Using Crosslinking Agent Patents (Class 427/213.33)
  • Patent number: 11806662
    Abstract: Embodiments relate to a gas dehydration drying agent solution composition, comprising a solvent that includes at least one glycol having a number average molecular weight from 40 g/mol to 500 g/mol and from 0.01 wt % to 8.00 wt % of a cyclohexylamino sulfonic salt.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: November 7, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Runyu Tan, Reba S. Georgetown
  • Patent number: 11098199
    Abstract: The present invention is directed to a method for manufacturing a bismuth based pigment having an improved alkaline resistance, the method comprising: i) obtaining a dried bismuth based pigment; ii) encapsulation of the bismuth based pigment using a chelating agent; iii) final processing of the encapsulated pigment; and v) drying of the pigment. In addition, the present invention is directed to a bismuth based pigment encapsulated by a layer of chelating agent.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: August 24, 2021
    Assignee: Ferro Corporation
    Inventors: Zeki Acar, Vincent Devreux, Greta Verspaille, Jürgen D'haeveloose, Emmanuelle Clabaux
  • Patent number: 10744476
    Abstract: Provided is a method for cooling wax after coextrusion to create wax capsules. The method includes immersing a concentric nozzle of a coextruder in a container of heated alcohol. The container of heated alcohol sits in a water-ice bath to create a temperature gradient. A core material having a wax coating is extruded through a concentric nozzle to form a capsule. The capsule enters the container of hot alcohol where the wax coating is solidified. In an embodiment, the method is a continuous method including a capsule and solvent transfer system.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 18, 2020
    Assignee: Philip Morris USA Inc.
    Inventors: Hongwei Liu, Georgios D. Karles, Shuzhong Zhuang
  • Patent number: 9381162
    Abstract: A method for forming micro-particles is provided. The method includes the steps of: —providing a first solution which includes at least an anion; —providing a second solution which includes at least a cation; —mixing the first solution with the second solution in presence of at least a first compound for forming porous templates, wherein the porous templates are formed by precipitation of a salt which includes the anion and the cation and wherein the first compound is at least partially incorporated in the porous templates; and—at least partially cross-linking the first compound in the porous templates.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 5, 2016
    Assignee: CC-Ery GmbH
    Inventors: Hans Bäumler, Radostina Georgieva
  • Patent number: 8603577
    Abstract: A process for preparing water-absorbing polymer particles by coating water-absorbing polymer particles with a particulate solid in a mixer, wherein the particulate solid is dispersed by means of a gas stream and the supply of the dispersed particulate solid in the mixer ends below the product bed surface.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Holger Barthel, Martin Wendker, Reiner Witt
  • Publication number: 20130260032
    Abstract: A process for thermal surface postcrosslinking of water-absorbing polymer particles, wherein the polymer particles are coated with an aqueous solution, the coated polymer particles are deagglomerated and the deagglomerated polymer particles are thermally surface postcrosslinked by means of a drum heat exchanger with an inverse screw helix.
    Type: Application
    Filed: March 22, 2013
    Publication date: October 3, 2013
    Applicant: BASF SE
    Inventors: Holger Barthel, Gerald Gruenewald, Norbert Herfert, Markus Muehl, Birgit Reinhard
  • Patent number: 8455098
    Abstract: A process of forming a population of microcapsules is described comprising a solid hydrophilic core material and a wall material at least partially surrounding the core material. The microcapsule population is formed by providing an anionic, or optionally a cationic, solid hydrophilic core material; providing an oil continuous phase which is low boiling and preferably nonflammable, the oil continuous phase comprising one or more esters with chain length up to about 18 carbons. A mixture is formed by dispersing the solid hydrophilic material in the oil continuous phase. Either an oil soluble or dispersible amine acrylate or methacrylate, along with acid, or alternatively acid acrylate or methacrylate along with base is added. A multifunctional acrylate or methacrylate monomer or oligomer is provided and an initiator. Optionally a surfactant is also added to form the mixture.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: June 4, 2013
    Assignee: Appleton Papers Inc.
