Magnetic Coating Patents (Class 427/128)
  • Patent number: 9488763
    Abstract: The polycyclic organic compounds which are substantially transparent for an electromagnetic radiation in the visible spectral range, an anisotropic optical film comprising at least one polycyclic organic compound and a method of producing thereof are disclosed. The polycyclic organic compounds have a general formula (I) wherein A and B are acid groups; n is the number of phenyl rings in the range from 3 to 10; m is 0, 1, 2 or 3; l is 1, 2, or 3; p is 1, 2, 3, 4, 5 or 6; C is a counterion from a list comprising H+, NH+4, Na+, K+, Li+, Cs+, Ca2+, Mg2+, Sr2+, La3+, Zn2+, Zr4+, Ce3+, Y3+, Yb3+, Gd3+, and any combination thereof; k is the number of counterions necessary for compensation of the negative electric charge equal to (?p).
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: November 8, 2016
    Assignee: Crysoptix K.K.
    Inventors: Valery S. Kuzmin, Alexey Nokel
  • Patent number: 9379599
    Abstract: The tubular linear motor includes an armature having a coil and a magnetic exciter having a permanent magnet provided to face the coil. The armature has a yoke that blocks a magnetic flux, teeth that partition a slot for storing the coil, and the coil that is arranged to extend over the teeth from an inner side of the slot toward the magnetic exciter while a mechanical gap is reserved between the magnetic exciter and the coil. The magnetic exciter has a plurality of permanent magnets by interposing a soft magnetic body.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 28, 2016
    Assignee: SANYO DENKI CO., LTD.
    Inventors: Yuqi Tang, Yasushi Misawa
  • Patent number: 9372127
    Abstract: A printing system is used printing an image on a web of media that is photoelastic and at least partially transparent. A web advance system advances the web of media supplied from an input roll in an in-track direction along a web transport path. At least one printing station is disposed along the web transport path for printing on the web of media. One or more photoelastic measurement devices disposed along the web transport path for characterizing stress in the web of media, and a controller that controls at least one aspect of the printing system responsive to signals received from the one or more photoelastic measurement devices.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: June 21, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: James A. Katerberg, Gary Alan Kneezel
  • Patent number: 9275670
    Abstract: A method for producing a magnetic recording medium in one embodiment includes forming a magnetic material layer above a substrate, transferring an uneven pattern to the magnetic material layer to form concave portions and convex portions, the convex portions being magnetic regions, depositing a nonmagnetic material above the concave portions to form nonmagnetic regions, forming an oxide layer and/or hydroxide layer above the magnetic regions of the recording layer, and forming an organic material layer which exhibits a corrosion-inhibiting characteristic with respect to cobalt or cobalt alloy above the oxide layer and/or hydroxide layer.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 1, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Qing Dai, Bruno Marchon, Katsumi Mabuchi, Mina Amo
  • Patent number: 9274077
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 1, 2016
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 9058832
    Abstract: A method of forming a bit patterned media on a magnetic media disk may include forming topographic features on a substrate and defining trenches therebetween. The method also may include forming non-magnetic material on the topographic features to define non-magnetic portions. In addition, magnetic material may be formed on the non-magnetic portions to define magnetic portions for a recording layer, such that the magnetic portions have a magnetic width that is greater than a non-magnetic width of the non-magnetic portions.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 16, 2015
    Assignee: HGST NETHERLANDS B.V.
    Inventors: Thomas Robert Albrecht, Olav Hellwig
  • Publication number: 20150137904
    Abstract: Provided herein is a microwave device using a magnetic material nano wire array and a manufacturing method thereof, the device including a template having a nano hole array filled with a metal magnetic material.
