Coating Decomposed To Form Carbide Or Coating Carbonized Patents (Class 427/228)
  • Patent number: 7709045
    Abstract: A method of creating a porous carbon coating on a medical device by applying a precursor carbon material on the medical device and then pyrolysing the precursor carbon material by laser irradiation. The laser irradiation may be focused to carbonize only certain portions of the medical device and any uncarbonized areas can be removed by solvent washing. Also provided is a medical device having a carbonized coating created according to the method of the present invention.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 4, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Aiden Flanagan
  • Patent number: 7677399
    Abstract: A process for manufacturing a separation membrane with excellent productivity, which can uniformly dry and imidize a separation membrane precursor solution formed on an inner surface of through-holes of a monolith substrate and which does not require complicated operations such as placement of a monolith substrate in a dryer, and the separation membrane manufactured by the process are provided. The separation membrane is manufactured comprising: causing a separation membrane precursor solution to pass through through-holes in a porous monolith substrate, to form a membrane of the precursor solution on the surface of the through-holes, and drying the membrane by causing hot wind to pass through the through-holes.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: March 16, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shogo Takeno, Akimasa Ichikawa
  • Patent number: 7670681
    Abstract: A material composite has at least one region of copper or a copper alloy, at least one region of a predominantly graphitic material, and at least one boundary region between them. The boundary region has one or more carbides from the group of the IVb, Vb, VIb transition metals and one or more elements of the group consisting of Si, B, Al, Ge, Mn, Sn. In a preferred implementation of the invention, the composite is produced with a back-casting process.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 2, 2010
    Assignee: Plansee SE
    Inventors: Bertram Schedler, Thomas Huber, Thomas Friedrich, Dietmar Schedle, Anton Zabernig, Karlheinz Scheiber, Hans-Dieter Friedle
  • Patent number: 7666470
    Abstract: A nuclear fuel and a method to produce a nuclear fuel wherein a porous uranium dioxide arrangement is provided, the arrangement is infiltrated with a precursor liquid and the arrangement is thermally treated such the porous uranium dioxide arrangement is infiltrated with a precursor liquid, followed by a thermal treating of the porous uranium dioxide arrangement with the infiltrated precursor liquid such that the precursor liquid is converted to a second phase.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: February 23, 2010
    Assignee: AREVA NP Inc.
    Inventor: John Kevin McCoy
  • Patent number: 7662741
    Abstract: The present invention relates to a process for the preparation of highly active silver deposited on carbon covered alumina catalyst, in controlling the microorganism in water.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 16, 2010
    Assignee: Council of Scientific and Industrial Research
    Inventors: Kamaraju Sheetha Rama Rao, Bussi David Raju, Aytam Hari Padmasri, Sivakumar Vasireddy, Naga Ratnakar Adapa, Seetharamulu Podila, Shashikala Veldurthi, Mallanna Nagaraja Bhari, Sanapureddy Sreevardhan Reddy, Ponnapalli Nageswara Sarma, Katuri Krishna Prasad, Reddy Venkata Mohan Srinivasula
  • Patent number: 7658863
    Abstract: A Si—C—O composite powder is obtained by curing a reactive silane or siloxane having crosslinkable groups through heat curing or catalytic reaction into a crosslinked product and sintering the crosslinked product in an inert gas stream at a temperature of 700-1,400° C. into an inorganic state. It exhibits satisfactory cycle performance when used as the negative electrode material for non-aqueous electrolyte secondary cells.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: February 9, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mikio Aramata, Satoru Miyawaki, Hirofumi Fukuoka
  • Publication number: 20100015332
    Abstract: A method of fabricating a friction part out of carbon/carbon composite material, the method including obtaining a three-dimensional fiber preform of carbon fibers impregnated with a solution or a suspension enabling a dispersion of refractory metal oxide particles to be left on the fibers of the preform; applying heat treatment to form a metallic carbide by a carboreduction reaction of the refractory oxide with the carbon of the fibers; continuing the heat treatment until the carbide is transformed into carbon by eliminating of the metal; and then densifying the preform with a carbon matrix by chemical vapor infiltration.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 21, 2010
    Applicant: Messier-Bugatti
    Inventors: Magali Rollin, René Pailler, Michel Cataldi, Sandrine Baud, Pascale Jacquemard
  • Patent number: 7648435
    Abstract: A belt-type continuously variable transmission (15) includes a primary sheave (29) having a pair of first clamp surfaces (37a, 37b), a secondary sheave (30) having a pair of second clamp surfaces (51a, 51b), and a belt (31) endlessly wound between both the sheaves (29, 30). The belt (31) has contact surfaces (58a, 58b) clamped between the first clamp surfaces (37a, 37b) and between the second clamp surfaces (51a, 51b). Powder (64) having infusibility as a friction enhancing material is held on at least one of the first clamp surfaces (37a, 37b) of the primary sheave (29), the second clamp surfaces (51a, 51b) of the secondary sheave (30), and the contact surfaces (58a, 58b) of the belt (31).
