Heat Decomposition Of Applied Coating Or Base Material Patents (Class 427/226)
  • Patent number: 7851016
    Abstract: A process for producing an article having modified optical, chemical, and/or physical properties is disclosed. The process includes (a) fluidizing a starting material; (b) forcing the fluidized starting material toward the article; and (c) passing the fluidized starting material through a high energy zone. The passing step can occur before the forcing step; after the forcing step but before the fluidizing material comes in contact with the surface of the article; and/or after the forcing step and after the fluidized material comes in contact with the surface of the article. The properties of the article are modified because the article has nano-scaled structures distributed on the surface of the article and/or at least partially embedded in the article.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 14, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Mehran Arbab, Deirdre D. Ragan, Songwei Lu
  • Publication number: 20100311562
    Abstract: The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
    Type: Application
    Filed: September 13, 2006
    Publication date: December 9, 2010
    Inventors: Liangde Xie, Mitchell Dorfman, Richard Schmid, Jacobus C. Doesburg, Matthew Gold
  • Publication number: 20100304208
    Abstract: A metal-resin composite comprises a metal substrate with concavities in the surface, a first coating layer on the surface of the metal substrate, and a second coating layer on the first coating layer. The first coating layer fills the concavities and covers the surface of the substrate.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Applicant: BYD Co. Ltd.
    Inventors: Qing Gong, Xinkun Lv, Liang Zhou
  • Patent number: 7842335
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a paste-like mixture of a ceramic composition comprising ceramic powders and nano-sized ceramic materials in a binder, further including an accelerant, is applied to the surface area of the component, and is optionally smoothed using mechanical means. The composition is then allowed to dry and cure to form a dried coating having polymeric characteristics. Upon subsequent heating, the dried coating reacts to produce a glassy ceramic repair coating.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, David E. Caldwell
  • Patent number: 7842353
    Abstract: A process for manufacturing electrodes for electrolysis, including steps of forming an arc ion plating (AIP) undercoating layer including valve metal or valve metal alloy containing a crystalline tantalum component and a crystalline titanium component on a surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering, including the steps of coating a metal compound solution, which includes valve metal as a chief element, onto the surface of the AIP undercoating layer, followed by heat sintering to transform only the tantalum component of the AIP undercoating layer into an amorphous substance, and to form an oxide interlayer, which includes a valve metal oxides component as a chief element, on the surface of the AIP undercoating layer containing the transformed amorphous tantalum component and the crystalline titanium component; and forming an electrode catalyst layer on the surface of the oxide interlayer.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 30, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yi Cao, Hajime Wada, Masashi Hosonuma
  • Patent number: 7820242
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Patent number: 7811635
    Abstract: The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: October 12, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Vinayak P. Dravid, Ming Su, Xiaogang Liu
  • Publication number: 20100255289
    Abstract: An article is disclosed in one embodiment of the invention as including a silicon-based ceramic substrate and a top coat. A bond coat is provided between the silicon-based ceramic substrate and the top coat. The bond coat is derived from a mixture containing preceramic polymer precursors, such as polycarbosilanes, polycarbosilazanes, or other silicocarbon polymers and pyrolyzed preceramic polymer precursors. A filler material may also be included in the mixture to modify the coefficient of thermal expansion (CTE) of the bond coat to more closely match the CTE of the silicon-based ceramic substrate, top coat, or both.
