Group Iib Metal (zn, Cd, Or Hg) Patents (Class 423/99)
  • Patent number: 6733688
    Abstract: A solvent extraction composition is provided which comprises one or more orthohydroxyarylaldoxime or orthohydroxyarylketoxime and at least one dialkyl ester of an optionally substituted ethylene or polyethylene glycol and preferably a water immiscible organic solvent. The orthohydroxyarylaldoximes, or orthohydroxyarylketoximes commonly are of Formula (1), wherein R1 is hydrogen or a hydrocarbyl group, and R2 is an ortho-hydroxyaryl group; and the dialkyl esters of an optionally substituted ethylene or polyethylene glycol commonly are of Formula (2), wherein R7 and R8 are each independently an optionally substituted alkyl group; R9 to R20 are each independently hydrogen or optionally substituted hydrocarbyl; m, n and p are each independently 0, 1, 2, 3 or 4 provided that m+n+p is greater than or equal to 1; and q is 1, 2 or 3.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: May 11, 2004
    Assignee: Cytec Technology Corp.
    Inventors: Alan David Sugarman, Domenico Carlo Cupertino
  • Publication number: 20040081603
    Abstract: This invention deals with the concentration process of zinc silicated minerals, particularly willemite and calamine concentration, by single operations, or conventional steps of ore treatment, some of which include the following: Preparation of stockpiles of different mineralogical and contents compositions, crushing, screening, storage, dense separation, washing, homogenization, magnetic separation, grinding, classification, rubbing, conditioning, flotation, thickening, filtering, calcination, storage and waste deposition.
    Type: Application
    Filed: November 13, 2003
    Publication date: April 29, 2004
    Inventor: Julio Cesar Bittencourt
  • Patent number: 6726887
    Abstract: A solvent extraction composition is provided which comprises one or more orthohydroxyarylaldoximes or orthohydroxyarylketoximes and one or more esters substituted with a hydroxyl group, and preferably a water immiscible organic solvent. The orthohydroxyarylaldoximes, or orthohydroxyarylketoximes commonly have Formula (1), wherein R1 is hydrogen or a hydrocarbyl group, and R2 is an ortho-hydroxyaryl group; and the esters substituted with a hydroxyl group are of Formula (2), wherein one of R7 or R8 is a substituted hydrocarbyl group with at least one hydroxyl group and the other is an optionally substituted hydrocarbyl group. Preferred orthohydroxyarylaldoximes are 5-(C9 to C14 alkyl)-2-hydroxybenzaldoximes and preferred orthohydroxyarylketoximes are 5-(C9 to C14 alkyl)-2-hydroxyacetophenone oximes. Preferred esters substituted with a hydroxy group are highly-branched alkyl esters comprising from 5 to 51 carbon atoms, wherein the hydroxy group resides on R8.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: April 27, 2004
    Assignee: Cytec Technology Corp.
    Inventor: Alan David Sugarman
  • Patent number: 6726888
    Abstract: In a method to decrease emission of mercury, a factor is selected to control a combustion process to generate a flue gas comprising fly ash with enhanced unburned carbon; the combustion process is controlled according to a factor selected from reburning fuel, flue gas temperature, OFA injection, coal particle size, LNB flow, LNB design, combustion zone air, stoichiometric ratio of fuel, fuel/air mixing in a primary combustion zone and fuel/air mixing in a secondary combustion zone to produce the flue gas comprising fly ash with enhanced unburned carbon and to vaporize mercury; and the flue gas is allowed to cool to collect fly ash with enhanced unburned carbon with absorbed mercury. A system to decrease emission of mercury; comprises a combustion zone that is controlled to generate a flue gas comprising fly ash with enhanced unburned carbon and that produces vaporized mercury; and a post combustion zone to cool the flue gas to collect fly ash with enhanced unburned carbon with absorbed mercury.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: April 27, 2004
    Assignee: General Electric Company
    Inventors: William Steven Lanier, Charles M. Booth, Vitali V. Lissianski, Vladimir M. Zamansky, Peter M. Maly, William Randall Seeker
  • Patent number: 6706220