    Type: Application
    Filed: October 20, 2014
    Publication date: May 21, 2015
    Inventors: Yark Yeon KIM, Han Young YU, Yong Sun YOON, Won Ick JANG
  • Patent number: 9023421
    Abstract: To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Asahi Glass Company, Limited
    Inventor: Tetsuya Nakashima
  • Patent number: 9023422
    Abstract: A method of deposition of magnetic nanocomposites. The method comprises providing an electron beam evaporation system having at least two independent hearths with independently controllable electron beams, each to melt and evaporate materials in the respective hearth, each hearth having a respective shutter for selectively controlling the deposition of the respective material in the respective hearth, placing a ferromagnetic material in a first hearth, placing an oxide in a second hearth which, when evaporated and deposited, will form an insulator, maintaining an oxygen environment in the electron beam evaporation system while evaporating the materials in the first hearth and second hearth, and depositing the magnetic nanocomposite on at least one wafer in the electron beam evaporation system. Various aspects of the method are disclosed.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Uppili Sridhar, Joseph Paul Ellul
  • Patent number: 9003651
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar Murali Subramanian
  • Patent number: 9005699
    Abstract: A method for manufacturing a magnetic recording medium includes the steps of (a) forming a perpendicular magnetic recording layer and (b) applying an ion beam to regions between tracks of the perpendicular magnetic recording layer so as to form separation regions for magnetically separating the tracks from each other. In the step (a), a continuous film layer composed of a multilayer film is formed, and CoB layers and Pd layers are laminated in the multilayer film. In the step (b), the CoB layers and the Pd layers are melted by the ion beam so as to form an alloy of metals contained in the CoB layers and the Pd layers to thereby form the separation regions.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 14, 2015
    Assignee: WD Media, LLC
    Inventors: Yoshiaki Sonobe, Teiichiro Umezawa, Koichi Wago
  • Patent number: 8993133
    Abstract: A perpendicular magnetic recording (PMR) media including a non-magnetic or superparamagnetic grain isolation magnetic anisotropy layer (GIMAL) to provide a template for initially well-isolated small grain microstructure as well as improvement of Ku in core grains of a magnetic recording layer. The GIMAL composition may be adjusted to have lattice parameters similar to a bottom magnetic recording layer and to provide a buffer for reducing interface strains caused by lattice mismatch between the bottom magnetic recording layer and an underlying layer.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 31, 2015
    Assignee: WD Media, LLC
    Inventors: Shaoping Li, B. Ramamurthy Acharya
  • Patent number: 8993071
    Abstract: Embodiments of the present invention provide a manufacturing method that can form a track guide separation area of a magnetic disk substrate constituting a patterned medium represented by a discrete track medium or bit patterned medium suitable for high recording density, uniformly on the whole surface of the magnetic disk substrate, and accurately according to the mask. According to one embodiment, a soft magnetic film, an under coating film, and a magnetic film are formed on a substrate. A mask having an arbitrary pattern shape provided for forming the track guide separation area in the magnetic film is formed on the magnetic film, and the track guide separation area is formed by irradiating ions and electrons onto the surface of the magnetic film and applying an intermittent voltage to the substrate, thereby non-magnetizing the area irradiated.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 31, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Hiroshi Inaba, Hiroshi Kanai, Nobuto Yasui, Toshinori Ono
  • Patent number: 8978240
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Patent number: 8968874
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 8956690
    Abstract: A laminated body which forms a resin mold by compression molding using a master mold, the laminated body having: a pair of mutually facing base materials, a layer of a liquid or gel-like curable resin material sandwiched between the pair of base materials, and one or more flow suppression bodies, which are composed of a cured product of the curable resin material and are sandwiched between the pair of base materials, wherein the layer of the curable resin material is sealed by the pair of base materials and the flow suppression bodies. Also, a method for manufacturing a resin mold using the laminated body.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 17, 2015
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Uchida, Tomokazu Umezawa, Masato Fukushima, Shunsuke Takeyama, Takanori Sakuragi
  • Patent number: 8932667
    Abstract: A method including forming a multilayer structure. The multilayer structure includes a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The multilayer structure also includes an intermediate layer comprising the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The second component is different than the first component. The multilayer structure further includes a cap layer comprising the first component. The method further includes heating the multilayer structure to an annealing temperature to cause a phase transformation of the intermediate layer. Also a hard magnet including a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The hard magnet also includes a cap layer comprising the first component. The hard magnet further includes an intermediate layer between the seed layer and the cap layer.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 13, 2015