    Inventor: Todd Arlin Schwantes
  • Patent number: 8445064
    Abstract: A composition for a light emitting body-polymer composite, the composition including a light emitting body; and a cross-linkable composition including a monomer represented by Chemical Formula 1. A light emitting body-polymer composite prepared by cross-linking the composition and a light emitting device including the light emitting body-polymer composite are also provided.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-Suk Chang, Eun-Joo Jang, Shin-Ae Jun, Hyo-Sook Jang, Seok-Hwan Hong
  • Patent number: 8246868
    Abstract: A W/O emulsion is produced from an aqueous solution containing a substance to be entrapped in a vesicle in a dissolved or suspended state and an oil phase containing an emulsifier; subsequently, the W/O emulsion is cooled to a temperature at which the aqueous solution of the W/O emulsion becomes a frozen particle and the oil phase maintains a liquid state, and the oil phase is removed; thereafter, an oil phase containing a vesicle constituent lipid is added to the frozen particle, and the obtained mixture is then stirred, so as to substitute the emulsifier on the surface of the frozen particle with the vesicle constituent lipid; and thereafter, an external Water phase is added to the frozen particle coated with a lipid membrane, so as to hydrate the lipid membrane by the external water phase. This process achieves a high entrapment yield of a desired substance while controlling desired physical properties such as particle diameter.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: August 21, 2012
    Assignee: University of Tsukuba
    Inventors: Sosaku Ichikawa, Takashi Kuroiwa
  • Patent number: 8216598
    Abstract: The present invention deals with an alternative interfacial polymerization process of microencapsulation, microcapsule's produced thereof, microencapsulated agrochemicals, pharmaceuticals, catalysts and phase transfer materials, and formulations thereof, by means of microcapsules and starting materials with much lower toxicological profile than customary microencapsulation materials, and with the participation of acetylene carbamide derivatives in the final structure of the microcapsules' wall.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: July 10, 2012
    Assignee: GAT Microencapsulation AG
    Inventors: Victor Casaña Giner, Miguel Gimeno Sierra, Barbara Gimeno Sierra
  • Publication number: 20120171373
    Abstract: A process for preparing a polymer latex comprising encapsulated pigment particles, said process comprising the steps of: a) Providing a first dispersion comprising water, at least one surfactant and at least one particulate, inorganic pigment of which the particles have a mean diameter of from 200 nm to 10 ?m; b) Providing a second dispersion comprising water, a dispersant, a hydrophobe and at least two polymerizable monomers, of which monomers at least one is an acrylic monomer; c) Independently homogenizing the first and/or second dispersions; d) Mixing said first and second dispersions and homogenizing said mixture until the particles of pigment are encapsulated by monomer droplets; and e) Initiating polymerization of the monomers. In an embodiment, the at least two polymerizable monomers comprise at least one acrylic monomer and at least one monomer being vinyl acetate, styrene or another non-acrylic monomer comprising a polymerizable double bond.
    Type: Application
    Filed: September 13, 2010
    Publication date: July 5, 2012
    Applicant: AKZO NOBEL COATINGS INTERNATIONAL B.V.