    Abstract: In the mixture of metal and/or alloy particles and a liquid electrolytic medium, the metal and/or alloy particles are irregularly shaped, have a non-uniform surface and a bulk density of below 33% by weight of the specific density of the compact metal and/or the compact alloy, and the volume of the medium is larger than that which corresponds to the spaces between the particles in a dry packing.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 16, 2004
    Assignee: Grillo-Werke AG
    Inventor: Wolfgang Glaeser
  • Patent number: 6703006
    Abstract: A deodorant composition for topical application, which comprises a plurality of particles dispersed and a carrier, each particle comprising a glass microsphere at least partially coated with zinc oxide, a zinc salt, or any mixture of two or more thereof.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: March 9, 2004
    Assignee: The Gillette Company
    Inventors: Brian Edward Causton, Sydney Christopher Tavern
  • Patent number: 6656588
    Abstract: Doped, nanosize metal oxide particles have been shown to exhibit stimulated emission and continuous-wave laser action when energized appropriately, for example by electron beams. The doped particles are useful as solid state lasing devices and “laser paints”. Particles containing homogeneously distributed dopant atoms in concentrations greater than the thermodynamic solubility in the metal oxide matrix, and having in some circumstances, unusual oxidation states, have been produced.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Stephen C. Rand, Thomas Hinklin, Guy R. Williams
  • Patent number: 6582814
    Abstract: Rare earth-transition metal oxides are used as pigments. The rare earth-transition metal oxide pigments are preferably of the formula (RexTm)Oy, where Re is at least one rare earth element, Tm is at least one transition metal, x ranges from 0.08 to 12, and y ranges from x+1 to 2x+2. The pigments are useful as colorants, and possess good stability.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 24, 2003
    Assignee: DMC2 Degussa Metals Catalysts Cerdec AG
    Inventors: Daniel R. Swiler, Terry J. Detrie, Enos A. Axtell, III
  • Publication number: 20030065238
    Abstract: A method of treating metal-contaminated spent foundry sand, or other industrial waste, by combining the sand with a sulfite to produce insoluble metal sulfur oxide complexes that do not leach from the sand. The treated waste may also be processed to reducing “clumping,” thereby rendering the treated waste appropriate for use in another industrial process.
    Type: Application
    Filed: November 5, 2002
    Publication date: April 3, 2003
    Inventors: Edward Carroll Hale, John E. Wildey
  • Patent number: 6517701
    Abstract: Aqueous solutions containing lead, zinc and manganese are treated to recover these metals by sequential solvent extraction steps. Solvent extractants are selected to extract preferentially lead, then zinc and then manganese in that order. Any interfering metals are removed (as by ion exchange) before extraction. The loaded extractant phases are stripped with selected acids and lead, zinc and manganese each recovered from the strip solutions. Optionally calcium can be recovered when present. A preferred type of extractant (for lead especially) is substituted monothiophosphinic acids. A closed loop system is described which is advantageous with leachate from sulphide and carbonate ores.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: February 11, 2003
    Assignee: Centaur Mining Exploration Ltd.
    Inventor: Robert A. Geisler
  • Publication number: 20030012716
    Abstract: A method for extraction of zinc values from an aqueous alkaline solution of zinc, especially a solution obtained by the stripping of a galvanized coating from a ferrous metal product e.g. steel, or from electric arc furnace dust. The method comprises subjecting the aqueous alkaline solution to solvent extraction using an organic solution of an oxine i.e. an organic extractant containing an 8-hydroxyquinoline group, and separating the organic solution from aqueous alkaline solution. Zinc values are recovered from the organic solution e.g. by stripping with acid and subjecting the resultant aqueous solution containing zinc values for recovery of zinc e.g. to electrowinning or to precipitation of zinc carbonate. The method may be used in the preparation of galvanized steel for recycle to a steel manufacturing plant, with recovery of zinc and for recovery of zinc values from electric arc furnace dust.
