Magnetic Coating Patents (Class 427/128)
  • Patent number: 7146714
    Abstract: A method of manufacturing a digital magneto-optical signal write/read head including a thin-film in-plane magnetic coil disposed on an outwardly directed surface of a coil substrate. Coil lead in and coil lead out sections of the coil are extended to an interconnection part of the side surface of the coil substrate and first and second spaced interconnecting conductors are deposited on the side surface of the coil substrate in electrical connection with the lead in and lead out sections of the magnetic coil for contacting the external lead in and lead out lines. Alternatively first and second contacting conductors may additionally be deposited on a top surface of the coil substrate in electrical connection with the first and second interconnecting conductors on the side surface of the coil substrate for contacting the said external lead in and lead out lines.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: December 12, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Frank Cornelis Penning
  • Patent number: 7143505
    Abstract: A thin film magnetic head is capable of reducing inductance by shortening a magnetic path, and also preventing a cavity from being formed in a coil insulating layer. The coil insulating layer is deposited on a lower core layer and at the rear of a recording portion, and a coil forming groove is formed in the coil insulating layer. Then, a coil layer is embedded in the coil forming groove. With this arrangement, bulges of the layers from an upper surface of the recording portion can be decreased so as to shorten a magnetic path.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: December 5, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventor: Kiyoshi Sato
  • Patent number: 7141119
    Abstract: A pressure-controlling dispersion delivery system for delivering a sheared dispersion comprising a plurality of ingredients to a coating device selected from a direct feed delivery system and a coating device flow-through delivery system, wherein a coating formed from a dispersion delivered through the pressure-controlling delivery system has a more consistent caliper than a coating formed from a similar sheared dispersion delivered to a coating device by means of a gear pump delivery system.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 28, 2006
    Assignee: Imation Corp.
    Inventors: Travis A. Lemke, Mark Serafin
  • Patent number: 7140094
    Abstract: Magnetic heads capable of recording and reading with high sensitivity and resolution are provided by minimizing the outflow of magnetic fluxes from a flux guide to magnetic shields while using a flux guide structure for an MR element. In the magnetic head, magnetic shields exposed on a surface opposite a magnetic recording medium (air bearing surface) and a flux guide exposed between the magnetic heads via a non-magnetic layer are provided, and magnetic fluxes are guided by the flux guide to a magnetoresistive (MR) element formed in a position not exposed on the air bearing surface. The height of the magnetic shields in direction perpendicular to the air bearing surface is less than the distance from the air bearing surface to the MR element.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: November 28, 2006
    Assignee: Hitachi, Ltd.
    Inventor: Hiroaki Nemoto
  • Patent number: 7140093
    Abstract: A magneto-resistive (MR) sensor is provided including a pinned layer, and a free layer disposed above the pinned layer. Also included is a pair of leads disposed over portions of the free layer. Further, a pinning layer is disposed below the pinned layer. Disposed below the pinning layer is an underlayer. For enhanced operation, first portions of the pinned layer disposed below the leads have a first pinned layer magnetization parallel with a free layer magnetization associated with the free layer in the absence of an external field. Further, a second portion of the pinned layer has a second pinned layer magnetization perpendicular with the free layer magnetization in the absence of the external field.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 28, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey G. McCord
  • Patent number: 7140085
    Abstract: A capacitive vacuum measuring cell includes first and second ceramic housing bodies (1, 4) joined by an edge seal (3). A thin ceramic membrane (2) is supported between first and second housing bodies (1, 4) by the edge seal (3) at a small distance from the first housing body (1) creating a reference vacuum chamber (25) therebetween. An electrically conductive material (7) coats opposing surfaces of the first housing body (1) and the membrane (2) to form a capacitor. A measurement vacuum chamber (26) is provided between the membrane (2) and the second housing body (4). A port (5) communicates with the second housing body (4) to connect the measurement vacuum chamber (26) of the measuring cell to the medium to be measured. The membrane (2) is made from an Al2O3 slurry that is sintered in a first heating step, cooled, and then reheated to smooth the membrane.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: November 28, 2006