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: January 19, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Yousuke Ishida, Masaru Oosuga
  • Publication number: 20090311424
    Abstract: The micropattern formation of the invention comprises forming a resist pattern, and then forming a carbon-containing film on the surface of the resist pattern, followed by ashing of the carbon-containing film and a portion of the resist surface constituting the resist pattern. Thus, the discharge state of ashing just after the initiation of discharge is so stabilized that the ashing rate distribution can be improved, and sensitive pattern slimming can be implemented with ease and high precision.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Applicant: TDK CORPORATION
    Inventors: Akifumi Kamijima, Hideyuki Yatsu, Hitoshi Hatate
  • Publication number: 20090288592
    Abstract: A crucible holding member includes a mesh body, a matrix, and a carbonaceous layer. The mesh body has a cylinder shape or a basket shape and is formed by weaving a plurality of strands to be aligned diagonally with respect to an axis line of the mesh body. Each of the strands includes a plurality of carbon fibers. The matrix is filled in interstices between the plurality of carbon fibers. A carbonaceous layer is provided on an inner circumferential surface of the mesh body and has a flat surface to contact with an outer circumferential surface of a crucible.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 26, 2009
    Applicant: IBIDEN CO., LTD.
    Inventors: Hideki KATO, Haruhide SHIKANO, Masahiro YASUDA
  • Patent number: 7618678
    Abstract: A process for the production of coated silicon/carbon particles comprising: providing a carbon residue forming material; providing silicon particles; coating said silicon particles with said carbon residue forming material to form coated silicon particles; providing particles of a carbonaceous material; coating said particles of carbonaceous material with said carbon residue forming material to form coated carbonaceous particles; embedding said coated silicon particles onto said coated carbonaceous particles to form silicon/carbon composite particles; coating said silicon/carbon composite particles with said carbon residue forming material to form coated silicon/carbon composite particles; and stabilizing the coated composite particles by subjecting said coated composite particles to an oxidation reaction. The coated composite particles will have a substantially smooth coating. The particles may be coated with multiple layers of carbon residue forming material.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 17, 2009
    Assignee: ConocoPhillips Company
    Inventors: Zhenhua Mao, Bharat Chahar
  • Publication number: 20090263576
    Abstract: A finish for acrylic fiber to be processed into carbon fiber includes an ester compound having at least three ester groups in its molecule and a silicone compound, wherein the silicone compound constitutes 10 to 50 weight percent of the whole of the nonvolatile matter of the finish. A method of manufacturing carbon fiber includes the processes of applying the finish for acrylic fiber to be processed into carbon fiber to acrylic fiber to be processed into carbon fiber; oxidative-stabilizing the finish-applied acrylic fiber in an oxidizing atmosphere at 200 to 300 deg. C. to convert the fiber into oxidized fiber; and carbonizing the oxidized fiber in an inert atmosphere at 200 to 3000 deg. C.