    Type: Application
    Filed: May 13, 2002
    Publication date: January 16, 2003
    Inventors: Vaikuntam Iyer Lakshmanan, Ramamritham Sridhar, Mohamed Shafiqul Alam
  • Patent number: 6476287
    Abstract: A method of treating metal-contaminated spent foundry sand, or other industrial waste, by combining the sand with a sulfite to produce insoluble metal sulfur oxide complexes that do not leach from the sand. The treated waste may also be processed to reduce “clumping,” thereby rendering the treated waste appropriate for use in another industrial process.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: November 5, 2002
    Inventors: Edward Carroll Hale, III, John E. Wildey
  • Patent number: 6471849
    Abstract: A processs for the recovery of zinc from a zinc sulphide ore or concentrate comprises the steps of subjecting the concentrate to pressure leaching with an acidic solution containing at least about 15 g/L iron in solution to produce a zinc solution and a solid leach residue containing iron. The zinc solution is subjected to zinc solvent extraction to produce a raffinate and a pregnant zinc solution. A method of removing ion from an iron bearing raffinate is also provided which comprises pressure leaching a zinc sulphide ore with the iron bearing raffinate to produce a solid leach residue containing iron and a zinc solution.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: October 29, 2002
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 6461581
    Abstract: The present invention provides a clathrate compound which can be used as a thermoelectric material, a hard material, or a semiconductor material. Silicon or carbon are formed into a clathrate lattice, and a clathrate compound is then formed in which specified doping atoms are encapsulated within the clathrate lattice, and a portion of the atoms of the clathrate lattice are substituted with specified substitution atoms. The clathrate lattice is, for example, a silicon clathrate 34 (Si34) mixed lattice of a Si20 cluster including a dodecahedron of Si atoms, and a Si28 cluster including a hexahedron of Si atoms. Suitable doping atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 4A, group 5A, group 6A, and group 8, and suitable substitution atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 5A, group 6A, group 7A, group 5B, group 6B, group 7B, and group 8 of the periodic table.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 8, 2002
    Assignees: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Haruki Eguchi, Akihiko Suzuki, Satoshi Takahashi, Kaoru Miyahara, Tohru Tanaka, Shigemitsu Kihara, Kazuo Tsumuraya
  • Patent number: 6383458
    Abstract: A process for the recovery of one or more metal values from a metal ore material comprising those of one or more values and a matrix material having a sulfur content wherein the sulfur is present in an oxidation-reduction state of zero or less comprising a. forming particulates from particles of said ore and an inoculate comprising bacteria capable of at least partially oxidizing the sulfur content; b. forming a heap of said particulates; c. biooxidizing the sulfur content and d. recovering those one or more metal values.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 7, 2002
    Assignee: Newmont Mining Corporation
    Inventors: James A. Brierley, David L. Hill
  • Patent number: 6375909
    Abstract: The process is by injection of calcium chloride into the combustor and lowering the flue gas temperature in sufficient time to enhance oxidation of mercury and nitrogen oxides into more soluble products prior to their absorption in a wet scrubber. The additive also increases the alkalinity and the pH of the scrubber water, therefore, favorably increasing the absorption of the pollutants. The flue gas is then cooled to ambient temperature or less to enhance the removal of mercury.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: April 23, 2002
    Assignee: Infilco Degremont Inc.
    Inventors: Ky Dangtran, Troy C. Holst
  • Patent number: 6350419
    Abstract: The present invention provides a novel process for the removal and recovery of metals from waste waters and process streams. The process of the present invention utilizes a combination of a supported liquid membrane (SLM) and a strip dispersion to improve extraction of the target species while increasing membrane stability and reducing processing costs. The process is illustrated with cobalt removal and recovery with unexpected results, such as unexpectedly high cobalt fluxes and a very high cobalt concentration in the strip solution recovered. This process can remove other metals, such as copper, zinc, nickel, mercury, lead, cadmium, silver, europium, lanthanum, neodymium, praseodymium, gadolinium, and selenium, from the feed stream to provide a concentrated strip solution of the target species.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: February 26, 2002
    Assignee: Commodore Separation Technologies Inc.
    Inventor: W. S. Winston Ho
  • Patent number: 6299680
    Abstract: An object of the present invention is to reduce the etch pit density (EPD) and the full-width-half-maximum (FWHM) value of the double crystal X-ray rocking curve, and to provide a CdTe crystal or a CdZnTe crystal which does not include deposits having Cd or Te and the process for producing the same. After a CdTe crystal or a CdZnTe crystal was grown, while the temperature of the crystal is from 700 to 1050° C., the Cd pressure is adjusted so as to keep the stoichiometry of the crystal at the above temperature. The crystal is left for time t which is determined so that each of a diameter L(r) of the crystal and a length L(z) thereof satisfies the following equation 1: {L(r),(L(z))}/2<{4exp(−1.15/kT)×t}½. Then, when the crystal is cooled, the temperature of the crystal is decreased within a range in which the temperature of the crystal and that of a Cd reservoir satisfy the following equation 2: −288+1.68×TCd<TCdTe<402+0.76×TCd.