    Assignee: Seagate Technology LLC
    Inventors: Jiaoming Qiu, Younghua Chen, Xilin Peng, Shaun McKinlay, Eric W. Singleton, Brian W. Karr
  • Publication number: 20140356525
    Abstract: An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder. The method of manufacturing hexagonal ferrite magnetic powder comprises wet processing hexagonal ferrite magnetic particles obtained following acid treatment in a water-based solvent to prepare an aqueous magnetic liquid satisfying relation (1) relative to an isoelectric point of the hexagonal ferrite magnetic particles: pH0?pH*?2.5, wherein, pH0 denotes the isoelectric point of the hexagonal ferrite magnetic particles and pH* denotes a pH of the aqueous magnetic liquid, which is a value of equal to or greater than 2.0, adding a surface-modifying agent comprising an alkyl group and a functional group that becomes an anionic group in the aqueous magnetic liquid to the aqueous magnetic liquid to subject the hexagonal ferrite magnetic particles to a surface-modifying treatment, and removing the water-based solvent following the surface-modifying treatment to obtain hexagonal ferrite magnetic particles.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Masahiko MORI, Hiroyuki SUZUKI
  • Patent number: 8859033
    Abstract: A production method of a magnetic recording medium of the present invention includes: a step of forming a magnetic layer (2) on a non-magnetic substrate (1); a step of forming a dissoluble layer (3) on the magnetic layer (2); a step of forming a mask layer (4) on the dissoluble layer (3); a step of patterning the dissoluble layer (3) and the mask layer (4) to a shape corresponding to a magnetic recording pattern (2a); a step of performing a partial modification or removal of the magnetic layer (2) by use of the patterned mask layer (4); and a step of dissolving the dissoluble layer (3) with a chemical agent so as to remove the dissoluble layer (3) together with the mask layer (4) formed thereon from the top of the magnetic layer (2), wherein the magnetic recording medium has the magnetically-separated magnetic recording pattern (2a).
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 14, 2014
    Assignee: Showa Denko K.K.
    Inventors: Manabu Ueda, Yuji Murakami, Akira Sakawaki, Zhipeng Wang
  • Patent number: 8852677
    Abstract: A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8846137
    Abstract: On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 30, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Koichi Shimokawa, Katsushi Hamakubo, Kae Itoh
  • Publication number: 20140284515
    Abstract: This ferrite thin film-forming composition is a composition for forming a thin film of NiZn ferrite, CuZn ferrite, or NiCuZn ferrite using a sol-gel method, and the composition includes: metal raw materials; and a solvent containing N-methyl pyrrolidone, wherein a ratio of an amount of N-methyl pyrrolidone to 100 mass % of the total amount of the composition is in a range of 30 to 60 mass %.
    Type: Application
    Filed: February 14, 2014
    Publication date: September 25, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama, Kenzo Nakamura, Kazunori Igarashi
  • Patent number: 8840955
    Abstract: A method of manufacturing a magnetic recording medium is disclosed, as well as a magnetic recording medium manufactured by the method. In the manufacturing method, the uneven pattern has magnetic recording elements in protruding portions formed above a substrate, and depressed portions between the recording elements are filled with a filling material. The method allows a high quality magnetic recording medium to be manufactured inexpensively by eliminating the process of removing excess filling material used to fill depressions between magnetic recording elements, because the method allows material to be filled only in the depressed portions of an uneven pattern. The method includes a technique rendering the wettability of the protruding portion surfaces and the depressed portion surfaces different prior to the process of filling with the filling material.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 23, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Narumi Sato
  • Publication number: 20140272470
    Abstract: Apparatus for recording data and method for making the same. In accordance with some embodiments, a magnetic layer is supported by a substrate and comprises a magnetic magnetic material, a non-magnetic material, and an energy assisted segregation material. The segregation material enhances segregation of the non-magnetic material into grain boundaries within the layer at an elevated, moderate energy level.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Chun Wang, Connie Liu, Thomas P. Nolan, Kueir-Weei Chour
  • Publication number: 20140264142
    Abstract: A method is described for inserting or dispersing quartz within a substrate containing polymers polarizable by an electromagnetic field having electrical resistivity, from an insulator to conductor or vice versa, modifiable by said field. The method involves dispersing in the substrate particles having a sandwich structure including two conductive layers and a layer with piezoelectric characteristics in the middle.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 18, 2014
    Applicant: SPF LOGICA S.R.L.