    Type: Application
    Filed: January 24, 2007
    Publication date: October 7, 2010
    Inventors: Charles Lewinsohn, Qiang Zhao, Balakrishnan G. Nair
  • Patent number: 7799370
    Abstract: Provided is a method of manufacturing an electronic circuit. The method includes the steps of: forming a nucleus comprising thermo-expandable particles on a conductive layer provided on an insulating substrate; forming an insulating film on the conductive layer having the nucleus-formed thereon; forming an opening by heating the substrate to expand the thermo-expandable particles and form a cleavage in the insulating film; and forming another conductive layer comprising a conductive material on the opening and the insulating film such that the upper and lower conductive layers are electrically connected to each other via the conductive material through the insulating film. This allows formation of a through hole in an electric circuit with ease without photolithographic processes such as exposure, development, and etching.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 21, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Tokunaga, Osamu Kanome
  • Patent number: 7799385
    Abstract: The subject of the present invention is a method of preparation of a monolithic hydrated alumina by the oxidation of aluminium or an aluminium alloy in the presence of a mercury amalgam that contains at least one noble metal, such as silver. This hydrated alumina serves inter alia as base product in methods of preparation of amorphous or crystalline aluminas, or of aluminates, which themselves serve as base products for methods of preparation of composite materials based on oxides, on metals, on carbon products and/or on polymers. Application of the said products obtained by the said methods in many fields, such as catalysis, thermal and acoustic insulation, magnetism, waste storage, and preparation of radioelement transmutation targets.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: September 21, 2010
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche
    Inventors: Michel Beauvy, Jean-Louis Vignes, Daniel Michel, Léo Mazerolles, Claude Frappart, Thomas Di Costanzo
  • Publication number: 20100221423
    Abstract: In a method for creating a dry lubricant layer, the layer is formed by a coating material which is first applied to a substrate, on which the dry lubricant layer is to be produced. The coating material contains a solvent such as ethanethiol and the precursors of a metal sulphide, in particular a metaloxysulphide, such as a molybdenum salt of dithiocarboxylic acid. Once the coating material has been applied to the substrate, the material is subjected to thermal treatment, whereby the solvent evaporates and the precursors of the metal sulphide react with one another to form the dry lubricant layer. This advantageously permits the creation of dry lubricant layers containing a high fraction of metal sulphide, giving the layers improved sliding friction characteristics. Another advantage is that the oxysulphide layers that have been formed are also particularly stable in relation to an oxidation.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 2, 2010
    Inventors: Jens Dahl Jensen, Ursus Krüger, Gabriele Winkler
  • Patent number: 7781024
    Abstract: The invention relates to a method for producing ceramic layers by spraying. A cold gas spraying method is used to produce polymer ceramics from pre-ceramic polymers. According to said method, a cold gas stream, to which particles of the pre-ceramic polymers are added via a conduit, is generated by a spray gun. The energy for creating a layer on a substrate is produced by injecting a powerful kinetic energy into the cold gas stream, thus preventing or significantly restricting the thermal heating of the cold gas stream. This permits the heat-sensitive pre-ceramic polymers to be spray-applied as a coating on a substrate using a cold gas spraying method. Polymer ceramics can thus be used in an economic method for the rapid production of layers with a relatively large thickness. The invention allows for example armoured layers, thermal protection layers and other functional layers to be produced.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Raymond Ullrich
  • Patent number: 7776390
    Abstract: A filter window manufacturing method includes fabricating a structure of wires on a substrate, depositing a lacquer over the wires and the substrate, depositing a first layer that includes a material selected from the group consisting of AlN, Ru, Ir, Au, SiN, Rh, C and combinations thereof, removing the lacquer, removing the substrate, and baking the first layer.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 17, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Ralph Kurt, Levinus Pieter Bakker
  • Publication number: 20100196597
    Abstract: Method of treating a chamber having refractory walls, in which: a treatment composition, comprising at least one organosilicon compound and at least one hydrocarbide, is sprayed into said chamber, in the presence of oxygen; and said sprayed treatment composition is heated, the spraying in the presence of oxygen taking place in the closed chamber in which the treatment composition, in a predominantly liquid state, is atomized in the form of suspended particles, the method further including said at least one organosilicon compound decomposing to form a colloidal silica aerosol in the closed chamber, an overpressure being established therein, and a colloidal silica layer being spread over the refractory walls with, as a result of said overpressure, the colloidal silica penetrating into the microcracks.