    Assignee: Inficon GmbH
    Inventors: Per Bjoerkman, Ray Olsson
  • Patent number: 7137190
    Abstract: A process is described for fabricating magnetic transducers with metallic thin films with a corrosion resistant surface produced by exposing the thin films to a nitrogen in a plasma chamber. The exposure to the nitrogen is believed to increase the corrosion resistance of the metallic thin films by causing nitrides to form in a thin surface region. In the preferred embodiment the thin film metals of a magnetic transducer are treated with the nitrogen after being cut from the wafer and lapped. Typical metals used in magnetic transducers are NiMn, FeMn, NiFe, cobalt, CoFe, copper, IrMn and PtMn. The films may be further protected by the addition of prior art protective layers such as carbon.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: November 21, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yiping Hsiao, Cherngye Hwang, Jila Tabib
  • Patent number: 7137189
    Abstract: An integrated lead suspension includes a solder ball that is placed between a lead wiring pad provided on a flexure of the suspension, and a bonding pad provided on a slider of a head gimbal section. The lead wiring pad and bonding pad are soldered by melting the solder ball. As a result, there is provided a recessed section into which a solder ball is placed by way of surface raised sections, using gravitational force, in the vicinity of the center line of the surface of the lead wiring pad. In this way the position of the solder ball is not displaced from the center line when a bonding pad and lead wiring pad are connected by means of a solder ball.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: November 21, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tatsumi Tsuchiya, Yuhsuke Matsumoto, Takaaki Murokawa, Naoki Fujii, Takuya Satoh, Yasuhiro Mita, Hiroyasu Tsuchida, Yoshio Uematsu
  • Patent number: 7137192
    Abstract: A thin film head comprising a GMR element formed of an antiferromagnetic layer, a pinning layer, a nonmagnetic conductive layer and a free magnetic layer; and a pair of the right and the left laminated longitudinal biasing layers, each of the layers containing a hard magnetic layer, a nonmagnetic layer and a soft magnetic layer provided on said free magnetic layer of GMR element. Said hard magnetic layer and said soft magnetic layer are antiferromagnetically exchange-coupled via said nonmagnetic layer, and said hard magnetic layer and said free magnetic layer locating next to said hard magnetic layer are ferromagnetically coupled. The present invention contains also a method for manufacturing the thin film head.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: November 21, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaya Sakaguchi, Toshio Fukazawa
  • Patent number: 7137188
    Abstract: An integrated lead suspension includes a solder ball that is placed between a lead wiring pad provided on a flexure of the suspension, and a bonding pad provided on a slider of a head gimbal section. The lead wiring pad and bonding pad are soldered by melting the solder ball. As a result, there is provided a recessed section into which a solder ball is placed by way of surface raised sections, using gravitational force, in the vicinity of the center line of the surface of the lead wiring pad. In this way the position of the solder ball is not displaced from the center line when a bonding pad and lead wiring pad are connected by means of a solder ball.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: November 21, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tatsumi Tsuchiya, Yuhsuke Matsumoto, Takaaki Murokawa, Naoki Fujii, Takuya Satoh, Yasuhiro Mita, Hiroyasu Tsuchida, Yoshio Uematsu
  • Patent number: 7134186
    Abstract: Patterned, longitudinally and transversely antiferromagnetically exchange biased GMR sensors are provided which have narrow effective trackwidths and reduced side reading. The exchange biasing significantly reduces signals produced by the portion of the ferromagnetic free layer that is underneath the conducting leads while still providing a strong pinning field to maintain sensor stability. In the case of the transversely biased sensor, the magnetization of the free and biasing layers in the same direction as the pinned layer simplifies the fabrication process and permits the formation of thinner leads by eliminating the necessity for current shunting.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: November 14, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Min Li, Ru-Ying Tong, Yun-Fei Li, You Fong Zheng, Simon Liao, Kochan Ju, Cherng Chyi Han
  • Patent number: 7134185