    Inventors: Peng Xu, Martin W. Murray
  • Patent number: 8188162
    Abstract: A process for preparing an encapsulated particulate solid using an epoxy functional cross-linking agent and a carboxylic acid functional dispersant characterized in that the crosslinking is performed in the presence of a borate compound. The resultant solids are useful in, for example, ink jet printing inks where high optical density prints may be obtained.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: May 29, 2012
    Assignee: Fujifilm Imaging Colorants Limited
    Inventor: Charles Rupert McIntyre
  • Patent number: 8137746
    Abstract: This invention is directed to a process for making solid, typically particulate, water-swellable material comprising coated water-swellable, preferably hydrogel-forming polymers, which are coated with a coating agent, which is such that it does not rupture when the polymers swell in a liquid, e.g., water or saline water. Hereto, the coating agent is extensible in wet state and comprises thereto a wet-extensible material that has a tensile stress at break in the wet state of at least 1 MPa. Typically, the coating agent comprises thereto an elastomeric polymeric material. The invention also relates to solid (particulate) water-swellable material obtainable by the process of the invention.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: March 20, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Mattias Schmidt, Axel Meyer, Renae Dianna Fossum, Bruno Johannes Ehrnsperger, Stephen Allen Goldman, Michael Divo, Edward Joseph Urankar
  • Patent number: 8088482
    Abstract: Hollow thermoexpandable particles or microspheres are provided that contain hydrocarbon blowing agents and have a shell polymer that can be softened at the onset of the expansion temperature and solidified at a higher temperature (thermoset) in an expanded state. Preferably, the microspheres have a shell of thermally expandable and thermally crosslinkable polymer and a hollow interior that contains a hydrocarbon liquid that boils at a temperature below the heat activated crosslinking temperature of the polymer shell. The crosslinking of the shell polymer during or after expansion, which is heat activated at an elevated temperature, can solidify the shell polymer and, then, maintain the expanded volume of the microspheres. The thermoexpandable thermoset polymer particles are useful in insulation, packaging, for making foam materials such as polyurethane or polyisocyanurate rigid foams.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: January 3, 2012
    Assignee: IP Rights, LLC
    Inventors: Sammie J. (Joey) Glorioso, Jr., James H. Burgess, Jiansheng Tang, Victoria L. Dimonie, Andrew Klein
  • Publication number: 20110281991
    Abstract: A method for manufacturing core-shell metal nanoparticles is provided. The method comprises providing a first solution containing a metal ion; providing a second solution containing Arabinogalactan and having a pH value ranging from about 1 to about 13; mixing the first solution and the second solution to form a third solution; and enabling the third solution to perform an oxidation-reduction reaction to form the core-shell metal nanoparticles. The core-shell metal nanoparticles comprise a core composed of metal; and a shell, composed of Arabinogalactan, covering the surface of he core.
    Type: Application
    Filed: December 23, 2010
    Publication date: November 17, 2011
    Applicant: CHINA MEDICAL UNIVERSITY
    Inventors: Chih-Wei CHOU, Chih-Hsiu Chen, Wen-Hsin Lin, Hong-Ru Lin, Te-Hsing Wu, Yang-Chia Shih
  • Patent number: 8012534
    Abstract: A process is provided for coating particulate materials with a thermoset polymeric coating that is less prone to creep or abrasion than a thermoplastic coating. The process provides for the coating of water-reactive and water-soluble materials which require a non-aqueous media for processing and also provides for the coating of particulate materials which must be processed in water. Also, all organics may be recovered, and there is no solvent contamination of water. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope of the claims.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: September 6, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David A. Ciaramitaro, Brian A. Zentner, Andrew J. Lieux, Anna R. Merritt
  • Patent number: 8003166
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 23, 2011
    Assignee: Vive Nano, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Publication number: 20100304023
    Abstract: A novel method of forming water in oil microcapsules is disclosed. According to the invention microcapsules are obtained by steps comprising dispersing an oil soluble amine modified polyfunctional polyvinyl monomer and an oil soluble bi- or polyfunctional vinyl monomer along with a thermal or UV free radical initiator (optionally included in one or both of the oil or water phases) and an organic acid into an internal phase oil; heating or UV exposing for a time (and temperature) sufficient to oligomerize the amine modified polyfunctional polyvinyl monomer and oil soluble bi- or polyfunctional vinyl monomer forming a pre-polymer. Thereafter the process involves adding to the oil phase oil a water phase comprising a dispersion in water of an anionic emulsifier (and optionally initiator), and adding an emulsifying agent. Emulsifying the water phase into the oil phase (W/O) is controlled through the quantity of water employed.
    Type: Application
    Filed: August 13, 2010
    Publication date: December 2, 2010
    Applicant: Appleton Papers Inc.