    Inventors: Giorgio Eberle, Fabio Cappelli, Giuseppe Paronetto
  • Patent number: 8837877
    Abstract: A patterned nonreciprocal optical resonator structure is provided that includes a resonator structure that receives an optical signal. A top cladding layer is deposited on a selective portion of the resonator structure. The top cladding layer is patterned so as to expose the core of the resonator structure defined by the selective portion. A magneto-optically active layer includes a magneto-optical medium being deposited on the exposed core of the resonator structure so as to generate optical non-reciprocity.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Lionel C. Kimerling, Caroline A. Ross, Lei Bi, Peng Jiang, Juejun Hu, Dong Hun Kim, Gerald F. Dionne
  • Publication number: 20140248424
    Abstract: When mirror polishing is performed on a glass substrate by bringing a polishing pad into contact with the surface of the glass substrate while supplying a polishing liquid containing polishing grains to the substrate surface, the pH of the polishing liquid is maintained within a certain range or the agglomeration degree or dispersion degree of the polishing liquid is controlled. Consequently, an adequate mirror polishing rate can be maintained and there can be obtained a glass substrate having a good end shape.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: HOYA CORPORATION
    Inventors: Toshio TAKIZAWA, Takumi KOSHIMIZU, Yoshinori MARUMO, Masahiro KATAGIRI
  • Patent number: 8795763
    Abstract: A track shield structure is disclosed that enables higher track density to be achieved in a patterned track medium without increasing adjacent track erasure and side reading. This is accomplished by placing a soft magnetic shielding structure in the space that is present between the tracks in the patterned medium. A process for manufacturing the added shielding structure is also described.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 5, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Lijie Guan, Kunliang Zhang
  • Patent number: 8795764
    Abstract: An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 5, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yingguo Peng, Xiaowei Wu, Ganping Ju, Bin Lu
  • Patent number: 8790526
    Abstract: A method of producing bit-patterned media is provided whereby a shell structure is added on a bit-patterned media dot. The shell may be an antiferromagnetic material that will help stabilize the magnetization configuration at the remanent state due to exchange coupling between the dot and its shell. Therefore, this approach also improves the thermal stability of the media dot and helps each individual media dot maintain a single domain state.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 29, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Song Xue
  • Publication number: 20140153139
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive element includes a layered structure and a pair of electrodes, the layered structure including a cap layer, a magnetization pinned layer, a magnetization free layer, a spacer layer and a functional layer provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer and including an oxide, the method including forming a film including a base material of the functional layer, performing an oxidation treatment on the film using a gas containing oxygen in a form of at least one selected from the group consisting of molecule, ion, plasma and radical, and performing a reduction treatment using a reducing gas on the film after the oxidation treatment.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akihiko TAKEO, Yoshihiko FUJI, Hiromi YUASA, Michiko HARA, Shuichi MURAKAMI, Hideaki FUKUZAWA
  • Patent number: 8734894
    Abstract: A method of depositing material onto a base portion of a wafer is disclosed. The method includes forming a bevel into a portion of a surface of the base portion of the wafer and depositing a first layer of conductive material onto the beveled portion of the base portion so that part of the first layer includes a wedge shape above the surface of the base portion. A second layer of conductive material is deposited onto the base portion including the portion of the base portion onto which the first layer of material is deposited.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 27, 2014
    Assignee: Seagate Technology LLC
    Inventors: David Chris Seets, Chang Xie, Christopher J. Cote, Karen Virginia Rud
  • Publication number: 20140138570