    Type: Grant
    Filed: January 6, 2000
    Date of Patent: October 9, 2001
    Assignee: Japan Energy Corporation
    Inventors: Akio Koyama, Ryuichi Hirano
  • Patent number: 6274104
    Abstract: The invention relates to a method for recovering non-ferrous metals, particularly nickel, cobalt, copper, zinc, manganese and magnesium, from materials containing said metals by converting said non-ferrous metals into sulphates by means of melt and melt coating sulphation, i.e. by a thermal treatment under oxidizing conditions within a temperature range of 400 to 800° C., during which a reaction mixture is formed containing at least one said non-ferrous metal, iron(III)sulphate and alkali metal sulphate, and appropriate reaction conditions are selected to substantially prevent iron(III)sulphate from thermally decomposing to hematite, and finally, said non-ferrous metals are recovered as metallic compounds. In the method of the invention, a process is formed around the melt and melt coating sulphation, which comprises nine steps.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 14, 2001
    Inventors: Jussi Rastas, Pekka Saikkonen
  • Patent number: 6267936
    Abstract: Solvent extraction of one or more metal ions from an aqueous solution in the presence of hydrocarbon-soluble aminomethylenephosphonic acid derivatives.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: July 31, 2001
    Assignees: BASF Aktiengesellschaft, Instituto National de Engenharia e Tecnologia
    Inventors: Francisco Delmas, Carlos Nogueira, Michael Ehle, Knut Oppenländer
  • Patent number: 6210647
    Abstract: An improved process for the extraction of a metal from an aqueous ammoniacal solution comprising: (i) contacting the aqueous ammoniacal solution with an extraction reagent comprised of a water insoluble extractant for the metal, to provide an organic phase, now containing metal values, and an aqueous phase from which metal values have been extracted; (ii) contacting the organic phase with an aqueous stripping solution to provide an aqueous strip phase, now containing metal values, and an organic phase from which metal values have been stripped; and (iii) recovering the metal values from the aqueous stripping solution; the improvement wherein (a) the extraction reagent contains an ammonia antagonist having only hydrogen bond acceptor properties; (b) the stripping solution is an aqueous highly acidic solution; and (c) the organic phase is washed with a weakly acidic aqueous solution prior to stripping with the highly acidic aqueous stripping solution.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: April 3, 2001
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Gary A. Kordosky, George A. Wolfe, J. Murdoch MacKenzie
  • Patent number: 6200680
    Abstract: A process for producing zinc oxide fine particles comprising heating a mixture comprising a zinc source, a carboxyl-containing compound, and an alcohol; a process for producing zinc oxide-polymer composite particles, which comprises heating a mixture comprising a zinc source, a carboxyl-containing compound, a polymer, and an alcohol at a temperature of 100° C. or higher; a process for producing inorganic compound particles having on their surface a cluster of thin plate like zinc oxide crystals with their tip projecting outward, which comprises heating a mixture comprising a zinc source, a carboxyl-containing compound, lactic acid or a compound thereof, and an alcohol at a temperature of 100° C.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: March 13, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Mitsuo Takeda, Tatsuhito Matsuda
  • Patent number: 6171564
    Abstract: A process for the extraction of metal from an ore or concentrate which contains nickel and/or cobalt values and other metals, comprises subjecting the ore or concentrate to acid leaching under pressure at pH≦2 to obtain a liquor containing nickel and/or cobalt values, subjecting the liquor to a first precipitation stage at pH of about 5 to 6 to produce a solid containing non nickel and non cobalt metals and a resultant solution containing the nickel and/or cobalt values and subjecting the resultant solution to a second precipitation stage at a pH of about 7 to 8 to produce a solid containing nickel and/or cobalt.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: January 9, 2001
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 6120744