    Type: Application
    Filed: November 16, 2006
    Publication date: October 22, 2009
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Yoshinobu Okabe, Yoshiaki Tanaka, Yoshio Hashimoto, Mikio Nakagawa
  • Publication number: 20090242478
    Abstract: A carbon membrane laminated body includes: a porous substrate, a first porous carbon membrane as a carbon membrane underlayer disposed on a surface of the porous substrate, and a second porous carbon membrane as a carbon membrane separation layer disposed on a surface of the carbon membrane underlayer, having a smaller film thickness, and a smaller average pore diameter, compared with those of the carbon membrane underlayer. It is preferable to form the carbon membrane underlayer and the carbon membrane separation layer by carbonizing a carbon membrane underlayer precursor disposed on a surface of the porous substrate and the carbon membrane separation layer precursor disposed on a surface of the carbon membrane underlayer precursor at 400 to 1000° C. in a non-oxidation atmosphere. The carbon membrane laminated body is a separation membrane excellent in both separation performance and flux when it is used as a separation membrane of a mixture.
    Type: Application
    Filed: May 26, 2009
    Publication date: October 1, 2009
    Applicant: NGK Insulators, Ltd.
    Inventors: Akimasa Ichikawa, Miyuki Yabuki
  • Publication number: 20090239434
    Abstract: A method of producing a fiber-reinforced carbide-ceramic component includes producing a carbonaceous article from at least one unidirectional tape by pyrolysis, infiltrating the carbonaceous article with carbide former, and coating the at least one unidirectional tape with a coating material being volatile in pyrolysis and/or providing the at least one unidirectional tape with a transverse thread system including transverse threads composed of a material being volatile in pyrolysis. A fiber-reinforced carbide ceramic component is also provided.
    Type: Application
    Filed: June 5, 2009
    Publication date: September 24, 2009
    Applicants: SGL CARBON AG, DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E. V.
    Inventors: Bodo Benitsch, Bernhard Heidenreich, Christian Zuber
  • Publication number: 20090238966
    Abstract: Method of manufacturing pitch-based carbon-carbon composite useful as a brake disc, by: (a) providing annular carbon fiber brake disc preform; (b) heat-treating the carbon fiber preform; (c) infiltrating the carbon fiber preform with pitch feedstock by VPI or RTM processing; (d) carbonizing the pitch-infiltrated carbon fiber preform; (e) repeating steps (c) and (d) to achieve a density in the carbon fiber preform of approximately 1.5 g/cc to below 1.7 g/cc; and (f) densifying the preform by CVI/CVD processing to a density higher than 1.7 g/cc. Employing lower cost VPI and/or RTM processing in early pitch densification cycles and using more expensive CVI/CVD processing only in the last densification cycle provides C-C composites in which the pitch-based components resist pullout, resulting in a longer wearing composite.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 24, 2009
    Inventors: Mark L. La Forest, Neil Murdie, Allen H. Simpson
  • Patent number: 7587018
    Abstract: A nuclear fuel and a method to produce a nuclear fuel wherein a porous uranium dioxide arrangement is provided, the arrangement is infiltrated with a precursor liquid and the arrangement is thermally treated such the porous uranium dioxide arrangement is infiltrated with a precursor liquid, followed by a thermal treating of the porous uranium dioxide arrangement with the infiltrated precursor liquid such that the precursor liquid is converted to a second phase.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: September 8, 2009
    Assignee: Areva NP Inc.
    Inventor: John Kevin McCoy
  • Publication number: 20090220040
    Abstract: A tubular body includes a tubular fiber-reinforced carbonaceous substrate and an SiC layer. The tubular fiber-reinforced carbonaceous substrate includes an aggregate formed of ceramic fibers, and a carbonaceous material filled in interstices between the ceramic fibers. The SiC layer is formed at least on an outer surface of the tubular fiber-reinforced carbonaceous substrate in which silicon atoms are diffused from a boundary region between the fiber-reinforced carbonaceous substrate and the SiC layer to an inside of the fiber-reinforced carbonaceous substrate.