    Abstract: A composite particle includes: a particle composed of a soft magnetic metallic material, and a coating layer composed of a soft magnetic metallic material having a different composition from that of the particle and fusion-bonded to the particle so as to cover the particle, wherein when the Vickers hardness of the particle is represented by HV1 and the Vickers hardness of the coating layer is represented by HV2, HV1 and HV2 satisfy the following relationship: 100?HV1?HV2, and when half of the projected area circle equivalent diameter of the particle is represented by r and the average thickness of the coating layer is represented by t, r and t satisfy the following relationship: 0.05?t/r?1.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Inventors: Isamu OTSUKA, Yu MAETA, Toshikuni SATO
  • Publication number: 20140141224
    Abstract: In some embodiments, the present disclosure pertains to methods of making carbon foams. In some embodiments, the methods comprise: (a) dissolving a carbon source in a superacid to form a solution; (b) placing the solution in a mold; and (c) coagulating the carbon source in the mold. In some embodiments, the methods of the present disclosure further comprise a step of washing the coagulated carbon source. In some embodiments, the methods of the present disclosure further comprise a step of lyophilizing the coagulated carbon source. In some embodiments, the methods of the present disclosure further comprise a step of drying the coagulated carbon source. In some embodiments, the methods of the present disclosure also include steps of infiltrating the formed carbon foams with nanoparticles or polymers. Further embodiments of the present disclosure pertain to the carbon foams formed by the aforementioned methods.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 22, 2014
    Applicant: William Marsh Rice University
    Inventors: Matteo Pasquali, Tien Yi Theresa Hsu Whiting, Francesca Mirri, Bryan Thomas Whiting
  • Patent number: 8715776
    Abstract: Simultaneous setting of exchange pinning field magnetization in more than one direction for several thin film structures on a single substrate has been achieved by first orienting the structures as needed. A layer of hard magnetic material is then deposited, suitably patterned to control the direction of its flux, and then magnetized through a single exposure to a strong magnetic field. The assemblage is then thermally annealed (in the absence of any applied field) at a temperature higher than the AFM material blocking temperature, following which the thin film structures are magnetically pinned in the intended directions.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 6, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Grace Gorman
  • Patent number: 8697260
    Abstract: A perpendicular magnetic recording medium having a dual-layer magnetic film is disclosed. The bottom layer is completely exchange decoupled, and the top layer contains a certain amount of exchange coupling optimized for recording performance. Preferably, the bottom magnetic layer contains stable oxide material (for example, TiO2) and other non-magnetic elements (for example, Cr). A method of manufacturing the media is also disclosed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 15, 2014
    Assignee: Seagate Technology LLC
    Inventors: Zhong Stella Wu, Samuel Dacke Harkness, IV, Mariana R. Munteanu, Qixu Chen, Connie Chunling Liu
  • Patent number: 8685491
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive element includes a layered structure and a pair of electrodes, the layered structure including a cap layer, a magnetization pinned layer, a magnetization free layer, a spacer layer and a functional layer provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer and including an oxide, the method including forming a film including a base material of the functional layer, performing an oxidation treatment on the film using a gas containing oxygen in a form of at least one selected from the group consisting of molecule, ion, plasma and radical, and performing a reduction treatment using a reducing gas on the film after the oxidation treatment.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 1, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiko Takeo, Yoshihiko Fuji, Hiromi Yuasa, Michiko Hara, Shuichi Murakami, Hideaki Fukuzawa
  • Patent number: 8679577
    Abstract: A magnetic tunnel junction cell having a free layer, a ferromagnetic pinned layer, and a barrier layer therebetween. The free layer has a central ferromagnetic portion and a stabilizing portion radially proximate the central ferromagnetic portion. The construction can be used for both in-plane magnetic memory cells where the magnetization orientation of the magnetic layer is in the stack film plane and out-of-plane magnetic memory cells where the magnetization orientation of the magnetic layer is out of the stack film plane, e.g., perpendicular to the stack plane.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi
  • Patent number: 8663493
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Patent number: 8637156