    Inventors: Todd Arlin Schwantes, Peggy Dorothy Sands
  • Patent number: 7833578
    Abstract: A composition and a method for fabricating microcapsules encapsulating phase-change material by interfacial condensation polymerization are provided. In this composition and method, a surfactant and an organic solvent are not needed.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: November 16, 2010
    Assignee: Taiwan Textile Research Institute
    Inventors: Yen-Hsi Lin, Chi-Shu Wei
  • Publication number: 20100255309
    Abstract: A process of forming a population of microcapsules is described comprising a solid hydrophilic core material and a wall material at least partially surrounding the core material. The microcapsule population is formed by providing an anionic, or optionally a cationic, solid hydrophilic core material; providing an oil continuous phase which is low boiling and preferably nonflammable, the oil continuous phase comprising one or more esters with chain length up to about 18 carbons. A mixture is formed by dispersing the solid hydrophilic material in the oil continuous phase. Either an oil soluble or dispersible amine acrylate or methacrylate, along with acid, or alternatively acid acrylate or methacrylate along with base is added. A multifunctional acrylate or methacrylate monomer or oligomer is provided and an initiator. Optionally a surfactant is also added to form the mixture.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 7, 2010
    Applicant: Appleton Papers Inc.
    Inventor: Todd Arlin Schwantes
  • Patent number: 7713623
    Abstract: A process for producing a water-absorbent resin particle comprising subjecting a water-soluble ethylenically unsaturated monomer to a reverse phase suspension polymerization, characterized in that the process for producing a water-absorbent resin particle comprises the steps of (A) subjecting the water-soluble ethylenically unsaturated monomer to a first-step reverse phase suspension polymerization in a hydrocarbon-based solvent using a water-soluble radical polymerization initiator in the presence of a surfactant and/or a polymeric protective colloid, and optionally an internal crosslinking agent; (B) carrying out at least one step of the procedures of adding an aqueous solution of a water-soluble ethylenically unsaturated monomer containing a water-soluble radical polymerization initiator and optionally an internal crosslinking agent to a reaction mixture after the termination of the first-step reverse phase suspension polymerization in a state that the surfactant and/or the polymeric protective colloid is
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: May 11, 2010
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Kenya Matsuda, Yuji Kinpara, Tomoki Kawakita, Yasuhiro Nawata
  • Publication number: 20100055139
    Abstract: The present invention relates to topical compositions containing solid particles that are stabilized via encapsulation into a cross-linked silicone matrix. The solid particles are preferably formed of a metal oxide, such as zinc oxide or titanium dioxide, and the cross-linked silicone matrix is preferably formed by cross-linking a silicone having branched reactive alkoxyl moieties in the presence of a stannous carboxylate cross-linking agent. The stabilized particles of the present invention can readily be used either alone or in combination with other skin care actives to form topical compositions with improved stability and performance.
    Type: Application
    Filed: August 10, 2009
    Publication date: March 4, 2010
    Inventor: Wilson Lee
  • Patent number: 7670581
    Abstract: A method for the production of a robust, chemically stable, crystalline, passivated nanoparticle and composition containing the same, that emit light with high efficiencies and size-tunable and excitation energy tunable color. The methods include the thermal degradation of a precursor molecule in the presence of a capping agent at high temperature and elevated pressure. A particular composition prepared by the methods is a passivated silicon nanoparticle composition displaying discrete optical transitions.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: March 2, 2010
    Inventors: Brian A. Korgel, Keith P. Johnston
  • Patent number: 7658998
    Abstract: The present invention relates to a method for preparing an injectable composition of microparticles for the sustained release of a biologically active agent. The microparticles include a biocompatible polymer and a biologically active agent. The invention provides an improved process for the preparation of microparticles, wherein the physical characteristics of the microparticles, for example, the morphology, density and size, are independent of the process used to prepare the initially formed polymer/drug matrix. The method includes the steps of (a) providing a polymer/biologically active agent matrix; (b) compressing the polymer/biologically active agent matrix, thereby forming a compressed matrix; and (c) fragmenting the compressed matrix, thereby forming an injectable microparticle composition. The polymer/drug matrix can be provided by any suitable method.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: February 9, 2010
    Assignee: Alkermes Controlled Therapeutics, Inc.
    Inventors: Josiah Brown, Warren E. Jaworowicz, Gregory C. Troiano
  • Publication number: 20090196991
    Abstract: A new device and process for continuously applying coatings, such as resin and additives or polymers or the like, to minerals is disclosed. The device and apparatus differ substantially from standard batch coating processes currently used by industry. The apparatus uses a horizontal cylinder with an internal auger and a series of injection ports distributed along the cylinder. Minerals that are to be coated are pretreated and passed through the mixing cylinder using the auger (which may comprise one or more screws with variable pitch blades). As the mineral particles pass through the cylinder various coating materials are injected by the injection ports. The complete system is described, the method of use is explained and the control system which allows for different products is described.
