighe, Robert Gruar
  • Publication number: 20130119296
    Abstract: The invention relates to methods for creating metal oxide coatings on one or more surfaces employing a magnetic field, and articles containing those coatings. Such methods involve contacting the surfaces to be treated with a metal compound, and converting the metal compound to metal oxide for example by heating the surfaces to the desired temperature in the presence of a magnetic field. The magnetic field dramatically improves, in some embodiments, the characteristics of the metal oxide coating.
    Type: Application
    Filed: April 15, 2011
    Publication date: May 16, 2013
    Applicants: UT-BATTELLE, LLC, C3 INTERNATIONAL, LLC
    Inventors: Gerard M. Ludtka, Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher
  • Publication number: 20130122328
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 16, 2013
    Applicant: President and Fellows of Harvard College
    Inventor: President and Fellows of Harvard College
  • Patent number: 8435480
    Abstract: Disclosed herein are a method for synthesizing one-dimensional helical mesoporous structure, in which a self-assembled structure of a glycine-derived surfactant is used as a template at room temperature to synthesize the one-dimensional helical mesoporous silica structures having a uniform pore size and a method for synthesizing a glycine-derived surfactant for synthesizing the helical nanoporous structures, in which relatively expensive surfactant can be easily recovered using an organic solvent and reused, which provides economical and environment friendly effects and the glycine-derived surfactant is synthesized by homogeneously heating a reaction product of glycine and phthalic anhydride by dielectric heating with irradiation of microwave, whereby it is possible to realize high yield of the glycine-derived surfactant, shortened synthesis time and increase in energy efficiency, leading to improvement in productivity and reduction in production cost.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Thermolon Korea Co., Ltd.
    Inventors: Sang Cheol Han, Yang Kim, Chung Kwon Park
  • Patent number: 8435481
    Abstract: A material for a solid oxide fuel cell, the material including a lanthanum metal oxide having a perovskite-type crystal structure; and a ceria metal oxide, wherein the ceria metal oxide includes at least one material selected from the group consisting of metal oxides represented by Formula 1 below and metal oxides represented by Formula 2: (1?a?b)Ce1-xAxO2-?+aB2O5+bBO3??Formula 1 Ce1-x-yAxByO2-???Formula 2 wherein 0?a?0.01, 0?b?0.02, 0<2a+?0.02, 0<x<0.3, 0<y?0.02, ? and ? are selected so that the metal oxides of Formulas 1 and 2, respectively, are both electrically neutral, A is a rare earth metal, and B is a 5-valent metal or a 6-valent metal.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 7, 2013
    Assignees: Samsung Electronics Co., Ltd., Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hee-jung Park, Chan Kwak
  • Publication number: 20130109147
    Abstract: Some embodiments include methods of forming memory cells. Metal oxide may be deposited over a first electrode, with the deposited metal oxide having a relatively low degree of crystallinity. The degree of crystallinity within the metal oxide may be increased after the deposition of the metal oxide. A dielectric material may be formed over the metal oxide, and a second electrode may be formed over the dielectric material. The degree of crystallinity may be increased with a thermal treatment. The thermal treatment may be conducted before, during, and/or after formation of the dielectric material.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Noel Rocklein, D.V. Nirmal Ramaswamy, Dale W. Collins, Swapnil Lengade, Srividya Krishnamurthy, Mark Korber
  • Publication number: 20130108542
    Abstract: A method of preparing one-dimensional trimanganese tetroxide (Mn3O4) nanoparticles from an exfoliated two-dimensional manganese dioxide (MnO2) nanosheet using a solid-state decomposition method, and Mn3O4 nanoparticles prepared according to the method are provided. The Mn3O4 nanoparticles can be prepared at a very low temperature without using an organic solvent or a chemical additive, compared to conventional synthesis methods.
    Type: Application
    Filed: May 22, 2012
    Publication date: May 2, 2013
    Applicant: DONGGUK UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Hyun Jung, Na-ra Lee
  • Publication number: 20130101867
    Abstract: Provided is a method of manufacturing a metal oxide film to be formed through the following processes: a coating process of forming a coating film on a substrate by using a coating liquid for forming metal oxide film containing any of various organometallic compounds; a drying process of making the coating film into a dried coating film; and a heating process of forming an inorganic film from the dried coating film under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than ?10° C.