    Abstract: A process for preparing compounds of the formulae I and II ##STR1## where R.sup.1 and R have the meanings indicated in the specification by an addition reaction of a compound of the formula IIIR.sup.1 OH IIIwith an acetylene or allene of the formula IV or V ##STR2## in the gas phase at elevated temperatures in the presence of a heterogeneous catalyst. The catalyst is obtained by impregnating silica with a zinc salt, by a process in which the reaction is carried out at below 200.degree. C. and the catalyst contains, as an active component, an X-ray amorphous zinc silicate or cadmium silicate containing from 1 to 40% by weight, calculated as oxide, of zinc or cadmium, obtainable by applying a salt of zinc or cadmium and an inorganic oxo acid, which salt is decomposable at below 400.degree. C., to amorphous silica and forming the catalyst before the reaction at from 50 to 500.degree. C. or during the reaction in situ at from 50 to 200.degree. C.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: September 19, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Joaquim Henrique Teles, Norbert Rieber, Klaus Breuer, Dirk Demuth, Hartmut Hibst
  • Patent number: 6110433
    Abstract: The invention relates to a process for recovering metals from used nickel/hydride storage batteries, in which storage battery scrap has been mechanically comminuted and divided into at least a coarse fraction and a fine fraction capable of being treated separately from one another. The process comprises the steps of digesting and dissolving the fine fraction with a mixture of sulfuric acid and hydrogen peroxide, performing a double sulfate precipitation of the rare earths by raising the pH, performing a precipitation of the iron and of the aluminum by further raising the pH, performing a solvent extraction of other metals to separate nickel and cobalt which remain in the aqueous phase from the other metals which are extracted into the organic phase. Optionally, the nickel and the cobalt can be separated from each other and, if desired, the mixed-metal rare earth component which has been recovered can be melted together with cobalt and nickel alloy for the fabrication of new batteries.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: August 29, 2000
    Assignee: Varta Batterie Aktiengesellschaft
    Inventors: Klaus Kleinsorgen, Uwe Kohler, Alexander Bouvier, Andreas Folzer
  • Patent number: 6060035
    Abstract: Compounds of the formulae I and II ##STR1## are prepared by an addition reaction of a compound of the formula IIIR.sup.1 OH IIIwith an acetylene or allene of the formula IV or V ##STR2## where R.sup.1 and R are as defined, in the gas phase at elevated temperatures in the presence of a heterogeneous, silicate-containing catalyst, by a process in which the catalyst used is one which contains or consists of, as the active component, a zinc silicate obtained by precipitation in aqueous solution from a soluble silicon compound and zinc compound, zinc silicate beinga) an essentially X-ray amorphous zinc silicate of the formula VIZn.sub.a Si.sub.c O.sub.a+2c-0.5e (OH).sub.e.fH.sub.2 O VI,where e is from 0 to 2a+4c and the ratio a:c is from 1 to 3.5, and the ratio f:a is from 0 to 200, and/orb) a crystalline zinc silicate having the structure of hemimorphite of the formula Zn.sub.4 Si.sub.2 O.sub.7 (OH).sub.2.H.sub.2 O.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: May 9, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Joaquim Henrique Teles, Norbert Rieber, Klaus Breuer, Dirk Demuth, Hartmut Hibst, Alfred Hagemeyer
  • Patent number: 6051517
    Abstract: A modified zeolite or molecular sieve membrane for separation of materials on a molecular scale. The modified membrane is fabricated to wholly or partially block regions between zeolite crystals to inhibit transfer of larger molecules through the membrane, but without blocking or substantially inhibiting transfer of small molecules through pores in the crystalline structure. The modified membrane has a monomolecular layer deposited on the zeolite surface which has coordinated groups of atoms that include (i) a metal atom bonded to oxygen atoms that are bonded to the zeolite substrate atoms (e.g., silicon atoms) and (ii) either hydroxyl groups bonded to the metal atoms or additional oxygen atoms bonded to the metal atoms.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: April 18, 2000
    Assignee: University Technology Corp.
    Inventors: Hans H. Funke, Jason W. Klaus, Steven M. George, Andrew W. Ott, John L. Falconer, Richard D. Noble
  • Patent number: 6048506
    Abstract: A process for the separation of unwanted ferric, iron and zinc impurities from a cobalt sulphate solution containing these impurities, the process including the steps of (i) reacting the cobalt sulphate solution with an organic reagent specific for the removal of iron and zinc at an initial pH of less 2.8 to remove the majority of the unwanted ferric iron impurities; and (ii) slowly raising the pH of the solution to about 3.5 in order to remove zinc impurities and any remaining ferric iron impurities.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: April 11, 2000
    Assignee: Queensland Nickel Pty. Ltd.