    Type: Application
    Filed: August 15, 2005
    Publication date: August 6, 2009
    Inventors: Robert H. Mizwicki, Kelley J. Kerns
  • Patent number: 7534490
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: May 19, 2009
    Assignee: Northern Nanotechnologies, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Publication number: 20090047517
    Abstract: The invention relates to a multilayer polymer assembly comprising polymer layers covalently bonded together by crosslinks comprising a cyclic moiety, and to processes for the preparation thereof.
    Type: Application
    Filed: June 26, 2008
    Publication date: February 19, 2009
    Inventors: Francesco Caruso, Georgina Such, Angus Johnston, Elvira Tjipto, Heng Pho Yap, Cameron Kinnane, Christopher Ochs
  • Patent number: 7473467
    Abstract: The invention relates to a complex coacervation process based on the use of type B gelatin as polycationic colloid, for the preparation of “Halal” certified flavor-containing microcapsules.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: January 6, 2009
    Assignee: Firmenich SA
    Inventors: Anandaraman Subramaniam, Anne Reilly
  • Publication number: 20080094872
    Abstract: Disclosed are a method for forming an organic layer pattern which is characterized by forming a thin layer by coating a coating solution including a polyimide-based polymer having a heteroaromatic pendant group including a heteroatom in its polyimide major chain, a photoinitiator and a crosslinking agent on a substrate and drying the substrate, and exposing and developing the thin layer, an organic layer pattern prepared by the method, and an organic memory device comprising the pattern. According to example embodiments, a high-resolution micropattern may be formed without undergoing any expensive process, e.g., photoresist, leading to simplification of the preparation process and cost reduction.
    Type: Application
    Filed: March 9, 2007
    Publication date: April 24, 2008
    Inventors: Sang Kyun Lee, Won Jae Joo, Kwang Hee Lee, Tae Lim Choi, Myung Sup Jung
  • Publication number: 20080081193
    Abstract: The present invention discloses a two-stage process for preparing functionalized magnetizable microspheres. The first stage includes forming an inner shell of styrene polymer or styrene copolymer around magnetizable nano particles having a monolayer of a non-water-soluble dispersing agent coated thereon. The second stage includes forming an outer shell of styrene polymer or styrene copolymer with sulfate (SO4?) bounded thereto around the inner shell by free radical polymerization. Preferably, nano particles of a noble metal are deposited on the surface of the outer shell. The magnetizable microspheres prepared by the process of the present invention have a size of 100-1000 nm, and the thickness ratio of the inner shell to the outer shell ranges from 10:1 to 1:10.
    Type: Application
    Filed: August 13, 2007
    Publication date: April 3, 2008
    Applicant: NATIONAL DEFENSE UNIVERSITY
    Inventors: Jinn-Luh Ou, Yuh Sung, Chang-Ping Chang, Ming-Der Ger, Szu-Ching Hsiao, Yan-Cheng Chen
  • Patent number: 7192542
    Abstract: The present invention relates to a hollow sphere polymer composition suitable for absorbing active ingredients including oily substances and hydrophobic materials. A process for encapsulating one or more active ingredients using hollow sphere polymers is described.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: March 20, 2007
    Assignee: Rohm and Haas Company
    Inventor: Stephen Pierre Jean Ugazio
  • Patent number: 7049000
    Abstract: This invention relates to a water-swellable material comprising water-swellable polymers that are coated with a coating agent that comprises a phase-separating elastomeric material, which allows swelling of the water-swellable polymers, without breakage of the coating. The invention also relates to a process of making specific coated water-swellable polymers using a phase-separating elastomeric material, and materials obtainable by such a process.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: May 23, 2006
    Assignee: The Procter & Gamble Company
    Inventors: Renae Dianna Fossum, Mattias Schmidt, Axel Meyer
  • Patent number: 7026051
    Abstract: In order to provide a method by means of which the surface of substrates can be protected from corrosive attack and which, in particular, avoids the necessity for oxidative treatment to form oxide layers on surfaces or for phosphatizing or chromatizing treatment steps and is, in addition, simple to apply, it is proposed that the substrate be brought into contact with a solution of a polymer which exhibits UCST properties and which is caused to be deposited onto the surface of the substrate as a layer by decreasing the temperature of the polymer solution.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: April 11, 2006
    Assignee: Forschungsinstitut fur Pigmente und Lacke e.V.