    Type: Application
    Filed: June 8, 2011
    Publication date: April 25, 2013
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Yuki Murayama, Takahito Nagano, Yoshihiro Otsuka
  • Publication number: 20130101500
    Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Applicants: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES, COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
  • Publication number: 20130089492
    Abstract: A mesoporous metal oxide materials with a chiral organization; and a method for producing it, in the method a polymerizable metal oxide precursor is condensed inside the pores of chiral nematic mesoporous silica by the so-called “hard templating” method. As a specific example, mesoporous titanium dioxide is formed inside of a chiral nematic silica film templated by nanocrystalline cellulose (NCC). After removing the silica template such as by dissolving the silica in concentrated aqueous base, the resulting product is a mesoporous titania with a high surface area. These mesoporous metal oxide materials with high surface area and chiral nematic structures that lead to photonic properties may be useful for photonic applications as well as enantioselective catalysis, photocatalysis, photovoltaics, UV filters, batteries, and sensors.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicants: FPINNOVATIONS, UNIVERSITY OF BRITISH COLUMBIA
    Inventors: UNIVERSITY OF BRITISH COLUMBIA, FPINNOVATIONS
  • Patent number: 8399065
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8394352
    Abstract: Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 ?m to about 50 ?m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: March 12, 2013
    Assignee: University of South Carolina
    Inventors: Fanglin Chen, Qiang Liu
  • Publication number: 20130052763
    Abstract: A method of manufacturing a nano-rod and a method of manufacturing a display substrate in which a seed including a metal oxide is formed. A nano-rod is formed by reacting the seed with a metal precursor in an organic solvent. Therefore, the nano-rod may be easily formed, and a manufacturing reliability of the nano-rod and a display substrate using the nano-rod may be improved.
    Type: Application
    Filed: March 19, 2012
    Publication date: February 28, 2013
    Applicants: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Young CHOI, Bo-Sung KIM, Kwang-Yeol LEE, See-Won KIM
  • Publication number: 20130048568
    Abstract: A sorbent for sorbing radioactive ions is described. The sorbent comprises a porous crystalline powder of a metal oxide or mixed metal oxide. A process for making the sorbent comprises the steps of reacting a metal halide or a mixture of metal halides and an alcohol to form a gel; heating the gel to form a particulate material; exposing the particulate material to an oxidant to form a powder; and heating the powder to a temperature sufficient to at least partially melt or sinter particles of the powder so as to form the sorbent.
    Type: Application
    Filed: March 3, 2011
    Publication date: February 28, 2013
    Applicant: Australian Nuclear Science and Technology Organisation
    Inventor: Van So Le
  • Patent number: 8382877
    Abstract: The present invention provides an approach to control the generation and grow of nanocrystal with membrane diffusion method and related apparatuses to produce inorganic oxide nanopowders and metal nanoparticles. With this method, the size and size distribution of inorganic oxide nanopowders and metal nanoparticles can be tuned. It overcomes the shortcomings possessed by the common chemical and physical method of preparing nanoparticles.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 26, 2013
    Assignee: Beijing University of Technology
    Inventors: Hong He, Hongxing Dai, Xuehong Zi
  • Patent number: 8383077
    Abstract: A method of stabilizing a metal oxide or lithium-metal-oxide electrode comprises contacting a surface of the electrode, prior to cell assembly, with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt, for a time and at a temperature sufficient to etch the surface of the electrode and introduce stabilizing anions and cations from the salt into said surface. The structure of the bulk of the electrode remains unchanged during the acid treatment. The stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium, phosphorus, titanium, silicon, zirconium, aluminum, and boron.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 26, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Michael M. Thackeray, Sun-Ho Kang, Christopher S. Johnson
  • Publication number: 20130045897
    Abstract: An amphiphilic nanoparticle comprises a nanoparticle having a hydrophilic region comprising a hydrophilic functional group bonded to a first portion of a surface of the nanoparticle, and a hydrophobic region of a surface of the nanoparticle. A downhole fluid comprises the amphiphilic nanoparticle, and a method of controlling an oil spill using the downhole fluid are also disclosed.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20130039843
    Abstract: A film forming apparatus (100) according to one embodiment of the present invention includes a first solution container (5A), a second solution container (5B), a reaction chamber (1), a first path (L1), and a second path (L2). The first solution container (5A) stores a source solution (10) containing metal. The second solution container (5B) stores hydrogen peroxide. A substrate (2) is disposed in the reaction chamber (1), and the reaction chamber (1) includes a heating unit (3) that heats the substrate. The first path (L1) supplies a source solution (11) from the first solution container (5A) to the reaction chamber (1). The second path (L2) supplies hydrogen peroxide from the second solution container (5B) to the reaction chamber (1).