    Abstract: A method and system for forming a microscopic transducer are described. The method and system include forming a plurality of adjoining sensor layers. The sensor layers include a first magnetically soft layer, a nonmagnetic layer on the first magnetically soft layer, and a second magnetically soft layer on the nonmagnetic layer. The method and system also include forming a sidewall over the second magnetically soft layer. The sidewall formation includes forming a base having a surface oriented substantially perpendicular to the sensor layers and depositing an electrically conductive material on the surface. The method and system also include removing a portion of the sensor layers not covered by the sidewall.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: November 14, 2006
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Kenneth E. Knapp, Kyusik Sin
  • Patent number: 7131186
    Abstract: On a surface of a bottom pole, a write gap film and first magnetic material film having a high saturation magnetic flux density are formed, and the first magnetic material film is etched to remain a portion extending from an air bearing surface to a throat height zero reference position and a first non-magnetic film is formed in a removed portion. The first non-magnetic material film is polished to obtain a flat surface which is coplanar with a surface of the first magnetic material film. A second magnetic material film having a high saturation magnetic flux density is formed on the flat surface. The second magnetic material film, first magnetic material film, write gap film and bottom pole are partially removed by RIE using a mask formed on the flat surface.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 7, 2006
    Assignees: Headway Technologies, Inc., Sae Magnetics (H.K.), Ltd.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama
  • Patent number: 7127801
    Abstract: A thin film magnetic head that includes an improved P2 pole tip/yoke interface. The process for forming the P2 pole tip/yoke interface includes a CMP polishing step that is performed on the surface of the wafer subsequent to the plating of the P2 pole tip. This CMP step utilizes a relatively soft polishing pad and an acidic polishing slurry which preferentially attacks the P2 pole tip material, such that the CMP step results in the recession of the upper surface of the P2 pole tip relative to the dielectric layer surrounding it, as well as the significant rounding of the upper edges of the dielectric trench in which the P2 pole tip is formed. Thereafter, when the yoke is plated onto the P2 pole tip the rounded upper edges of the dielectric trench result in a concave curved interface between the yoke and the P2 pole tip.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: October 31, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Ashok Lahiri, Edward Hin Pong Lee, Eric James Lee, Hong Xu
  • Patent number: 7126885
    Abstract: A method for patterning a recording medium selectively thermally couples a recording medium and a heat source to alter a chemical composition of the recording medium. An apparatus for patterning a recording medium has a heat source for generating and directing an incident thermal wave to a recording medium so as to alter a chemical composition of the recording medium, and a controller for coordinating a mutual position of the incident thermal wave and the recording medium for inducing a direct thermal coupling between the recording medium and the heat source.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: October 24, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Hemantha K. Wickramasinghe
  • Patent number: 7114240
    Abstract: In a method of fabricating a giant magnetoresistive (GMR) device a plurality of magnetoresistive device layers is deposited on a first silicon nitride layer formed on a silicon oxide layer. An etch stop is formed on the magnetoresistive device layers, and a second layer of silicon nitride is formed on the etch stop. The magnetoresistive device layers are patterned to define a plurality of magnetic bits having sidewalls. The second silicon nitride layer is patterned to define electrical contact portions on the etch stop in each magnetic bit. The sidewalls of the magnetic bits are covered with a photoresist layer. A reactive ion etch (RIE) process is used to etch into the first silicon nitride and silicon oxide layers to expose electrical contacts. The photoresist layer and silicon nitride layers protect the magnetoresistive layers from exposure to oxygen during the etching into the silicon oxide layer.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 3, 2006
    Assignee: Honeywell International, Inc.
    Inventors: Daniel L. Baseman, Lonny L. Berg, Romney R. Katti, Daniel S. Reed, Gordon A. Shaw, Wei D. Z. Zou
  • Patent number: 7114239
    Abstract: A thin-film magnetic head wafer includes a first principal surface and a second principal surface which are substantially parallel to each other. An electrical/magnetic transducer is provided on the first principal surface. Identification information is recorded on the first principal surface of the wafer.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: October 3, 2006
    Assignee: Neomax Co., Ltd.