    Inventors: Thadeus Schauer, Mark Entenmann, Claus D. Eisenbach, Waldemar Ph. Oechsner
  • Patent number: 7011776
    Abstract: An improved method for the preparation of a microsphere from an emulsion wherein an organic phase containing an organic solvent having a boiling point lower than that of water and a hardly-water-soluble polymer is emulsified in an aqueous phase by an in-water drying method, which method includes: (1) providing a gas separation membrane; (2) supplying the emulsion to be subjected to in-water drying to one side of the gas separation membrane; and (3) evaporating off the organic solvent contained in the emulsion to the other side of the gas separation membrane, which can remove the organic solvent with high efficiency and can be carried out in a closed system and hence is favorable from an environmental viewpoint.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: March 14, 2006
    Assignee: Tanabe Seiman Co., ltd.
    Inventors: Takehiko Suzuki, Yasuhisa Matsukawa, Akira Suzuki
  • Patent number: 6986913
    Abstract: A process for the preparation of coated polymer particles containing superparamagnetic crystals, said process comprising reacting porous, surface-functionalized, superparamagnetic crystal-containing polymer particles of diameter 0.5 to 1.8 ?m with at least one polyisocyanate and at least one diol or at least one epoxide.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 17, 2006
    Assignee: Dynal Biotech ASA
    Inventors: Geir Fonnum, Nini Kjus Hofsløkken, Elin Marie Aksnes, Lars Kilaas, Arvid Trygve Berge, Per Stenstad, Ruth Schmid, Jon Olav Bjorgum, Tom-Nils Nilsen
  • Patent number: 6846565
    Abstract: A method for the production of a robust, chemically stable, crystalline, passivated nanoparticle and composition containing the same, that emit light with high efficiencies and size-tunable and excitation energy tunable color. The methods include the thermal degradation of a precursor molecule in the presence of a capping agent at high temperature and elevated pressure. A particular composition prepared by the methods is a passivated silicon nanoparticle composition displaying discrete optical transitions.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: January 25, 2005
    Assignee: Board of Regents, The University of Texas System
    Inventors: Brian A. Korgel, Keith P. Johnston
  • Patent number: 6737108
    Abstract: A process for producing a MC-type conductive filler includes treating minute metallic particles with a coupling agent, preparing an oil phase of the coupling agent-treated minute metallic particles and a reactive substance A, the reactive substance A directly contacting the metallic particles. Then, an aqueous phase is prepared having a reactive substance B, which is capable of reacting with the reactive substance A, dissolved in water. Thereafter, the oil phase is dispersed in the aqueous phase to form a suspension. In situ reaction of the reactive substances A and B is then caused by applying heat to the suspension or adding a catalyst to the suspension. This forms a coating of a thermosetting insulating resin on the surface of the minute metallic particles. Alternatively, the reactive substance B may not be used.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: May 18, 2004
    Assignee: Fujitsu Limited
    Inventors: Hiroaki Date, Makoto Usui, Isao Watanabe, Yuko Hozumi
  • Patent number: 6719932
    Abstract: Disclosed are a plurality of particles having a narrow particle size distribution, a processes for forming the same, and films containing the same. The plurality of particles, includes one or more discrete polymer shells, wherein at least one of the polymer shells is crosslinked with at least one monomer containing two or more double bonds polymerizable by free radical means; and a core material encased in the polymer shells, wherein the plurality of particles have a polydispersity of from 1.3 to 1.0.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: April 13, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Richard Roy Clikeman, Morris Christopher Wills, Katerina Elizabeth Dukes
  • Patent number: 6686046
    Abstract: In order to make it possible to treat particles in such a manner that they are stabilized as disperse particles in liquid media, such as varnishes, a method of coating particles with LCST polymers is proposed which is characterized by the following steps: a) dissolution of an LCST polymers in a solvent at a temperature below the LCST; b) mixing the solution obtained in step a) with the particles to be coated; and c) increasing the temperature of the mixture obtained in step b) to or beyond the point at which the LCST polymer deposits onto the particle surfaces.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: February 3, 2004
    Assignee: Forschungsinstitut fur Pigmente und Lacke e.V.