    Type: Application
    Filed: February 11, 2009
    Publication date: September 3, 2009
    Applicant: IBIDEN CO., LTD.
    Inventor: Takashi Takagi
  • Publication number: 20090214808
    Abstract: A container holding member to hold a container includes a basket-shaped mesh body which has a closed-end. The basket-shaped mesh body is formed by weaving a plurality of strands to be arranged diagonally with respect to a central axis of the mesh body. Each of the strands includes a plurality of carbon fibers. A matrix is filled in interstices between the plurality of carbon fibers.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 27, 2009
    Applicant: IBIDEN CO., LTD.
    Inventors: Hideki KATO, Haruhide Shikano, Tomoyuki Ando, Masahiro Yasuda
  • Patent number: 7531156
    Abstract: A method capable of synthesizing carbon nanotubes at low cost and large quantities, an apparatus usable for carrying out the method, and carbon nanotubes densely aligned on and firmly bonded to a Si substrate over, and oriented perpendicular to, an entire surface thereof are provided. Highly oriented, aligned carbon nanotubes are synthesized from an organic liquid by forming a substrate with a buildup thereon of a thin film or fine insular particles composed of at least one metallic element; exposing the substrate (3) having the buildup to a hydrogen plasma; and heating the substrate (3) exposed to the hydrogen plasma in the organic liquid (10) to a predetermined temperature.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: May 12, 2009
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Publication number: 20090087558
    Abstract: The present invention provides technology for rare metal plating of titanium surfaces. A process such as the following would be carried out when manufacturing a partially gold-plated separator for a fuel cell, for example. First, a titanium component made of titanium or titanium alloy is prepared for use as the fuel cell separator (S10). This titanium component is a titanium component whose surfaces are coated with carbon-containing substance. This titanium component is then subjected to a first heat treatment at a prescribed first temperature of between 300 and 700 degrees Celsius (S20). Gold plating of the surfaces of the heat-treated titanium component is then carried out (S80). In this way it is possible to more easily carry out gold electrolytic plating of titanium surfaces.
    Type: Application
    Filed: April 10, 2007
    Publication date: April 2, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naotaka Aoyama, Seiji Mizuno
  • Publication number: 20080299306
    Abstract: A method for coating a substrate is disclosed. The method includes applying a coating to a surface of the substrate and heating the applied coating and the substrate to a temperature less then approximately 600° C. to create a tempered zone within the substrate. The method further includes cooling the applied coating and the substrate.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Inventors: Ashwin A. Hattiangadi, Robert Howard Hartseil
  • Patent number: 7431878
    Abstract: A method of making an electron-emitting device including the steps of (A) preparing a member comprising first and second substances composed of carbon, wherein the substances have respective reaction rates different from each other for a gas, and (B) heating the member in an atmosphere containing the gas.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: October 7, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masato Yamanobe
  • Publication number: 20080152865
    Abstract: A process for manufacturing a separation membrane with excellent productivity, which can uniformly dry and imidize a separation membrane precursor solution formed on an inner surface of through-holes of a monolith substrate and which does not require complicated operations such as placement of a monolith substrate in a dryer, and the separation membrane manufactured by the process are provided. The separation membrane is manufactured comprising: causing a separation membrane precursor solution to pass through through-holes in a porous monolith substrate, to form a membrane of the precursor solution on the surface of the through-holes, and drying the membrane by causing hot wind to pass through the through-holes.
    Type: Application
    Filed: October 4, 2007
    Publication date: June 26, 2008
    Applicant: NGK Insulators, Ltd.
    Inventors: Shogo TAKENO, Akimasa ICHIKAWA
  • Patent number: 7318717
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: January 15, 2008
    Assignee: Honeywell International Inc.