    Type: Application
    Filed: July 3, 2008
    Publication date: August 5, 2010
    Inventor: Osvaldo Di Loreto
  • Patent number: 7767256
    Abstract: Methods for preparing porous inorganic coatings on porous supports using certain pore fillers, and porous supports coated with porous inorganic coatings. The porous inorganic coatings may serve as membranes useful in, for example, liquid-liquid, liquid-particulate, gas-gas, or gas-particulate separation applications.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Yunfeng Gu, Wei Liu, Jianguo Wang
  • Patent number: 7767257
    Abstract: Methods for preparing porous inorganic coatings on porous supports using certain pore formers, and porous supports coated with porous inorganic coatings. The porous inorganic coatings may serve as membranes useful in, for example, liquid-liquid, liquid-particulate, gas-gas, or gas-particulate separation applications.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Yunfeng Gu, Wei Liu, Todd P St Clair, Jianguo Wang
  • Publication number: 20100190003
    Abstract: A dielectric thin film and a method of manufacturing the same, wherein the manufacture of a dielectric thin film having a composition represented by Ba1-xSrxTiyO3 (wherein 0?x?1 and 0.9?y?1.1) includes applying a precursor to the thin film to a substrate and performing drying, and subsequently performing calcination by raising the temperature of the dried thin film at a rate of not more than 30° C./minute, thereby forming a dielectric thin film having an average primary particle size of not less than 70 nm, for which no cracks with a continuous linear length of 1.5 ?m or greater exist at the surface of the thin film.
    Type: Application
    Filed: January 21, 2010
    Publication date: July 29, 2010
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20100183806
    Abstract: The invention relates to a method of depositing a layer of material onto the surface of an object, of the type comprising the deposition of a layer of solution of said material in a first liquid followed by the evaporation of the first liquid to form the layer of material. According to the invention, the method comprises the formation of a layer of a second liquid interposed between the object and the layer of solution, the second liquid being immiscible with the first liquid, of density greater than that of the first liquid and with an evaporating temperature higher than that of the first liquid.
    Type: Application
    Filed: December 11, 2009
    Publication date: July 22, 2010
    Applicant: Commissariat A L'Energie Atomique
    Inventors: Mohamed Benwadih, Marie Heitzmann, Jean-Marie Verilhac
  • Patent number: 7754106
    Abstract: A release agent is flash evaporated and deposited onto a support substrate under conventional vapor-deposition conditions and a conductive metal oxide, such as ITO, is subsequently sputtered or deposited by reactive electron beam onto the resulting release layer in the same process chamber to form a very thin film of conductive material. The resulting multilayer product is separated from the support substrate, crushed to brake up the metal-oxide film into flakes, and heated or mixed in a solvent to separate the soluble release layer from the metallic flakes. Thus, by judiciously controlling the deposition of the ITO on the release layer, transparent flakes may be obtained with the desired optical and physical characteristics.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: July 13, 2010
    Assignee: Sigma Laboratories of Arizona, LLC
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Publication number: 20100166953
    Abstract: A method of sealing a surface and structure of a refractory crucible with a ceramic, comprising the steps of: (a) heating a refractory crucible to a predetermined temperature; (b) applying a wetting agent to a surface of the crucible; (c) applying a ceramic slip along the inner surface of the crucible; (d) applying a vacuum to an outer surface of the crucible; (e) removing excess slip from the inner surface of the crucible; (f) heating the crucible to remove moisture therefrom; and (g) firing the crucible at a temperature between 1,300° C. and about 1,700° C.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventor: Arden L. Just
  • Publication number: 20100155326
    Abstract: A domestic appliance filter for use in a laundry treatment device includes a basic filter material with a hydrophobic coating for filtering out matter from a process water duct or a process air duct. The basic filter material includes a material which is resistant to temperatures of 160° C. or more and the hydrophobic coating on the basic filter material effects a surface energy of less than 35 mN/m.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 24, 2010
    Applicant: BSH BOSCH UND SIEMENS HAUSGERATE GMBH
    Inventor: Klaus Grunert
  • Publication number: 20100154702
    Abstract: A surface modified quartz glass crucible and a process for modifying the crucible includes a layer of a metal oxide on the whole or a part of the inside and/or outside of the crucible, and baking it. At least an inside surface of the crucible is coated with a said metal oxide of magnesium, calcium, strontium or barium. The coated layer of the crucible does not abrade easily and provides a high dislocation free ratio of silicon single crystals pulled by using the crucible.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicant: JAPAN SUPER QUARTZ CORPORATION
    Inventors: Toshio Tsujimoto, Yoshiyuki Tsuji
  • Publication number: 20100151125
    Abstract: Slurry coating process for selectively enriching surface regions of a metal-based substrate, for example, the under-platform regions of a turbine blade, with chromium. The process employs a slurry coating composition containing metallic chromium, optionally metallic aluminum in a lesser amount by weight than chromium, and optionally other constituents. The composition further includes colloidal silica, and may also include one or more additional constituents, though in any event the composition is substantially free of hexavalent chromium and sources thereof. The coating composition is applied to a surface region to form a slurry coating, which is then heated to remove any volatile components of the coating composition and thereafter cause diffusion of chromium from the coating into the surface region to form a chromium-rich diffusion coating.