    Inventors: Thadeus Schauer, Marc Entenmann, Claus D. Eisenbach
  • Patent number: 6596204
    Abstract: A process of micro-encapsulating a volatile liquid includes selecting a volatile liquid, such as Isophorone, and porous ceramic particles for encapsulating the volatile liquid. The volatile liquid and porous particles are mixed and a vacuum is applied to the mixture to impregnate the volatile liquid in the porous particles. A polymer catalyst for the polymer resin, such as an epoxy catalyst for use with an epoxy resin, is mixed with the volatile liquid and porous particles to saturate the particles. The polymer resin, such as epoxy resin, is added to the mixture for forming a resin cured shell around the porous particle holding the volatile liquid to form a microencapsulated volatile liquid. The resin is only cured on the outer shell of the porous particle when coming in contact with the catalyst supported with the volatile liquid in the porous particle.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: July 22, 2003
    Inventor: Phillip G. Landers
  • Patent number: 6558698
    Abstract: The invention is directed to microcapsules encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane. The microcapsules are formed by interfacial coacervation where shear forces are limited to 0-100 dynes per square centimeter. The resulting uniform microcapsules can then be subjected to dewatering in order to cause the internal solution to become supersaturated with the dissolved substance. This dewatering allows controlled nucleation and crystallization of the dissolved substance. The crystal-filled microcapsules can be stored, keeping the encapsulated crystals in good condition for further direct use in x-ray crystallography or as injectable formulations of the dissolved drug, protein or other bioactive substance.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 6, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Dennis R. Morrison, Benjamin Mosier
  • Patent number: 6544540
    Abstract: Microcapsules formed from an aminoplast shell wall and an encapsulated ingredient or ingredients enclosed within the wall in which the wall contains a base-cleavable ester moiety. These capsules have been found to be sensitive to the presence of base such that in the presence of base, the capsule walls are relatively quickly disintegrated or degraded so as to produce a relatively quick release of the encapsulated materials. Microcapsules of this invention are particularly suitable for use in controlling insects having an alkaline gut such as certain lepidoptera in that the capsule shell wall may be designed so as to quickly disintegrate under the alkaline conditions present in the gut of the insect thus providing a microcapsule which is safe to handle but which is selectively effective against certain undesirable insects while not harmful to beneficial insects or insects which do not feed on the capsule materials.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: April 8, 2003
    Assignee: Syngenta Limited
    Inventors: Juanita Elena Van Koppenhagen, Herbert Benson Scher, Kuo-Shin Lee, Ian Malcolm Shirley, Philip Wade, Richard Follows
  • Patent number: 6541034
    Abstract: A matrix material containing sugars and/or sugar alcohols serves to encapsulate solid or liquid substances, in particular pharmaceutically active substances and/or at least one pharmaceutically admitted flavor and the like. The material contains a substance that during cooling from its melt largely suppresses crystallization of the melt. The substance can be, for example, an inner ester of a hydroxy acid, particularly gluconic acid delta-lactone. The suppression of crystallization can be achieved by adding a small amount of a pharmaceutically admitted, and preferably weak, acid, such as lactic acid or malic acid, that simultaneously reduces the risk of saponification by alkaline components of an effervescent system that might be present.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 1, 2003
    Inventors: Gerhard Gergely, Irmgard Gergely, Thomas Gergely
  • Patent number: 6503559
    Abstract: The present invention relates to colorant compositions containing neonanoplasts. The colorant compositions exhibit improved color brightness and brilliance due to the incorporation of one or more colorants in the neonanoplasts. The colorant compositions may be printed onto virtually any substrate. The colorant compositions of the present invention have particular utility in the area of printed textiles.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: January 7, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ronald Sinclair Nohr, John Gavin MacDonald
  • Publication number: 20020197399
    Abstract: A process for producing a MC-type conductive filler includes treating minute metallic particles with a coupling agent, preparing an oil phase of the coupling agent-treated minute metallic particles and a reactive substance A, the reactive substance A directly contacting the metallic particles. Then, an aqueous phase is prepared having a reactive substance B, which is capable of reacting with the reactive substance A, dissolved in water. Thereafter, the oil phase is dispersed in the aqueous phase to form a suspension. In situ reaction of the reactive substances A and B is then caused by applying heat to the suspension or adding a catalyst to the suspension. This forms a coating of a thermosetting insulating resin on the surface of the minute metallic particles. Alternatively, the reactive substance B may not be used.