    Type: Application
    Filed: June 1, 2010
    Publication date: February 14, 2013
    Applicants: Kyoto University, Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Takahiro Shirahata, Hiroyuki Orita, Akio Yoshida, Shizuo Fujita, Toshiyuki Kawaharamura
  • Publication number: 20130017145
    Abstract: A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Mahendra Kumar Sunkara, Vivekanand Kumar, Jeong H. Kim, Ezra Lee Clark
  • Publication number: 20130011318
    Abstract: An apparatus for producing metal oxide nanofibers includes a jetting unit, a mixing unit, a heating unit, and a cooling unit. The jetting unit jets particles made of a metal. The mixing unit prepares a mixture by mixing the metal particles and a gas containing an oxidizing component that includes oxygen in molecules of the component. The heating unit heats the mixture to raise the temperature of the mixture up to a temperature at which the metal evaporates. The cooling unit cools the product thus-produced in the heating unit.
    Type: Application
    Filed: April 25, 2011
    Publication date: January 10, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Masaya Nakatani, Makoto Takahashi
  • Publication number: 20130004394
    Abstract: CO2 capture from flue gas is a costly procedure, usually due to the energy required for regeneration of the capture medium. One potential medium which could reduce such an energy consumption, however, is Na2CO3. It has been well studied as a sorbent, and it is understood that the theoretical energy penalty of use of Na2CO3 for CO2 separation is low, due to the relatively low heat of reaction and low heat capacity of the material. While it offers some advantages over other methods, its primary downfall is the slow reaction with CO2 during adsorption and the slow Na2CO3 regeneration process. In an effort to reduce the energy penalty of post-combustion CO2 capture, the catalytic decomposition of NaHCO3 is studied. Nanoporous TiO(OH)2 is examined as a potential catalytic support for a cyclic Na2CO3/NaHCO3 based CO2 capture process.
    Type: Application
    Filed: May 11, 2012
    Publication date: January 3, 2013
    Inventor: Maohong Fan
  • Publication number: 20120328508
    Abstract: There is provided a method and an apparatus for producing metal oxide particles, which produce metal oxide particles having a high photocatalytic activity with high yield.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 27, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Bunsho Ohtani, Noriyuki Sugishita, Yasushi Kuroda
  • Patent number: 8328893
    Abstract: The present invention provides a method of producing oxide particles, comprising a step of mixing a metal carbonate with an acid to give a mixture, a step of heating the mixture to give a metal oxide and a step of pulverizing the metal oxide, and slurry wherein metal oxide particles obtained by the above method of producing are dispersed in an aqueous medium, a polishing slurry, and a method of polishing a substrate. Particularly, the present invention provides a polishing slurry containing cerium oxide particles obtained by using cerium carbonate as the metal carbonate material and oxalic acid as the acid. The present invention provides a method of producing oxide particles, wherein coarse particle- and abrasion powder-free fine particles can be rapidly obtained. The present invention also provides a polishing slurry using the oxide particles, which can maintain a suitable polishing rate, can reduce generation of scratches, and can accurately polish the surface of a semiconductor.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 11, 2012
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Takafumi Sakurada, Daisuke Hosaka, Kanshi Chinone
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Patent number: 8318127
    Abstract: Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 27, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8313715
    Abstract: A process for producing metal oxide from metal salts includes cleaning a metal salt in a filter. After cleaning, the metal salt is dried in a drying apparatus. Steam is formed in the drying apparatus. The metal salt is preheated in at least one preheating stage. The metal salt is calcined to metal oxide in a fluidized-bed reactor. The metal oxide is cooled. The steam formed in the drying apparatus is recirculated into the filter.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 20, 2012
    Assignee: Outotec Oyj
    Inventors: Michael Missalla, Guenter Schneider, Jan Jarzembowski, Erwin Schmidbauer
  • Publication number: 20120288433
    Abstract: A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O2) and nitrogen oxide (NO2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Peter Werner Sutter, Eli Anguelova Sutter
  • Publication number: 20120282132
    Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 8, 2012
    Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
  • Publication number: 20120258304
    Abstract: A method for making a coated article includes: providing a substrate; forming a prefabricated layer on a surface of the substrate by vacuum sputtering, the prefabricated layer being a metal layer containing the metal element ‘N’, or an unsaturated oxide layer containing the metal element ‘N’ and ‘M’, the ‘N’ being one or more metals selected from a group consisting of titanium, aluminum, and zinc, the ‘M’ being calcium, barium, or a mixture of calcium and barium; and thermal oxidizing the prefabricated layer to form a color layer on the substrate, the color layer being an oxide layer of the metal element ‘N’, or an oxide layer of the metal element ‘N’ and ‘M’. The color value of the color layer has a L* coordinate between 91 and 98, an a* coordinate between ?1 and 1, and a b* coordinate between ?2 and 2 in the CIE LAB color system.