    Type: Application
    Filed: August 3, 2007
    Publication date: June 17, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lawrence Bernard Kool, Brian Thomas Hazel, Michael Howard Rucker
  • Publication number: 20100124616
    Abstract: A method of forming a coating comprises depositing a first coating layer on a surface of a substrate, wherein the coating comprises a ceramic or metal, a lubricant, and a fugitive material. At least a portion of the fugitive material is decomposed, transformed or volatized by heating the first coating layer with a localized heat source.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Larry Steven Rosenzweig, Farshad Ghasripoor, Nuo Sheng, Luc Stephane Leblanc
  • Publication number: 20100122515
    Abstract: The poison-filter material of the invention includes a substrate and a metal oxide. The substrate includes numerous holes, and the metal oxide is adhered to a surface of the substrate and the holes. The method for producing the poison-filter material of the invention includes the following steps of sonicating and impregnating a substrate into a metallic salt aqueous solution; and calcining the substrate to form a metal oxide on a surface of the substrate and numerous holes of the substrate, such that the poison-filter material is produced. In the invention, the metallic salt aqueous solution is fully oscillated to impregnate the porous substrate, and metal oxide is formed on the surface and holes of the substrate after high-temperature calcination. Therefore, the adsorbent material of the invention can effectively adsorb noxious gas and lower penetrability of noxious gas.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 20, 2010
    Inventors: Han-Wen Kuo, Jin-Feng Wang, Feng-Mei Fang, Jen-Chin Wu, Shiaw-Ruey Lin, Yuh Sung, Chen-Chia Huang, Chun-Yu Kao, Chien-Hung Chen
  • Patent number: 7718221
    Abstract: The method is disclosed for coating or impregnating a metal tool with a metal oxide to render the metal part more resistant to liquid metal attack or micro-welds. The method includes the steps of applying a liquid metal carboxylate composition, or a solution thereof, to a substrate material, and exposing the substrate to an environment that will cause vaporization or dissipation of any excess carboxylic acids in the liquid metal carboxylate composition while the metal carboxylates are being converted to metal oxides.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: May 18, 2010
    Assignee: C-3 International, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger
  • Publication number: 20100115899
    Abstract: The present invention relates to a ceramic filter comprising clay and a process for preparing the same. More specifically, the present invention relates to the ceramic filter, including wave- shaped ceramic paper and plate-shaped paper, having improved efficiency and performance that may optimize the process of coating and calcining inorganic binder by forming an outer wall thereon, using clay, and thus increase insulation effect and mechanical strength represented by the clay layer, and the process for preparing thereof.