    Abstract: Layers of a passivating material and/or containing luminescent centers are deposited on phosphor particles or particles that contain a host material that is capable of capturing an excitation energy and transferring it to a luminescent center or layer. The layers are formed in an ALD process. The ALD process permits the formation of very thin layers. Coated phosphors have good resistance to ambient moisture and oxygen, and/or can be designed to emit a distribution of desired light wavelengths.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 28, 2014
    Inventors: Alan W. Weimer, Steven M. George, Karen J. Buochler, Joseph A. Spencer, II, Jarod McCormick
  • Patent number: 8617643
    Abstract: A method of producing a nanoscale structure having substantially immobilized nanoparticles arranged at a predetermined patterned is generally disclosed. First, a curable polymeric solution is placed within a well defined by a wafer. The curable polymeric solution includes a curable polymeric material and a magnetically coated nanoparticle. The well is positioned adjacent to an atomically-smooth medium. A recording head is moved in a predetermined manner to produce a magnetic field profile that substantially immobilizes the magnetically coated nanoparticle within the curable polymeric solution in the well. The curable polymeric solution is cured such that the magnetically coated nanoparticle remains substantially immobilized after the magnetic field profile is removed.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 31, 2013
    Assignee: University of South Carolina
    Inventor: Thomas M. Crawford
  • Patent number: 8609179
    Abstract: Apparatuses, methods and systems for applying a coating to an ear of corn in a high throughput manner are disclosed. The system includes means for moving the ear of corn through the system and means for coating the ear of corn with a coating while passing through the system. The apparatus includes a carrying position for an ear of corn, an automated line having a plurality of the carrying positions, and an automated coating station adapted to apply a coating to the ear of corn on the automated line. The method includes staging a plurality of ears of corn on an automated line, passing the automated line through an ear coating process, and coating the plurality of ears of corn with a coating.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: December 17, 2013
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventors: David Kurth, Thomas Edwin Arneson, Kirk David Shirar
  • Patent number: 8609184
    Abstract: A system and method for corrosion problems in magnetic media resulting from moisture penetrating through the carbon layer into the magnetic layer by diffusion or other methods are overcome by processing the carbon overcoat to stop and/or inhibit the moisture penetration. The process involves removing moisture channels from protective overcoats of thin film magnetic media by irradiating the protective overcoat with ultraviolet (UV) radiation in an inert hydrophobic chemical environment. Afterwards, the thin film magnetic media can be removed into ambient atmosphere where it is coated with a lubricant.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: December 17, 2013
    Assignee: Seagate Technology LLC
    Inventors: Jianwei Liu, Michael J. Stirniman, Li-Peng Wang
  • Publication number: 20130320969
    Abstract: A magnetic field sensor having a first magnetic sensor core for measuring a magnetic field in a first measuring direction, and a second magnetic sensor core for measuring a magnetic field in a second measuring direction, the first and second magnetic sensor cores having a shared magnetic anisotropy.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Frank REICHENBACH, Paul FARBER, Frederic Njikam NJIMONZIE, Frank SCHATZ, Christian PATAK, Stefan WEISS, Joerg MARKTANNER
  • Patent number: 8597723
    Abstract: A perpendicular magnetic recording disk having a single domain exchange-coupled laminated soft magnetic underlayer (SUL) is disclosed. The SUL is a combination synthetic anti-parallel coupled SUL structure, which has the product (Mst) of saturation magnetization and film thickness of the middle ferromagnetic layer less than the sum of the Mst of the bottom and top ferromagnetic layers. Subjected to a post radial field reset process, this SUL provides single domain state. Moreover, both robustness of stray fields and low permeability are obtained while keeping excellent corrosion resistance and cost effective manufacturability.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: December 3, 2013
    Assignee: WD Media, LLC
    Inventors: Hong-Sik Jung, Emur M. Velu, Sudhir S. Malhotra, Jackie Tsoi Jung, Gerardo A. Bertero
  • Patent number: 8590139