    Inventor: Taisuke Hirooka
  • Patent number: 7112354
    Abstract: An apparatus includes a low magnetic-coercivity layer of material (LMC layer) having a majority electron-spin-polarization (M-ESP), an energy-gap coupled with the LMC layer, wherein a flow of spin-polarized electrons having an electron-spin-polarization anti-parallel to the LMC layer are injected via the energy-gap, to change the M-ESP of the LMC layer. A non-magnetic material is in electrical communication with the LMC layer and provides a spin-balanced source of current to the LMC layer, responsive to the injection of spin-polarized electrons into the LMC layer.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 26, 2006
    Assignee: Intel Corporation
    Inventors: Eric C. Hannah, Michael A. Brown
  • Patent number: 7112348
    Abstract: The coating apparatus and method enable the coating liquid having been scraped-off to be reused without doing any one of the fluid adjusting treatment and the filtering treatment, while maintaining the features of the scraping-off type of extrusion coater, which is suitable for obtaining a uniform and extremely thin coating film. The coating head is provided with two slits: a coating slit and a recovering slit, and the excessive coating liquid having been discharged through the coating slit and applied to the web is scraped-off and recovered through the recovering slit.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 26, 2006
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Toshihiro Mandai, Mikio Tomaru, Norio Shibata
  • Patent number: 7111386
    Abstract: A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: September 26, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Chao-Peng Chen, Kevin Lin, Jei-Wei Chang, Kochan Ju, Hui-Chuan Wang
  • Patent number: 7103962
    Abstract: A magnetoresistive thin film head comprises a magnetoresistive element including an antiferromagnetic layer, a pinned layer, a nonmagnetic conductive layer and a free magnetic layer, and a pair of the right and the left laminated transverse biasing layers, each including a nonmagnetic layer, a ferromagnetic layer and an antiferromagnetic layer, provided on the free magnetic layer constituting said magnetoresistive element. The layer thickness of said nonmagnetic layer has been established to a certain specific value so that magnetizing direction in said free magnetic layer opposing to the ferromagnetic layer via said nonmagnetic layer assumes a direction that is opposite to that of said ferromagnetic layer.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: September 12, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaya Sakaguci, Toshio Fukazawa
  • Patent number: 7103963
    Abstract: A magnetic tunnel junction (MTJ) sensor in which the free layer longitudinal biasing elements are coupled, without insulation, to the free layer outside of the MTJ stack to provide reliable non-shunting MTJ free layer stabilization without extremely thin dielectric layers. In one embodiment, hard magnetic (HM) layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In another embodiment, antiferromagnetic (AFM) bias layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In other embodiments, nonconductive HM layers are disposed either in contact with the free layer outside of the MTJ stack active region and/or in abutting contact with the MTJ stack active region.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: September 12, 2006
    Assignee: Hitachi Global Storage Technologies
    Inventor: Wipul Jayasekara
  • Patent number: 7101593
    Abstract: A method for producing a disk-shaped substrate 10 used for producing an optical disk includes: (a) forming a protective layer 12a that is larger in area than the disk-shaped substrate 10 on a surface of a transparent plate 11a; and (b) cutting a portion of the plate 11a with the protective layer 12a formed thereon other than an outer edge portion of the protective layer 12a to form a disk shape. According to this producing method, a thin substrate can be prevented from being damaged by forming a protective layer. Furthermore, according to this producing method, a protective layer with a uniform thickness can be formed.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: September 5, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhiro Hayashi, Kazuya Hisada, Eiji Ohno
  • Patent number: 7100268
    Abstract: A method of making a magnetic head includes imbedding a coil layer in an insulation stack. The coil layer is formed with a filament that extends about a central axis. The central axis is perpendicular to a planar head surface and a coil plane. First and second pole pieces are formed with the insulation stack sandwiched between the first and second pole pieces. A first shield layer having first and second major planar thin film surfaces is joined by a third edge with the first major planar thin film surface of the first shield layer forming a portion of the planar head surface. A magnetoresistive (MR) sensor and first and second gap layers are formed with the MR sensor sandwiched between the first and second gap layers and the first and second gap layers located between the third edge and the first horizontal component and with the MR sensor and the first and second gap layers forming portions of the planar head surface.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 5, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Mohamad Towfik Krounbi, Mark E. Re
  • Patent number: 7100267