    Inventors: John E. Fittock, Malcolm J. Price, John G. Reid
  • Patent number: 6045763
    Abstract: The invention relates to a process for working up charged aqueous solutions, more especially etching solutions, which contain ammonia, at least one ammonium salt and metal ions in dissolved form and which accumulate in the treatment of substrates containing valuable metals, more especially copper-containing electronic sub-assemblies by contacting the aqueous solution with an organic water-immiscible extractant in one or more extraction stages to form an organic phase containing valuable metals and an aqueous phase, (b) washing the organic phase with a water-containing liquid in one or more successive washing stages wherein the water-containing liquid has a pH above 6.5 in the first washing stage and after said washing stage contacting the washing water before reuse with an organic extraction solution, and (c) conducting one or more stripping stages to transfer the valuable metals from the organic phase to an aqueous phase.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: April 4, 2000
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Ralf Kehl, Werner Schwab
  • Patent number: 6043177
    Abstract: A process for modifying surfaces of zeolites and molecular sieve membranes to decrease effective pore size for separation of materials includes atomic layer controlled vapor or liquid deposition. The atomic layer controlled deposition process steps include (i) exposing the surface to a metal atom coordinated with ligand groups having bonds that are hydrolyzable to form molecular bonded structures on the surface, which structures comprise the metal atoms coordinated with the ligand group or a modified ligand group and then (ii) hydrolyzing the bonds and possibly, but not necessarily, cross-linking the bonds in the ligand or modified ligand group.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: March 28, 2000
    Assignee: University Technology Corporation
    Inventors: John L. Falconer, Steven M. George, Andrew W. Ott, Jason W. Klaus, Richard D. Noble, Hans H. Funke
  • Patent number: 6022406
    Abstract: A method for preparing inorganic pigments from steel mill dust, particularly electric steel mill dust, wherein (a) the dust is separated into a magnetic fraction and a non-magnetic fraction; (b) the non-magnetic fraction is subjected to a basic leaching reaction; (c) the resulting solid batch is rinsed until neutralized and then separated; (d) the resulting batch is calcined at 450-650.degree. C.; (e) the calcined batch is treated with sulfuric acid in the presence of a catalyst; (f) the inorganic pigments are recovered; and (g) the solutions from (c) and (e) are used to precipitate other pigments.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: February 8, 2000
    Assignee: Recupac
    Inventors: Gilles Roux, Farouk Tedjar
  • Patent number: 5997718
    Abstract: A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: December 7, 1999
    Assignee: Drinkard Metalox, Inc.
    Inventors: Robert E. Goozner, Mark O. Long, William F. Drinkard, Jr.
  • Patent number: 5993757
    Abstract: A process for purifying a degraded oxime metal extractant organic phase from a metal extraction circuit wherein a degraded oxime metal extractant organic phase comprised of an oxime metal extractant, and aldehyde or ketone degradates in a water immiscible hydrocarbon solvent is reoximated thereby restoring the oxime extractant organic phase for further extraction in the metal extraction circuit. Optionally the degraded organic phase may be purified by distillation prior to reoximation. The distillation is carried out in a wiped film evaporator at temperatures above 180.degree. C. up to about 250.degree. C. at a pressure from about 0.5 mm Hg or lower up to about 10 mm Hg and the reoximation is carried out with hydroxylamine in the presence of a weak organic carboxylic acid as a phase transfer catalyst and in the presence of an alkali metal or alkaline earth metal hydroxide or carbonate, preferably sodium carbonate.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: November 30, 1999
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Leroy Krbechek, Mary Casey
  • Patent number: 5914101
    Abstract: A stabilised aqueous dispersion of particulate zinc oxide comprises water, a stabilising agent and zinc oxide, the particles of which are coated with dense amorphous silica. Useful stabilising agents include cellulose ethers which contain quaternary ammonium groups and polyalkylene glycols. The dispersions have excellent stability at high concentrations of zinc oxide and are useful for preparing sunscreen formulations, cosmetics and veterinary products.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: June 22, 1999
    Assignee: Tioxide Specialties Limited
    Inventors: Carole Allyson Maria Tapley, Philip Laurence Lyth, Iain Michael Harper
  • Patent number: 5902474
    Abstract: A process for the extraction of precious metals from a copper sulphide ore or concentrate, by treating a leach residue of the ore or concentrate, includes the steps of removing elemental sulphur from the leach residue to obtain a low sulphur residue and subjecting the low sulphur residue to an oxidative leach at elevated temperature and pressure to oxidize sulphur and precious metal compounds present in the low sulphur residue to produce a residue for the extraction of the precious metals therefrom.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: May 11, 1999
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 5881358
    Abstract: A composition for extracting a transition metal which comprises as an active ingredient a cyclic phenol sulfide represented by the following formula (1): ##STR1## wherein X represents a hydrogen atom, a hydrocarbon group, an acyl group, a carboxyalkyl group, or a carbamoylalkyl group; Y represents a hydrocarbon group; Z represents a sulfide group, a sulfinyl group, or a sulfonyl group; and n is an integer of 4 to 8; and a method for extracting a transition metal using the composition
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: March 9, 1999
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Sotaro Miyano, Nobuhiko Iki, Fumitaka Narumi, Naoya Morohashi, Hitoshi Kumagai
  • Patent number: 5876588
    Abstract: Ores containing copper, zinc, silver in the form of sulfides are treated by a solution of sulfurated sulfite ions and ammonium ions in order to remove most of the metals from the sulfide ores. This treatment renders the resulting gold bearing ores much more amenable to cyanide extraction. Dissolved metals are reclaimed by appropriate techniques, such as electrowinning or liquid-liquid extraction, and the solution of sulfurated sulfites and ammonia is recycled for further lixiviation of fresh ores.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: March 2, 1999
    Assignee: UG Plus International Inc.