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Patent number: 7306824
    Abstract: A method for preparing a metal nanocluster composite material. A porous zeolitic material is treated with an aqueous metal compound solution to form a metal ion-exchanged zeolitic material, heated at a temperature ramp rate of less than 2° C./min to an elevated temperature, cooled, contacted with an organic monomer and heating to induce polymerization, and heating the composite material to greater than 350° C. under non-oxidizing conditions to form a metal nanocluster-carbon composite material with nanocluster sizes between approximately 0.6 nm and 10 nm.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: December 11, 2007
    Assignee: Sandia Corporation
    Inventor: Eric N. Coker
  • Patent number: 7241478
    Abstract: The present invention relates to an apparatus and process for producing a thin organic film on a substrate using an ultrasonic nozzle to produce a cloud of micro-droplets in a vacuum chamber. The micro-droplets move turbulently within the vacuum chamber, isotropically impacting and adhering to the surface of the substrate. The resulting product has a smooth, continuous, conformal, and uniform organic thin film, when the critical process parameters of micro-droplet size, shot size, vacuum chamber pressure, and timing are well-controlled, and defects such as “orange peel” effect and webbing are avoided. The apparatus includes an improved ultrasonic nozzle assembly that comprises vacuum sealing and a separate, independent passageway for introducing a directed purging gas.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: July 10, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Allister McNeish, Edmund Popp, Mark Brown, Mark W. Leiby, James J. Cerul, Harvey L. Berger
  • Patent number: 7235159
    Abstract: A catalyst material for carbon nanotube synthesis includes a uniform dispersion of host particles on a substrate. The host particles themselves include catalyst nanoparticles that are effective to catalyze nanotube syntheses reactions and provide nucleation sites. Methods for preparing catalyst materials include co-sputtering a catalytic species and a host species to form a precursor thin film on a substrate, followed by an oxidation reaction of the precursor thin film in air. The precursor thin film can be patterned on the substrate to limit the locations of the catalyst material to well-defined areas. Methods for nanotube synthesis employ CVD in conjunction with the catalyst materials of the invention. During the synthesis, the catalyst nanoparticles catalyze carbon nanotubes to grown from a carbon-containing gas.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: June 26, 2007
    Assignee: Molecular Nanosystems, Inc.
    Inventors: Gang Gu, Lawrence Pan, Lian Zhang
  • Patent number: 7186441
    Abstract: Processes for forming a filter material that includes coating a filter particle with a coating comprising a lignosulfonate, carbonizing the coating, and activating the coating. The filter particles may include a variety of filter particles, including but not limited to fibers, granules, and screens, and be formed from a variety of materials, such as metals, metal alloys, carbon, ceramic, or glass. Also, the lignosulfonate-coated filter particles may include a large amount of mesopore and/or macropore volume when carbonized and activated. One exemplary process for forming a filter material includes diluting ammonium lignosulfonate with water, mixing the solution with milled glass fibers, removing the excess lignosulfonate solution from the fibers, drying the lignosulfonate coated glass fibers at 65° C. for 12 h, carbonizing the coated glass fibers in a furnace ramped to 70° C. with a rate of 7° C.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: March 6, 2007
    Assignee: Pur Water Purification Products, Inc.