    Abstract: A method for producing a magnetic head, including the steps of forming a magnetic body on a substrate, the magnetic body including a principal plane facing the substrate and a rear plane opposite to the principal plane; applying a beam to the rear plane of the magnetic body and forming a portion defining a hole extending from the rear plane to the principal plane; forming a magnetic gap in the hole; and separating the magnetic body and the magnetic gap from the substrate and forming medium facing surface substantially coplanar with the principal plane.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: September 5, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroaki Yoda, Yuichi Osawa, Tomomi Funayama
  • Patent number: 7100266
    Abstract: A beveled writing pole includes a top portion, a beveled portion, and a throat portion. The top portion has an end that defines a writing pole tip. The beveled portion adjoins the top portion and has a bevel that extends from the writing pole tip and increases a thickness of the writing pole proximate the pole tip. The throat portion is formed of the top and beveled portions and has tapered sides that extend from the writing pole tip and increase a width of the writing pole proximate the writing pole tip. A method of forming the beveled writing pole is also presented.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: September 5, 2006
    Assignee: Seagate Technology LLC
    Inventors: Martin L. Plumer, Nurul Amin, Vee S. Kong, Richard P. Michel, Johannes van Ek
  • Patent number: 7093348
    Abstract: The object of the invention is to provide a thin film magnetic head and a method of manufacturing the same, which allow the magnetic pole width to be precisely controlled and a sufficient overwrite performance to be attained even in a case where the magnetic pole width is microfabricated. The coupling position where the intermediate portion and the tip of the top pole are coupled each other is located closer to the air bearing surface than the throat height 0 position (TH0 position) which is the reference point for determining the throat height TH. The tip of the top pole defines the write track width on a recording medium. At least the portion of the intermediate portion from the TH0 position to the rear edge portion of the tip has a width wider than that of the tip. The intermediate portion suppresses saturation of the magnetic flux before flowing into the tip of the top pole.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: August 22, 2006
    Assignee: TDK Corporation
    Inventor: Yoshitaka Sasaki
  • Patent number: 7089650
    Abstract: Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 ?, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by a manufacturing method that includes inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: August 15, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Kochan Ju, Cheng Horng, Youfeng Zheng, Simon Liao, Jei-Wei Chang
  • Patent number: 7086140
    Abstract: A method of fabricating a thin film magnetic recording head including a perpendicular recording head having an auxiliary pole, a main pole and a shield against an external magnetic field. The shield against the external magnetic field is formed so that an edge of the shield against the external magnetic field is disposed at a position recessed at least from an edge of the main pole relative to a surface against a medium.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: August 8, 2006
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Tomohiro Okada, Yoshiaki Kawato, Kaori Suzuki, Hiroshi Fukui, Isao Nunokawa
  • Patent number: 7086141
    Abstract: A manufacturing method of an MR sensor including a step of stacking an anti-ferromagnetic layer made of an electrically conductive anti-ferromagnetic material, a step of stacking a pinned layer on the anti-ferromagnetic layer, a step of stacking a nonmagnetic spacer layer on the pinned layer, a step of exposing at least once a surface of the nonmagnetic spacer layer to an oxygen-contained atmosphere, a step of stacking a free layer on the nonmagnetic spacer layer, a magnetization direction of the free layer being free depending upon a magnetic filed applied thereto, and a step of providing the pinned layer a magnetization direction fixed by an exchange coupling between the anti-ferromagnetic layer and the pinned layer.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: August 8, 2006
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Tetsuro Sasaki
  • Patent number: 7083936
    Abstract: A composition containing polydisperse aminodextran polymer molecules is soluble in an aqueous solution at a concentration of 10 mg/ml. The molecules therein have a narrow size distribution characterized by an average molecule mean hydrodynamic diameter of greater than 115 nm, a polydispersity index of between 0.10 and 0.47, an average molecular weight (MW) greater than 3 million daltons, and an amine content of greater than 50 amines per molecule. Similar soluble compositions contain the polymer molecules with an average MW of greater than 7 million daltons. These compositions are useful in forming reagents by conjugation with proteins for labeling cells. Methods of making these compositions and reagents from conventional mixtures of aminodextran polymers involve fractionation on column chromatography.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: August 1, 2006
    Assignee: Beckman Coulter, Inc.