    Inventors: Jean-Marc Lalancette, Hugues Menard, Regina Zamojska
  • Patent number: 5874374
    Abstract: A method for producing engineered materials from salt/polymer aqueous solutions in which an aqueous continuous phase having at least one metal cation salt is mixed with a hydrophilic organic polymeric disperse phase so as to form a metal cation/polymer gel. The metal cation/polymer gel is then treated to form a structural mass precursor, which structural mass precursor is heated, resulting in formation of a structural mass having predetermined characteristics based upon the intended application of the structural mass.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: February 23, 1999
    Assignee: Institute of Gas Technology
    Inventor: Estela Ong
  • Patent number: 5874055
    Abstract: A process for the extraction of a metal from an ore or concentrate comprises subjecting the ore or concentrate to pressure oxidation in the presence of oxygen and an acidic solution containing halogen ions and a source of bisulphate or sulphate ions, such as H.sub.2 SO.sub.4. The metals which can be extracted by the process comprises copper, as well as non-cuprous metals, such as zinc, and precious metals, such as gold and silver.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: February 23, 1999
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 5869012
    Abstract: A process for the extraction of zinc from a sulphide ore or concentrate containing copper and zinc includes subjecting the concentrate to pressure oxidation in the presence of oxygen and an acidic halide solution to obtain a resulting pressure oxidation slurry and subjecting the slurry to a liquid/solid separation step to produce a liquor containing copper and zinc in solution. The liquor containing the copper and zinc is subjected to a first solvent extraction with a copper extractant to remove copper from the solution and to produce a copper depleted raffinate. The copper depleted raffinate is subjected to a second solid extraction with a zinc extractant to produce a zinc depleted raffinate and the zinc depleted raffinate is recycled to the pressure oxidation step.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: February 9, 1999
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 5759512
    Abstract: The invention provides a method of regenerating dithiophosphorus extractants such as dithiophosphoric acids, dithiophosphonic acids and dithiophosphinic acids from their sulfur-sulfur bonded oxidation products contained in an organic solution. The process generates active hydrogen for regenerating the spent dithiophosphorus extractants. Advantageously, this active hydrogen originates either from introducing a reactive metal into a liquid mixture containing the organic solution and an acidic aqueous solution to form nascent hydrogen or from using hydrogen gas in the presence of a catalyst in the organic solution. The active hydrogen generated in the process breaks the sulfur-sulfur bonds of the dithiophosphorus molecules to form the corresponding dithiophosphorus acids.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: June 2, 1998
    Assignees: Cytec Technology Corp., Inco Limited
    Inventors: William Andrew Rickelton, Indje Ognianov Mihaylov, Bruce John Love, Pak Kuen Louie, Eberhard Krause
  • Patent number: 5711929
    Abstract: A process for removing mercury from elemental sulphur contaminated therewith by liquid-liquid contact by mixing of the contaminated elemental sulphur in a molten state with an aqueous solution containing sulphide and polysulphide anions for extraction of the mercury contaminant from the elemental sulphur into the aqueous sulphide solution, and separating the aqueous sulphide solution containing mercury contaminant from the molten elemental sulphur to provide an elemental sulphur product substantially free from mercury.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: January 27, 1998
    Assignee: 698638 Alberta Ltd.