    Type: Application
    Filed: September 28, 2011
    Publication date: October 11, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, JIA HUANG
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Publication number: 20120230900
    Abstract: An object of the present invention is to provide a metal salt-containing composition which is applicable to many metal source materials, and can be used for forming a compact and uniform metal oxide film comparable to those formed according to a sputtering method, as well as to provide a substrate having a metal complex film on the surface thereof obtained using the metal salt-containing composition, and a substrate having a metal complex film on the surface thereof obtained by further heating the substrate. Moreover, another object of the present invention is to provide a method for manufacturing a substrate having such a metal complex film on the surface thereof. According to the present invention, a metal salt-containing composition containing a metal salt, a polyvalent carboxylic acid having a cis-form structure, and a solvent, in which: the molar ratio of the polyvalent carboxylic acid to the metal salt is not less than 0.5 and not more than 4.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 13, 2012
    Applicant: Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventors: Yasuteru Saito, Naoki Ike
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Publication number: 20120219735
    Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA
    Inventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått
  • Patent number: 8252252
    Abstract: Processes for the recovery of ruthenium from materials containing ruthenium or ruthenium oxides or from ruthenium-containing noble metal ore concentrates, with the steps of A. the introduction of the material into a highly alkaline alkali hydroxide melt in the presence of nitrate as oxidizing agent with the formation of an oxidized melt residue with water-soluble ruthenate (RuO4)2?, B. the dissolution of the oxidized melt residue obtained in water, C. the addition of a reducing agent, D. the precipitation of the metals formed, can also be used for separating off selenium. Optionally, ruthenium is separated off by distillation, instead of precipitation, following step B, with the steps of 5C the treatment of the ruthenate-containing solution with an oxidizing agent, 5D distilling off of the RuO4 obtained, 5E taking up of the RuO4 from step 5D in hydrochloric acid. By way of further subsequent purification steps, processes for the recovery of ruthenium targets are obtained.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: August 28, 2012
    Assignee: W.C. Heraeus GmbH
    Inventors: Horst Meyer, Matthias Grehl, Christian Nowottny, Martin Stettner, Joachim Kralik
  • Patent number: 8252259
    Abstract: Nano-sized rare earth metal oxide particles are prepared from aqueous reverse micelles. The engineered nanoparticles have large surface area to volume ratios, and uniformly incorporate a surfactant in each particle, so that when applied to the inner surface of a pipeline or sprayed onto a fluid stream in a pipeline, the particles reduce the roughness of the inside surface of pipe being used to transport fluid. The application of a nanolayer of this novel nanoceria mixture causes a significant reduction in pressure drops, friction, and better recovery and yield of fluid flowing through a pipeline.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: August 28, 2012
    Assignees: University of Central Florida Research Foundation, Inc., CC Technologies Laboratories, Inc.
    Inventors: Sudipta Seal, William P. Jepson, Sameer Deshpande, Suresh C. Kuiry, Swanand D. Patil
  • Patent number: 8252416
    Abstract: Disclosed herein is a nanocrystal-metal oxide complex. The nanocrystal of the nanocrystal-metal oxide complex is substituted with two or more different types of surfactants which are miscible with a metal oxide precursor and enable maintenance of luminescent and electrical properties of the nanocrystal. The nanocrystal-metal oxide complex exhibits superior optical and chemical stability and secures high luminescent efficiency of the nanocrystal. Accordingly, when the nanocrystal-metal oxide complex is used as a luminescent material of an electroluminescent device, it can improve luminescent efficiency and reliability of products. Further disclosed herein is a method for preparing the nanocrystal-metal oxide complex.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Ae Jun, Eun Joo Jang, Hye Ran Choi, Jung Eun Lim
  • Patent number: 8241420
    Abstract: The invention intends to provide a single crystal material that can be used as a dielectric material for use in electronic devices, which has a high Qf value; and a process for producing the same. According to the invention, a single crystal of a composite oxide is obtained from a composition in which a slight amount of SrTiO3 is added to LaAlO3, and the (1-X)LaAlO3—XSrTiO3 single crystal material having the specific composition has such dielectric characteristics for electronic devices that the dielectric constant is 24 or more and the Qf value is 300,000 GHz or more, is considerably improved in the Qf value as a dielectric material, and can be applied to a high-temperature superconducting filter.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: August 14, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventor: Takeshi Shimada
  • Publication number: 20120201759