    Inventors: Stephen L. Ledis, Olavi Siiman, Cynthia G. Healy
  • Patent number: 7082672
    Abstract: A thin-film magnetic head comprises a top pole layer incorporating a throat height defining layer and a yoke portion layer. The throat height defining layer is formed as follows. A magnetic layer to be a track width defining portion is formed on a recording gap layer. Next, the magnetic layer is selectively etched through the use of a mask so as to form an end portion of the magnetic layer for defining the throat height. Next, a nonmagnetic layer is formed to fill the etched portion of the magnetic layer while the mask is left unremoved. Next, the yoke portion layer is formed. Using the track width defining portion as a mask, the magnetic layer, the recording gap layer and a portion of the bottom pole layer are etched.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: August 1, 2006
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Kazuo Ishizaki, Takehiro Kamigama
  • Patent number: 7082673
    Abstract: A magnetoresisive device comprises: an MR element having two surfaces that face toward opposite directions and two side portions that face toward opposite directions; two bias field applying layers that are located adjacent to the side portions of the MR element and apply a longitudinal bias magnetic field to the MR element; and two electrode layers that are located adjacent to one of the surfaces of each of the bias field applying layers and feed a sense current to the MR element. The electrode layers overlap the one of the surfaces of the MR element. The magnetoresistive device further comprises two nonconductive layers that are located between the one of the surfaces of the MR element and the two electrode layers and located in two regions that include ends of the MR element near the side portions thereof, the two regions being parts of the region in which the electrode layers face toward the one of the surfaces of the MR element.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: August 1, 2006
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Koichi Terunuma
  • Patent number: 7081268
    Abstract: A method of manufacturing a magnetic recording medium comprises sequential steps of: (a) providing an apparatus for manufacturing the medium; (b) supplying the apparatus with a substrate for the medium; (c) forming a magnetic recording layer on the substrate in a first portion of the apparatus; (d) treating the magnetic recording layer with oxygen gas in a second portion of the apparatus at a sub-atmospheric pressure and for an interval sufficient to provide the resultant medium with at least one of the following, relative to a similar medium manufactured by a similar method but wherein the oxygen treatment of step (d) is not performed: (i) a more negative nucleation field (Hn); (ii) increased remanent squareness (Sr); (iii) increased signal-to-medium noise ratio (SMNR); (iv) narrower switching field distribution (SFD); and (v) decreased thermal decay rate; and (e) forming a protective overcoat layer on the oxygen-treated magnetic recording layer in a third portion of the apparatus.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: July 25, 2006
    Assignee: Seagate Technology LLC
    Inventors: Chung-Hee Chang, Charles F. Brucker
  • Patent number: 7078071
    Abstract: Glass/nanoparticle composites are provided which include a glass matrix with a high density of heterologous nanoparticles embedded therein adjacent the outer surfaces of the composite. Preferably, the glass matrix is formed of porous glass and the nanoparticles are yttrium-iron nanocrystals which exhibit the property of altering the polarization of incident electromagnetic radiation; the composites are thus suitable for use in electrooptical recording media. In practice, a glass matrix having suitable porosity is contacted with a colloidal dispersion containing amorphous yttrium-iron nanoparticles in order to embed the nanoparticles within the surface pores of the matrix. The treated glass matrix is then heated under time-temperature conditions to convert the amorphous nanoparticles into a crystalline state while also fusing the glass matrix pores.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: July 18, 2006
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Susamu Taketomi, Christopher M. Sorensen, Kennth J. Klabunde
  • Patent number: 7073250
    Abstract: A thin film magnetic head wherein a partial insulating layer is formed on a bottom pole layer with a gap layer provided therebetween, the gap depth Gd being regulated by the distance from a surface facing a recording medium to the partial insulating layer. A magnetic flux partially leaks from a tip region of an upper core layer to the bottom pole layer through the partial insulating layer to effectively suppress magnetic saturation of the tip region, thereby improving the NLTS characteristic and PW50 characteristic, and suppressing the occurrence of side fringing.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: July 11, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventors: Sumihito Morita, Naruaki Oki, Toshinori Watanabe, Hiroko Shinozaki
  • Patent number: 7062840
    Abstract: A process for forming magnetic targets for position and speed sensors, and magnetic targets formed according to the process. The targets are formed on a conductor-clad substrate by first applying a layer of photoresist material and then patterning and etching the photoresist to form trenches defining the shape and dimensions of the targets. Magnetic material is formed in the trenches and magnetized to form the targets.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: June 20, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Thaddeus Schroeder, Shih-Chia Chang, Lorenzo Guadalupe Rodriguez