    Inventors: Michael E. Chalkley, Michael J. Collins, Manher M. Makwana, Ian M. Masters, John Stiksma
  • Patent number: 5698483
    Abstract: A process for producing nano size powders comprising the steps of mixing an aqueous continuous phase comprising at least one metal cation salt with a hydrophilic organic polymeric disperse phase, forming a metal cation salt/polymer gel, and heat treating the gel at a temperature sufficient to drive off water and organics within the gel, leaving as a residue a nanometer particle-size powder.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: December 16, 1997
    Assignee: Institute of Gas Technology
    Inventors: Estela T. Ong, Vahid Sendijarevic
  • Patent number: 5682593
    Abstract: Use of diethyl dodecylphosphonate (DEDP) for the extraction of acids and metal salts from aqueous solutions.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: October 28, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Christoph Holzner, Hans-Dieter Block, Hans-Heinrich Moretto
  • Patent number: 5628933
    Abstract: Applicant has discovered that aliovalently doped zinc-indium-oxide where In is 40-75% of the metal elements can achieve electrical conductivity comparable to wide band-gap semiconductors presently in use while exhibiting enhanced transparency in both the visible and infrared. The material can be doped to resistivity of less than 1 milliohm-cm by small quantifies of aliovalent dopants, such as tetravalent atoms. It can be deposited on glass substrates in amorphous and polycrystalline films.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: May 13, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Sue A. Carter, Robert J. Cava, Jueinai R. Kwo, Julia M. Phillips, Gordon A. Thomas
  • Patent number: 5523067
    Abstract: Liquid phase hydrocarbon fractions of wet natural gas streams which have been in contact while in the liquid phase with mineral particles entrained in the natural gas stream as it is recovered from the wellhead are found to contain a suspension of such particles. These particles contain loosely bound mercury which is capable of contaminating other constituents of the natural gas stream which come into contact with the particles. Effective procedures to purify such wet natural gas streams must include removal of the mineral particles as well as the element mercury dissolved in the liquid phase hydrocarbons or admixed with the vapor phase hydrocarbons.
    Type: Grant
    Filed: November 9, 1994
    Date of Patent: June 4, 1996
    Assignee: UOP
    Inventor: John Markovs
  • Patent number: 5501767
    Abstract: Silicon is employed as a reducing agent in an acid bath to adsorb noble metals present as contaminants in the acid. In the manufacture of silicon devices for electronic memory and other devices, polonium-210 is adsorbed by silicon getters to reduce soft error rate attributable to alpha particle emissions from the radioactive polonium. The noble metals in addition to polonium which can be plated onto silicon using the disclosed method are gold, silver, platinum, copper, palladium, mercury, selenium and bismuth.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: March 26, 1996
    Assignee: Micron Technology, Inc.
    Inventors: Troy Sorensen, Eric Grieger
  • Patent number: 5498360
    Abstract: Manganese dry cells sorted out of used-up dry cells are crushed and sieved to obtain a mixture composed predominantly of anodic substances, which is in turn used for ferrite production. The invention is preferable for a saving of resources and preservation of the environment, and enables ferrites on a practical-enough level to be obtained.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: March 12, 1996
    Assignees: Nomura Kohsan Co., Ltd., TDK Corporation
    Inventors: Takashi Kanemaru, Takaaki Iwasaki, Toshio Saito, Shigeaki Suda, Takeo Kitagawa
  • Patent number: 5492627
    Abstract: Composite articles are useful for separating mercury from fluids. The composite articles can be porous supports comprising an inert substrate having immobilized thereon finely divided gold optionally in combination with a tin salt coating. The porous support can be a particulate or porous fibrous webs. Alternatively, the composite articles can comprise a porous fibrous membrane having enmeshed therein the aforementioned porous supports which can be in particulate or fibrous forms. The method for separating elemental, ionic, or organic mercury in fluids comprises the step of contacting and passing a fluid containing mercury through a support comprising a porous, high surface area, inert substrate on which is immobilized finely divided elemental gold at a controlled rate for a time sufficient for the mercury to sorb to the elemental gold and to provide an immobilized gold-mercury amalgam on the support. If a tin salt also is immobilized on the inert substrate, mercury-tin salt can also be formed.
    Type: Grant
    Filed: June 29, 1994
    Date of Patent: February 20, 1996
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Donald F. Hagen, Wanda Bahmet, Louis C. Haddad, Robert E. Perkins
  • Patent number: 5478540
    Abstract: Heavy metal values can be removed and separated from a substance having a suitable amount of the heavy metal values by contacting the substance with a fluid containing sulfur trioxide to prepare a corresponding heavy metal sulfate, which is followed by leaching the sulfate therefrom and separating the leached sulfate. For example, mercury metal, oxide or sulfide, or methyl mercury, such as can be found in used fluorescent lamps and household batteries, in industrial flue sands, fly ash, contaminated soils, etc., can be removed by contact of crushed lamps or batteries, samples of the flue sands, fly ash, or contaminated soils, etc., with a mixture of sulfur trioxide in air to form mercuric sulfate, which is leached with a suitable leaching agent such as water, aqueous hydrochloric acid, hot dilute sulfuric acid, or concentrated sodium chloride solution, and sequestered by use of an ion exchange resin or precipitated as sulfides for further isolation of mercury value.
    Type: Grant
    Filed: April 22, 1994
    Date of Patent: December 26, 1995
    Inventors: Wilhelm E. Walles, Luis C. Mulford