    Abstract: Hierarchical nanostructures and methods of fabrication. The structures include particles having a metal oxide outer shell with metal oxide wires extending from the outer shell. A multiscale structure according to the invention has particles above and below a critical size wherein the particles above the critical size have wires extending from the surface. These structures may be fabricated from a mixture prepared of relatively smaller metal particles having a size threshold below a threshold for nanowire formation and of relatively larger metal particles having a size above the threshold for nanowire formation. The mixture is oxidized at a selected temperature and for a selected time whereby the relatively smaller particles sinter and nanowires grow on the relatively larger particles thereby creating tunable hierarchical structures with metal-to-metal contact between the particles.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 9, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher Jameson Love, J. David Smith, Kripa K. Varanasi
  • Patent number: 8236277
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 8227363
    Abstract: Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 24, 2012
    Assignees: Ohio Aerospace Institute, The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Nicholas Leventis, Mary Ann B. Meador, James C. Johnston, Eve F. Fabrizio, Ulvi F. Ilhan
  • Publication number: 20120183470
    Abstract: The present invention relates to a method for continuously preparing mineral particles by means of the thermolysis of mineral precursors in an aqueous medium, comprising contacting: a reactive flow, including mineral precursors at a temperature lower than the conversion temperature thereof; and a coolant flow that is countercurrent to said reactive flow and contains water at a temperature that is sufficient to bring the precursors to a temperature higher than the conversion temperature thereof, the mixture flow that results from said reactive flow and said coolant flow then being conveyed into a tubular reactor, inside of which particles are formed by gradually converting the precursors, and where the reactive flow and the coolant flow are placed in contact with each other inside a mixing chamber, inside of which the reactive flow and the coolant flow are fed by supply pipes having outlet cross-sections that are smaller than the maximum cross-section of said mixing chamber.
    Type: Application
    Filed: July 20, 2010
    Publication date: July 19, 2012
    Applicants: UNIVERSITE DE BOURGOGNE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.)
    Inventors: Daniel Aymes, Moustapha Ariane, Frédéric Bernard, Hervé Muhr, Frédéric Demolsson
  • Patent number: 8221882
    Abstract: A process for producing inorganic spheres, which comprises injecting an aqueous liquid containing an inorganic compound into a laminar flow of an organic liquid which runs at a flow rate of from 0.001 to 2 m/s in a flow path through a porous membrane to form a W/O type emulsion and solidifying the aqueous liquid containing an inorganic compound in the W/O type emulsion.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: July 17, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kenji Yamada, Shin Tatematsu, Kazuhiko Yamada
  • Publication number: 20120175568
    Abstract: The present invention relates to a process for preparing transition metal hydroxides with a mean particle diameter in the range from 6 to 12 ?m (D50), which comprises combining, in a stirred vessel, at least one solution of at least one transition metal salt with at least one solution of at least one alkali metal hydroxide to prepare an aqueous suspension of transition metal hydroxide, and, in at least one further compartment, continuously introducing a mechanical power in the range from 50 to 10 000 W/l in a proportion of the suspension in each case, based on the proportion of the suspension, and then recycling the proportion into the stirred vessel.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 12, 2012
    Applicant: BASF SE
    Inventors: Uwe KRIPPELS, Simon Schrödle
  • Patent number: 8216543
    Abstract: Methods of making unique water treatment compositions are provided. In one embodiment, a method of making a doped metal oxide or hydroxide for treating water comprises: disposing a metal precursor solution and a dopant precursor solution in a reaction vessel comprising water to form a slurry; and precipitating the doped metal oxide or hydroxide from the slurry.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: July 10, 2012
    Assignees: Inframat Corporation, University of Houston
    Inventors: Huimin Chen, Dennis A. Clifford, Meidong Wang, T. Danny Xiao
  • Patent number: 8211388
    Abstract: In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 3, 2012
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Shengfeng Liu, Juliana Boerio-Goates, Qingyuan Liu, Stacey Janel Smith
  • Patent number: 8211400
    Abstract: The present invention comprises new materials, material structures, and processes of fabrication of such that may be used in technologies involving the conversion of light to electricity and/or heat to electricity, and in optoelectronics technologies. The present invention provide for the fabrication of a clathrate compound comprising a type II clathrate lattice with atoms of silicon and germanium as a main framework forming lattice spacings within the framework, wherein the clathrate lattice follows the general formula Si136?yGey, where y indicates the number of Ge atoms present in the main framework and 136?y indicates the number of Si atoms present in the main framework, and wherein y>0.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: July 3, 2012
    Assignee: University of South Florida
    Inventors: George S. Nolas, Sarath Witanachchi, Pritish Mukherjee