    Type: Application
    Filed: May 14, 2002
    Publication date: December 26, 2002
    Applicant: Fujitsu Limited
    Inventors: Hiroaki Date, Makoto Usui, Isao Watanabe, Yuko Hozumi
  • Patent number: 6444261
    Abstract: A particle resistant to storage of at least one first and at least one second component, wherein said second component of at least one crosslinkable polymer as a shell at least partially envelops and/or encloses said first component as a core and said first component has at least one ascertainable property, obtainable by reacting said first component with the crosslinkable polymer and subsequently reacting the formed product with a crosslinking agent such that the first component with resistance to storage remains within the second component.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: September 3, 2002
    Assignee: Abion Beteiligungs-und Verwaltungsgesellschaft mbH
    Inventors: Dmitri Plaksine, Elena Gromakovskaia, Christoph Erhardt
  • Patent number: 6440493
    Abstract: Processes for making microparticles, preferably containing an active agent, are provided. In a preferred embodiment, the process involves preparing (1) a dispersed phase containing an agent in a solution of polymer and a first solvent; (2) a continuous phase containing a surfactant, and a second solvent that is totally or partially immiscible with the first solvent; and (3) an extraction phase that is a nonsolvent for the polymer, a solvent for the continuous phase components, and a solvent for the first solvent, wherein the first solvent has solubility in the extraction phase of between about 0.1% and 25% by weight. Then, the dispersed phase and the continuous phase are mixed to form an emulsion, and the emulsion is then briefly mixed with a suitable quantity of extraction phase to induce skin formation at the interface of the dispersed and continuous phases. Remaining solvent is removed by an evaporation process step.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: August 27, 2002
    Assignee: Southern Biosystems, Inc.
    Inventors: John W. Gibson, Richard J. Holl, Arthur J. Tipton
  • Patent number: 6406746
    Abstract: A process for producing a MC-type conductive filler includes treating minute metallic particles with a coupling agent, preparing an oil phase of the coupling agent-treated minute metallic particles and a reactive substance A, the reactive substance A directly contacting the metallic particles. Then, an aqueous phase is prepared having a reactive substance B, which is capable of reacting with the reactive substance A, dissolved in water. Thereafter, the oil phase is dispersed in the aqueous phase to form a suspension. In situ reaction of the reactive substances A and B is then caused by applying heat to the suspension or adding a catalyst to the suspension. This forms a coating of a thermosetting insulating resin on the surface of the minute metallic particles. Alternatively, the reactive substance B may not be used.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: June 18, 2002
    Assignee: Fujitsu Limited
    Inventors: Hiroaki Date, Makoto Usui, Isao Watanabe, Yuko Hozumi
  • Patent number: 6406747
    Abstract: A method of coating a liquid or solid particulate core involves dropping or suspending the particulate core in an atmosphere and then applying a liquid coating while the particulate core is dropped or suspended, the applying of the liquid coating being done by either (a) spraying the liquid coating onto the particulate core with an ink jet or (b) moving the particulate core through a fog of the liquid coating.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 18, 2002
    Assignee: Xerox Corporation
    Inventors: David K. Biegelsen, Naveen Chopra, Karen A. Moffat, Nicholas K. Sheridon
  • Publication number: 20020071908
    Abstract: A particle resistant to storage of at least one first and at least one second component, wherein
    Type: Application
    Filed: July 20, 1998
    Publication date: June 13, 2002
    Inventors: DMITRI PLAKSINE, ELENA GROMAKOVSKAIA, CHRISTOPH ERHARDT