    Inventors: Michael Donovan Mitchell, Blair Alex Owens, Dimitris Ioannis Collias, Andrew Julian Wnuk
  • Patent number: 7175879
    Abstract: The subject of the present invention is a method of obtaining fibrous carbon materials by carbonization of cellulosic fibrous materials carried out continuously or batchwise in the presence of at least one organosilicon compound. Characteristically, said organosilicon compound is chosen from the family of cyclic, linear or branched polyhydrosiloxanes which are substituted with methyl and/or phenyl groups and the number-average molecular mass of which is between 250 and 10 000, advantageously between 2 500 and 5 000.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: February 13, 2007
    Assignee: Snecma Propulsion Solide
    Inventors: Pierre Olry, Sylvie Loison, Mark Kazakov, Alentin Trouchnicov
  • Patent number: 7166324
    Abstract: The invention relates to a method for surface treating the surface of a metal. The surface treatment is performed in a surfacing chamber, using a surfacing material, which is formed of one or more compounds and possible additives, and in which the surfacing material is brought to a principally gaseous state, the surfacing material is led to the chamber, and the surfacing material is permitted to react with the metal surface being treated. The metal surface being treated is subjected in the chamber to a passing flow of the surfacing material, and in which the said surfacing material comprises compounds arising in dry distillation of deciduous-wood. The invention also relates to the equipment and surfacing material used in the method.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 23, 2007
    Assignee: Mikkelin Ammattikorkeakouluyhtyma
    Inventor: Esko Hotti
  • Patent number: 7153543
    Abstract: Refractory carbide particles are located in a defined area of a matrix, specifically silicon carbide particles are encapsulated within a porous matrix or carbon precursor, by locating particles of refractory carbide-forming material or a precursor thereof in a defined area of the matrix followed by depositing carbon within the matrix at a temperature below that of the melting point of the carbide-forming material.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: December 26, 2006
    Assignee: Dunlop Aerospace Limited
    Inventor: David Callum Johnson
  • Patent number: 7132150
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed of hydrocarbon polymers that are soluble or dispersible in polar media, capable of forming neutral or hydrophilic surfaces on porous ceramic supports, and completely vaporizable at moderate washcoat stabilization or catalyst activation temperatures.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 7, 2006
    Assignee: Corning Incorporated
    Inventors: Steven B. Ogunwumi, Odessa N. Petzold, Yuxin Tang, Tinghong Tao, Jianguo Wang, Raja R. Wusirika
  • Patent number: 6994886
    Abstract: The invention relates to a film-boiling densification method for a porous structure (mixed gas-liquid method) (5) consisting in immersing of the porous structure into a liquid precursor, a hydrocarbon, for example, and heating the system in order to deposit the decomposition product of said liquid precursor, for example carbon, into the pores of the porous structure, characterized in that the flow of the liquid precursor entering the porous structure is reduced, for example by means of a filter (52) made of polytetrafluorethylene surrounding the structure so as to reduce the vaporization phenomenon of the liquid precursor around the porous structure to be densified.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: February 7, 2006
    Assignee: Commissariat a L'Energie Atomique
    Inventors: Patrick David, Dominique Rovillain, Frédéric Malon, Pierre Delhaes, Alain Derre, Michel Trinquecoste
  • Patent number: 6986381
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with a refractory metal such as W or Re or a refractory metal carbide such as TaC or HfC. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 17, 2006
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6936341
    Abstract: Process for a fiber-reinforced ceramic material whose reinforcing fibers are present in the form of at least one of woven fabrics, short fibers and long fibers, wherein the mass ratio of the fibers in the form of woven fabrics, short fibers and long fibers is 0-35:25-80:0-45 and at least a part of the reinforcing fibers has at least one protective layer of carbon produced by pyrolysis of resins or pitches, boron compounds or phosphorus compounds or combinations thereof which have been deposited thereon, a process for producing it and its use as material for brake linings
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: August 30, 2005
    Assignee: SGL Carbon AG
    Inventors: Ronald Hüner, Moritz Bauer, Peter Winkelmann
  • Patent number: 6913821
    Abstract: Carbon composite components (1, 11, 22, 30), which may be aircraft brake discs, heat exchanger cores, and so on, are covered by protective coating 32. Component (1, 11, 22, 30) is immersed in liquid bath precursor of fluidized glass (step 55). After immersion step, glass-coated component (1, 11, 22, 30) is removed and annealed. Heat treatment gradually increases temperature to 250-350° C. at the rate of 1-2° C. per minute (step 60). Heat treatment is followed by soak at temperature of 250-350° C. for 1-10 hours (step 65). Temperature is then increased to 550-650° C. (step 70). Temperature is maintained at 550-650° C. for 1-10 hours (step 75). After completion of second prolonged heat treatment, the component is cooled until reaching room temperature (step 80). Upon completion of the annealing step, the fluidized glass coating converts to solid glass coating (32) enveloping and forming a protective barrier against undesirable oxidation of the C—C component (1, 11, 22, 30).