    Type: Application
    Filed: April 2, 2007
    Publication date: May 13, 2010
    Applicant: LG Chem, Ltd
    Inventors: Ju-Hyung Lee, Jong-Sik Choi, Hoon Ahn, Sun-Joo Kim, Seong-Moon Jung
  • Publication number: 20100112205
    Abstract: A method of processing a mailpiece that bears identifiers for postal use and identifiers other than for postal use, in which method said identifiers other than for postal use are printed on the mailpiece prior to it being fed into a franking machine suitable for printing a postal imprint on the mailpiece, wherein the identifiers other than for postal use are printed in an ink that is erased after the process of printing said postal imprint.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 6, 2010
    Applicant: NEOPOST TECHNOLOGIES
    Inventors: Fabien CHATTE, Romain PILLARD
  • Patent number: 7709045
    Abstract: A method of creating a porous carbon coating on a medical device by applying a precursor carbon material on the medical device and then pyrolysing the precursor carbon material by laser irradiation. The laser irradiation may be focused to carbonize only certain portions of the medical device and any uncarbonized areas can be removed by solvent washing. Also provided is a medical device having a carbonized coating created according to the method of the present invention.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 4, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Aiden Flanagan
  • Patent number: 7700152
    Abstract: Nano- and micron sized metal oxide and mixed metal oxide particles are injected into a high temperature region wherein the temperature is between about 400° C. and less than 2000° C., and collected as particles or as coatings wherein a particulate nature is substantially maintained. The particles are altered in at least one of phase, morphology, composition, and particle size distribution, and may achieve further changes in these characteristics by coinjection of metal oxide precursor in liquid form.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: April 20, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Julien Marchal, José Azurdia, Roy Rennesund
  • Patent number: 7695757
    Abstract: Disclosed is a method of manufacturing a substrate for an organic EL device, the method comprising the step of: filling grooves of the optical element with sol-gel coating solution or organic metal cracking solution when a diffraction grating 12 is formed on the glass substrate 11, wherein an encapsulation member 5 is mounted to the glass substrate 11 in order to fill the groove 12a with the coating solution, and the coating solution is injected into a gap between the encapsulation member 5 and the diffraction grating 12, so that the organic EL device can be stably manufactured with low variation between optical properties according to positions of the substrate and with improved luminous efficiency.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: April 13, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Yasuharu Onishi, Satoru Toguchi, Junichi Yamanari, Hitoshi Ishikawa, Tomohisa Gotoh, Atsushi Kamijo
  • Patent number: 7674498
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with cross-linked polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed by thermally cross-linking hydrocarbon polymers that are vaporizable at moderate washcoat stabilization or catalyst activation temperatures and that preferentially block the micropore/microchannel pore volume of the article.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: March 9, 2010
    Assignee: Corning Incorporated
    Inventors: Tinghong Tao, Jianguo Wang
  • Publication number: 20100055307
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 7666463
    Abstract: Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 23, 2010
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Publication number: 20100003402
    Abstract: Methods are disclosed herein to fabricate high-strength ceramic matrix composite (CMC) structures by combining, in one example, pre-impregnated (prepreg) material with a pre-ceramic polymer. The prepreg is processed to a first density, and the densification is completed with repeated polymer infiltration and pyrolysis (PIP) cycles of the pre-ceramic polymer to fabricate a CMC structure. Advantageously, the present invention allows for fabrication of ceramic matrix composites more efficiently and to a larger scale than previously available.
    Type: Application
    Filed: January 12, 2005
    Publication date: January 7, 2010
    Inventors: Jeffrey B. Stout, Gerard D. Pelletier
  • Patent number: 7641970
    Abstract: A low temperature sinterable dielectric ceramic composition is obtained by bending 2.5-20 parts by weight of a glass component per 100 parts by weight of an aggregate of dielectric particles which are composed of Ti-containing dielectric material and contain an oxide including Ti and Zn in the surface portions. A low temperature sintered dielectric ceramic is produced by sintering this low temperature sinterable dielectric ceramic composition at 880 to 1000° C. With this low temperature sinterable dielectric ceramic composition, there can be obtained a multiplayer electronic component having an internal conductor composed of Ag, Cu or an alloy containing at least one of them.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 5, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Takafumi Kawano, Masataka Yamanaga, Koichi Fukuda
  • Patent number: 7635741
    Abstract: This invention is a monomer comprising at least two dienophile groups and at least two ring structures which ring structures are characterized by the presence of two conjugated carbon-to-carbon double bonds and the presence of a leaving group L, wherein L is characterized that when the ring structure reacts with a dienophile in the presence of heat or other energy sources, L is removed to form an aromatic ring structure. This invention is also curable oligomers and polymers and highly cross-linked polymers made with such monomers. Moreover, this invention is a method of making porous films by combining such monomers or their oligomers with a porogen, curing the polymer and removing the porogen.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 22, 2009