  • Patent number: 7060321
    Abstract: Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 ?, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer. Five embodiments of the invention are described.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: June 13, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Kochan Ju, Cheng Horng, Youfeng Zheng, Simon Liao, Jei-Wei Chang
  • Patent number: 7047625
    Abstract: Present processes used for planarizing a cavity filled with a coil and hard baked photoresist require that a significant amount of the thickness of the coils be removed. This increases the DC resistance of the coil. In the present invention, cavity and coil are overfilled with photoresist which is then hard baked. A layer of alumina is then deposited onto the surface of the excess photoresist, following which CMP is initiated. The presence of the alumina serves to stabilize the photoresist so that it does not delaminate. CMP is terminated as soon as the coils are exposed, allowing their full thickness to be retained and resulting in minimum DC resistance.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: May 23, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Po Kang Wang
  • Patent number: 7036208
    Abstract: A magnetoresistive sensor for use in a data storage device has a recessed sensing element (magnetic tunnel junction, CPP spin valve, etc.) with an exchange biased sensing ferromagnetic (free) layer, and a flux guide that magnetically connects the sensing element to a sensing surface of the sensor. The free layer is selectively exchange biased by a layer of exchange bias material placed under non-active regions of the free layer that lie outside the sensing element and flux guide track widths. The flux guide is provided by extending the free layer from a forward edge of the sensing element to the sensor surface. Advantageously, the sensing element and the flux guide have equal track width so that magnetic flux directed from the flux guide into the sensing element is not diluted with consequent loss of sensitivity.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 2, 2006
    Assignee: Hitachi Global StorageTechnologies Netherlands B.V
    Inventors: Kuok San Ho, Tao Pan
  • Patent number: 7032295
    Abstract: A method of manufacturing a thin-film magnetic head may include forming a first magnetic layer, a thin-film coil, an insulating layer, a gap layer, and a second magnetic layer. The first magnetic layer may be formed to include a first pole portion and a first yoke portion. The second magnetic layer may be formed to include a second pole portion and a second yoke portion. At least part of the thin-film coil may be located on a side of the first pole portion and between the gap layer and the first yoke portion, and may be covered with the gap layer. A surface of the first pole portion that faces toward the gap layer and a surface of the insulating layer that faces toward the gap layer may together form one flat surface. An interface region between the second pole portion and the second yoke portion may be formed to face toward the one flat surface.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: April 25, 2006
    Assignee: TDK Corporation
    Inventor: Yoshitaka Sasaki
  • Patent number: 7029724
    Abstract: A method of forming an A site deficient thin film manganate material on a substrate from corresponding precursor(s), comprising liquid delivery and flash vaporization thereof to yield a precursor vapor, and transporting the precursor vapor to a chemical vapor deposition reactor for formation of an A site deficient manganate thin film on a substrate. The invention also contemplates a device comprising an A site deficient manganate thin film, wherein the manganate layer is formed on the substrate by such a process and is of the formula LaxMyMnO3, where M=Mg, Ca, Sr, or Ba, and (x+y)<1.0, and preferably from about 0.5 to about 0.99.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: April 18, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Galena Doubinina, Daniel Studebaker
  • Patent number: 7020951
    Abstract: An antiferromagnetic stabilization scheme is employed in a magnetic head for magnetically stabilizing a free layer of a spin valve. This is accomplished by utilizing an antiferromagnetic oxide film below a spin valve sensor in a read region and first and second lead layers in end regions and a ferromagnetic film in each of the lead layers that exchange couples to the antiferromagnetic oxide film in the end regions. The ferromagnetic films are pinned with their magnetic moments oriented parallel to an air bearing surface (ABS) of the magnetic head. The ferromagnetic film magnetostatically couples to the free layer which causes the free layer to be in a single magnetic domain state. Accordingly, when the free layer is subjected to magnetic incursions from a rotating disk in a disk drive, the free layer maintains a stable magnetic condition so that resistance changes of the free layer are not altered by differing magnetic conditions of the free layer.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: April 4, 2006
    Assignee: International Business Machines
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 7018557
    Abstract: A pressurized paint product that includes an magnetic aerosol paint composition disposed in a container. The magnetic aerosol paint composition includes volatile organic solvents, an alkyd resin, and ferromagnetic particles.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: March 28, 2006