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: July 5, 2005
    Assignee: Honeywell International Inc.
    Inventors: Ilan Golecki, Terence B. Walker, Laurie A. Booker
  • Patent number: 6908660
    Abstract: The present invention relates to shaped bodies made of fiber-reinforced ceramic composites and comprising a core zone and at least one covering layer which has a coefficient of thermal expansion which is higher than that of the core zone. The covering layer is an SiC-rich covering layer and is divided into segments which are separated from the adjacent segments by gaps or bridging zones of a material which is different from the material of the segments. The invention also relates to a process for producing such shaped bodies by infiltration of an intermediate body with molten silicon and their use for friction disks, in vehicle construction or as protective plates.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: June 21, 2005
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Nadine Hander, Andreas Kienzle, Rainer Zimmermann-Chopin
  • Patent number: 6903039
    Abstract: The present invention provides a method for making a microporous ceramic material and includes the steps of (a) preparing a starting material for firing comprising a nonoxide ceramic precursor containing silicon as an essential component; (b) heating the starting material for firing in an atmosphere containing at least 1 mol % of hydrogen so as to form microporous ceramic product; and (c) cooling the microporous ceramic product.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: June 7, 2005
    Assignees: Noritake Co., Limited, Chubu Electric Power Co., Inc.
    Inventors: Balagopal N. Nair, Yasunori Ando, Hisatomi Taguchi, Shigeo Nagaya, Kiyoshi Komura
  • Patent number: 6818288
    Abstract: Fiber-reinforced ceramic composites which comprise at least two layers of a multidirectional woven fiber fabric as reinforcement, with at least 5% of the area of each layer of woven fiber fabric being permeated by matrix material, friction disks comprising these composites as core zone or support zone, a process for producing them and their use as brake disks or clutch disks.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 16, 2004
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Andreas Kienzle, Ingrid Kraetschmer, Mario Krupka
  • Patent number: 6815006
    Abstract: The present invention provides a method for making a ceramic matrix composite comprising forming an infiltrated fiber reinforcement by infiltrating a plurality of plies of a fibrous material with a precursor polymer which decomposes to a substantially pure product selected from the group consisting of a refractory metal carbide and a refractory metal boride, and exposing the infiltrated fiber reinforcement to conditions effective to cure the precursor polymer and to decompose the precursor polymer to said substantially pure product.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: November 9, 2004
    Assignee: Southwest Research Institute
    Inventors: Partha P. Paul, Stuart T. Schwab
  • Publication number: 20040219293
    Abstract: Processes for forming a filter material are provided. The processes include the steps of coating a filter particle with a lignosulfonate, carbonizing the coating, and activating the coating.