    Inventors: Q. Jason Niu, Robert E. Hefner, Jr., James P. Godschalx, James T. Pechacek, Kim E. Arndt
  • Patent number: 7625599
    Abstract: Disclosed is a method for preparing powder carrying nano gold by thermal decomposition, comprising the steps of: (1) providing a nano powder of artificial synthesized material or a natural mineral powder which particle size is in nano to micro scale as a carrier, preparing 0.2-5.0% (weight percentage concentration) gold bromide solution with deionized water and gold bromide, adding the carrier into the gold bromide solution, and a weight ratio of gold bromide and carrier is 1:1-1:1000, immersing the carrier into the solution for 0.5-4 hours in dark; (2) drying the immersed carrier and the solution at 50-90° C., and grinding the carrier to the fine mixed powders; and (3) heating the mixed powders obtained in step (2) at 200-350° C. for 0.5-3 hours in a heating apparatus flown argon gas or air at a flow rate of 1-10 L/min, and obtaining the carrier powder carrying nano gold after decreasing the heating temperature to room temperature under continuous air flow.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: December 1, 2009
    Inventors: Dehuan Huang, Zongquan Li
  • Publication number: 20090291224
    Abstract: A sheet-like substrate (34) is coated with at least one thin film (36?) composed of at least one porous ceramic layer (S?1, S?2, S?3, . . . ). A solution or a suspension of an organic and/or inorganic metal composite as starting material (14) is admixed with a mixed-in, insoluble pore former (18) and the mixture (22) is sprayed on as layer (S?1, S?2, S?3, . . . ) of a thin film (36). The pore former (18) is at least partly thermally decomposed and/or burnt out to form an at least partly open-pored structure. The process is particularly suitable for producing miniaturized devices such as fuel cells and gas sensors.
    Type: Application
    Filed: October 30, 2006
    Publication date: November 26, 2009
    Applicant: Eidgenossische Technische Hochschule Zurich
    Inventors: Daniel Beckel, Ludwig J. Gauckler
  • Publication number: 20090280245
    Abstract: A printing or coating composition has a non-volatile liquid vehicle carrying a conductive polymer to be deposited on a substrate and is cleavable by heat or acidification without decomposition of said material, cleavage of said vehicle producing decomposition products that are more volatile than said vehicle and which can be evaporated to dry the composition. Suitably, that vehicle is a carbonic acid diester or a malonic acid diester, e.g. of the formula: wherein R2 is an organic substituent such that R2—OH is a volatile alcohol; R1 is an aliphatic or aromatic substituent of more than three carbon atoms such that is volatile; and R3 is C1-3 alkyl.
    Type: Application
    Filed: April 13, 2007
    Publication date: November 12, 2009
    Applicant: The Technical University of Denmark
    Inventors: Frederik Krebs, Mikkel Joergensen
  • Patent number: 7611573
    Abstract: The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 3, 2009
    Assignee: Alliance for Sustainable Energy, LLC
    Inventor: Raghu N. Bhattacharya
  • Publication number: 20090263314
    Abstract: The present invention provides a method for producing catalyst for wastewater treatment, which comprising mixing polymers and additives, reacting with a titanate precursor, and then subjecting the resultant product to hydrolysis and condensation to form catalyst slurry. Due to using the titanate as a source of metal ions and the polymer compound as a dispersant and stabilizer, the aggregation between particles can be habited, and due to using additives as chelating agent and catalyst, it can improve solution stability and inhibit the oxidation of the metal, thereby facilitate the condensation and hydrolysis and shorten the reaction time. The catalyst slurry prepared by the method of the present invention exhibits excellent dispersibility to effectively contact with and decompose organics, such as those containing in wastewater and thus is suitable for wastewater treatment. In addition, the resultant catalyst slurry can be processed in the form of powder or film for using in industrial wastewater treatment.
    Type: Application
    Filed: July 8, 2008
    Publication date: October 22, 2009
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: JEN-CHIEH CHUNG, SHU-MIN SHIH, YU-SHENG CHEN
  • Patent number: 7604839
    Abstract: A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 20, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Thomas M. McCleskey, Anthony K. Burrell, Quanxi Jia, Yuan Lin
  • Patent number: 7588797
    Abstract: A chemical composition and method for repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method repairs a thermal barrier coating on a component that has suffered localized damage to the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a paste-like mixture of a ceramic composition comprising ceramic powders and nano-sized ceramic materials in a binder is applied to the surface area of the component, and is optionally smoothed using mechanical means. The composition is then allowed to dry and cure to form a dried coating having polymeric characteristics. Upon subsequent heating, the dried coating reacts to produce a glassy ceramic repair coating.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 15, 2009
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, William Randolph Stowell, David E. Caldwell
  • Publication number: 20090226609
    Abstract: A silicone resin containing boron, aluminum, and/or titanium, and having silicon-bonded branched alkoxy groups; a silicone composition containing a silicone resin; and a method of preparing a coated substrate comprising applying a silicone composition on a substrate to form a film and pyrolyzing the silicone resin of the film.