    Assignee: The Sherwin-Williams Company
    Inventor: Patricia L. Redding
  • Patent number: 7007372
    Abstract: An inductive write element is disclosed for use in a magnetic data recording system. The write element provides increased data rate and data density capabilities through improved magnetic flux flow through the element. The write element includes a magnetic yoke constructed of first and second magnetic poles. The first pole includes a pedestal constructed of a high magnetic moment (high Bsat) material, which is preferably FeRhN nanocrystalline films with lamination layers of CoZrCr. The second pole includes a thin inner layer of high Bsat material (also preferably FeRhN nanocrystalline films with lamination layers of CoZrCr), the remainder being constructed of a magnetic material capable of being electroplated, such as a Ni—Fe alloy. An electrically conductive coil passes through the yoke between the first and second poles to induce a magnetic flux in the yoke when an electrical current is caused to flow through the coil.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: March 7, 2006
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Yingjian Chen, Hua-Ching Tong, Lei Wang, Xizeng Shi
  • Patent number: 7007374
    Abstract: A narrow track width read sensor having a high magnetoresistive sensitivity is made using a self-aligned process which requires the use of only a single resist mask. A plurality of sensor layers is deposited over a substrate. After forming a resist mask in the central region, first lead layers are deposited in the end regions and over the resist mask. Using the resist mask, ion milling is performed such that the first lead layers and sensor layers in the end regions are substantially removed but sensor layers in the central region remain, to thereby form a read sensor having lead overlays on the edges thereof. Hard bias and second lead layers are then deposited in the end regions and over the resist mask. After the resist mask is removed, the top of the read sensor may be oxidized through an exposure to oxygen plasma.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: March 7, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey Scott Lille
  • Patent number: 7001645
    Abstract: The invention seeks to provide a magnetized coating suitable for exerting durable magnetic forces. To do this, the method of the invention consists in spreading conductive particles (13) on a medium (11), the particles being directed by prior magnetization along an inducing magnetic field and being embedded in a binder (12). The coating apparatus for implementing the method of the invention comprises means (10, 15) for feeding the medium (11) onto a conveyor (20), means for applying a main binder (12) via presser rollers (40) and via at least one nozzle (30), said means being coupled to heater means, a tank (50) of particles (13) coupled to a duster (51) for dispensing the fill of particles, means for spreading the fill of particles within the main binder, electromagnetic means (60) for producing an anisotropic magnetic field for magnetizing the particles, a sprayer (80) for depositing an additional binder, dryer means (100), demagnetizer means (110), and winder means (120).
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: February 21, 2006
    Assignee: Magnesia Industries Inc.
    Inventor: Claude Texier
  • Patent number: 6991847
    Abstract: The invention relates to processes for the synthesis of 2-D and 3-D periodic porous silicon structures and composites with improved properties having the advantages of porous silicon and photonic bandgap materials. Photonic crystals comprise a two dimensionally periodic or three dimensionally periodic microporous structural matrix of interconnecting, crystallographically oriented, monodispersed members having voids between adjacent members, and said members additionally having randomly nanoporous surface porosity. The silicon nanofoam material shows enhanced and spectrally controlled/tunable photoluminescence and electroluminesce and finds use as transparent electrodes, high-lumonosity light emitting diodes (LEDs), wavelength division multiplexors, high-active-area catalyst supports, photonic bandgap lasers, silicon-based UV detectors, displays, gas sensors, and the like.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: January 31, 2006
    Assignee: Honeywell International Inc.
    Inventors: Aravind Padmanabhan, Ray H. Baughman, Anvar A. Zakhidov, Guenadiy Lazarov
  • Patent number: 6988307
    Abstract: An inductor comprises a substrate comprising a semiconductor material, a first dielectric layer over the substrate, a magnetic layer over the first dielectric layer, a second dielectric layer over the magnetic layer, and a conductor over the second dielectric layer.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: January 24, 2006
    Assignee: Intel Corporation
    Inventor: Donald S. Gardner
  • Patent number: 6988308
    Abstract: Hard biasing of a magnetoresistive sensor or a spin valve sensor in a magnetic read head is initialized by repeatedly applying a magnetic field to the hard biasing at any level of fabrication of the magnetic read head or any combination of levels of fabrication of the read head such as at the wafer level, row bar level, single slider level, head gimbal assembly (HGA) level and/or head stack assembly (HSA) level.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 24, 2006
    Assignee: International Business Machines Corporation
    Inventors: Christopher William Bergevin, Carol Inouye Chiu, Robert Yuan-Shih Li, Albert Shou-Chi Su