    Abstract: A method according to embodiments of the present invention comprises providing a magnetic stack comprising a magnetic layer sub-stack comprising magnetic layers and a bottom conductive electrode and a top conductive electrode electrically connecting the magnetic layer sub-stack at opposite sides thereof; providing a sacrificial pillar on top of the magnetic stack, the sacrificial pillar having an undercut with respect to an overlying second sacrificial material and a sloped foot with increasing cross-sectional dimension towards the magnetic stack, using the sacrificial pillar for patterning the magnetic stack, depositing an insulating layer around the sacrificial pillar, selectively removing the sacrificial pillar, thus creating a contact hole towards the patterned magnetic stack, and filling the contact hole with electrically conductive material.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 26, 2013
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Maria Op De Beeck, Liesbet Lagae, Sven Cornelissen
  • Patent number: 8586136
    Abstract: A method of manufacturing a magnetic recording medium with high recording density and enabling stable flight of a magnetic head, with high manufacturing yields, is provided. The method includes layering a magnetic layer, a protective layer, and a lubricating layer in order on a substrate, and forming a medium for transfer. The method further includes transferring a magnetic pattern to the medium for transfer, and flattening a surface of the lubricating layer of the medium for transfer for which the magnetic pattern transferring is completed. The surface of the lubricating layer is flattened either by wiping the surface of the lubricating layer using a member without a cutting effect, or by heating the surface of the lubricating layer.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 19, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Narumi Sato
  • Publication number: 20130293225
    Abstract: A magnetic sensor has a bottom shield layer, an upper shield layer, and a sensor stack adjacent the upper shield layer. The sensor includes a seed layer between the bottom shield layer and an antiferromagnetic layer of the sensor stack. The seed layer has a magnetic layer adjacent the sensor stack and a nonmagnetic layer adjacent the bottom shield layer.
    Type: Application
    Filed: December 15, 2011
    Publication date: November 7, 2013
    Applicant: Seagate Technology LLC
    Inventors: Eric Walter Singleton, Antonia Tsoukatos, Liwen Tan, Jae-Young Yi
  • Publication number: 20130287938
    Abstract: A process for producing a glass substrate for magnetic disk through chemical strengthening operation, in which the distribution of compressive stress is uniformed at a surface layer portion. The chemical strengthening operation includes the first step of bringing the glass substrate into contact with a first treatment solution (chemical strengthening treatment solution) containing first ions with an ionic radius larger than those of ions within the glass substrate and either the second and subsequent steps of bringing the platy glass into contact with treatment solutions containing second and subsequent bivalent ions, or the second and subsequent steps of bringing the glass substrate into contact with second and subsequent chemical strengthening treatment solutions containing second and subsequent ions exhibiting an ion exchange rate with ions within the glass substrate greater than that of the first ions to thereby decelerate the ion exchange.
    Type: Application
    Filed: July 2, 2013
    Publication date: October 31, 2013
    Inventor: Hideki ISONO
  • Patent number: 8568830
    Abstract: The invention concerns a method for manufacturing pipes coated with a peelable protection layer, wherein the core pipe (1) is produced by extruding and calibrating, after which the surface of core pipe (1) is heated before a protecting coating layer (7a) is applied onto the core pipe (1) on passing through a coating die (7), followed by cooling the applied coating layer (7a) before the readily coated pipe (9) is drawn out of the process. The method is characterized in that the degree of adhesion between core pipe (1) and coating layer (7a) is controlled by rapid and effective heating of the surface of the core pipe (1) to a predetermined temperature and by controlling welding time and stretching of the coating layer being applied onto the core pipe (1) by maintaining a controlled vacuum level inside the coating die (7) forcing the coating layer to hit the surface of the core pipe at an angle as steep as possibly, preferably between 45 and 90 degrees, most preferably between 60 and 80 degrees.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: October 29, 2013
    Assignee: Oy KWH Pipe Ab
    Inventors: Mikael Finne, Jonas Holmlund, Charlotta Risku, Stefan Slotte