    Type: Application
    Filed: July 23, 2007
    Publication date: September 10, 2009
    Inventors: Ronald Boisvert, Duane Bujalski, Zhongtao Li, Kai Su
  • Publication number: 20090208648
    Abstract: A process for producing an article having modified optical, chemical, and/or physical properties is disclosed. The process includes (a) fluidizing a starting material; (b) forcing the fluidized starting material toward the article; and (c) passing the fluidized starting material through a high energy zone. The passing step can occur before the forcing step; after the forcing step but before the fluidizing material comes in contact with the surface of the article; and/or after the forcing step and after the fluidized material comes in contact with the surface of the article. The properties of the article are modified because the article has nano-scaled structures distributed on the surface of the article and/or at least partially embedded in the article.
    Type: Application
    Filed: March 30, 2009
    Publication date: August 20, 2009
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Mehran Arbab, Deirdre A. Ragan, Songwei Lu
  • Patent number: 7575780
    Abstract: A bone-growth stimulating composition for forming a resorbable implant, methods for making such a composition and a corresponding putty/paste material. In some embodiments of the invention, such a material includes a plurality of particles having a predetermined size and comprising a first calcium sulfate compound and a resorbable polymer in a predetermined weight ratio. Methods for making such a material include rotating calcium sulfate powder in a drum at a first predetermined drum speed, spraying of a resorbable polymer solution at a predetermined rate on the calcium sulfate powder over a predetermined period of time and drying the resulting particles. Such compositions allow resorption rates of the implant composition in vivo to be controlled, and my vary between eight and twenty-four weeks (for example), which can be matched to substantially correspond to a rate of bone growth in a particular application.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: August 18, 2009
    Assignee: Orthogen LLC
    Inventors: Harold Alexander, John L. Ricci, Sachin Mamidwar
  • Publication number: 20090162647
    Abstract: An article which is resistant to corrosion or erosion by chemically active plasmas and a method of making the article are described. The article is comprised of a metal or metal alloy substrate having on its surface a coating which is an oxide of the metal or metal alloy. The structure of the oxide coating is columnar in nature. The grain size of the crystals which make up the oxide is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and wherein the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate. Typically the metal is selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Publication number: 20090142227
    Abstract: In a method for producing a parylene coating on a substrate containing an integrated electronic component which is e.g. an x-ray detector, the following steps are provided: vaporization of parylene; pyrolyzation of the vaporized parylene; polymerization of the pyrolyzed parylene, the polymerized parylene being deposited on a cooled substrate. The method provides controllable, patterned deposition of parylene on the cooled and/or heated substrate, the advantage being that x-ray converters, for example, can be anticorrosively encapsulated and a penetration depth of the parylene between phosphor needles or storage phosphor needles can be controlled, resulting in an improved resolution and improved modulation transfer function of electronic components.
    Type: Application
    Filed: June 19, 2006
    Publication date: June 4, 2009
    Inventors: Manfred Fuchs, Karsten Heuser, Ralph Patzold, Markus Schild
  • Publication number: 20090136684
    Abstract: This invention relates to organometallic precursor compounds represented by the formula (Cp(R?)x)yM(H)z-y, a process for producing the organometallic precursor compounds, and a method for depositing a metal and/or metal carbide layer, e.g., Ta metal and/or TaC layer, on a substrate by the thermal or plasma enhanced disassociation of the organometallic precursor compounds, e.g., by CVD or ALD techniques. The metal and/or metal carbide layer is useful as a liner or barrier layer for conducting metals and high dielectric constant materials in integrated circuit manufacturing.
    Type: Application
    Filed: February 2, 2009
    Publication date: May 28, 2009
    Inventors: DAVID WALTER PETERS, David M. Thompson