    Type: Application
    Filed: February 4, 2004
    Publication date: November 4, 2004
    Applicant: The Procter & Gamble Company
    Inventors: Michael Donovan Mitchell, Blair Alex Owens, Dimitris Ioannis Collias, Andrew Julian Wnuk
  • Patent number: 6799627
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with titanium carbide. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: October 5, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6799626
    Abstract: Methods for making various metallic alloys such as nickel, cobalt and/or iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent casting of the melt in the graphite molds under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: October 5, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6800242
    Abstract: A process for making an alkaline resistant material comprises the steps of grinding together 0-40% light magnesia, 0-80% roasted magnesia, 10-54% ceramic clay, 0-9% limestone, 1-4% water glass, 0-1.5% carboxymethyl cellusolve, 0-27% talc, 0-3% calcium or barium carbonate to a particle size of less than 50 microns, mixing the ground mixture with water to produce a paste containing <23% wt. water, shaping the paste to a desired shape, drying the shaped product at a temperature of 110 degrees Centigrade, and firing the dried shaped product in a kiln at 1350 degrees Centigrade. The resulting alkali resistant ceramic contains 25-76 wt % MgO, 13-47% SiO2, 5-20 wt % Al2O3, and 1-10 wt % Fe2O3, CaO, K2O, and/or Na2O, with forsterite and spinel being the dominant crystalline phases.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 5, 2004
    Inventor: Xueren Cao
  • Publication number: 20040191411
    Abstract: Process for fabricating a preform, wherein a fiber preform is infiltrated with molten silicon after being contacted with an aqueous silicon carbide particulate slurry containing a dissolved source of carbon and heated to coat the particles with carbon.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Inventors: John A. Hornor, James Dale Steibel, Roger Lee Ken Matsumoto, Daniel M. Domanski
  • Patent number: 6794035
    Abstract: Graphitized carbon powder are produced by carbonizing and expanding a pitch by heating to form carbonaceous foam and by graphitizing before pulverizing or graphitizing after pulverizing the carbonaceous foam. The resultant graphitized carbon powders have an interplanar spacing (d002) of graphite planes of less than 0.3370 nm. The powders preferably have an average particle size of from 2 to 200 &mgr;m. A thermally conductive composition includes the graphitized carbon powders in a matrix. The content of the powders is preferably 1 to 800 parts by weight relative to 100 parts by weight of the matrix. Thus, the graphitized carbon powders that have excellent thermal conductivity and a thermally conductive composition including such powders are provided.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: September 21, 2004
    Assignee: Polymatech Co., Ltd.
    Inventors: Masayuki Tobita, Naoyuki Shimoyama, Shinya Tateda
  • Patent number: 6756122
    Abstract: Improved articles of manufacture are disclosed, together with methods for preparing such articles, whereby the surface of a graphite or comparable substrate is first densified with carbon to reduce surface porosity while still retaining sufficient surface texture to enhance the adherence of a subsequently applied boron coating.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: June 29, 2004
    Assignee: Specialty Materials, Inc.
    Inventor: Raymond J. Suplinskas
  • Patent number: 6756119
    Abstract: Three dimensional inorganic powder substrates, with shielded surfaces, having metal oxyanion containing coatings are disclosed. The coated substrates are produced by the process comprising reacting powder particle substrates with a metal oxyanion precursor, an anion forming precursor and an oxy precursor reactant mixture at fast reaction and elevated temperature reaction conditions to form a substrate containing a metal oxyanion coating on at least a portion of the three dimensions and shielded surfaces of the substrate. The coated substrates are useful in polymers, catalysis, heat dissipation and shielding applications.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: June 29, 2004
    Assignee: Ensci Inc
    Inventor: Thomas J. Clough
  • Publication number: 20040121688
    Abstract: A flexible substrate applied with an activated carbon coating is provided. The activated carbon coating is formed from a mixture of a polymeric material and an activation agent. The mixture is activated by heating to a temperature of from about 100° C. to about 250° C. As a result of the present invention, it has been discovered that a substrate can be formed that is flexible and also capable of performing other functions, such as serving as an odor control agent.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Ronald Lee Edens, Elizabeth Deibler Gadsby, Jeffrey Dean Lindsay, Richard Daniel Pike, Christian L. Mangun
  • Patent number: 6733827
    Abstract: Processes for forming a filter material are provided. The processes include the steps of coating a filter particle with a lignosulfonate, carbonizing the coating, and activating the coating.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: May 11, 2004
    Assignee: The Procter & Gamble Co.
    Inventors: Michael Donovan Mitchell, Blair Alex Owens, Dimitris Ioannis Collias, Andrew Julian Wnuk