Titanium Compound Containing Coating (e.g., Titanium Carbonitride, Titanium Nitride, Etc.) Patents (Class 427/255.391)
  • Patent number: 6284316
    Abstract: A titanium layer is formed on a substrate with chemical vapor deposition (CVD). First, a seed layer is formed on the substrate by combining a first precursor with a reducing agent by CVD. Then, the titanium layer is formed on the substrate by combining a second precursor with the seed layer by CVD. The titanium layer is used to form contacts to active areas of substrate and for the formation of interlevel vias.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: September 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Donald L. Westmoreland
  • Patent number: 6270859
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Patent number: 6268019
    Abstract: The present invention concerns the deposition of fluorine modified, titanium dioxide films (TiO2) onto hot glass by atmospheric pressure chemical vapor deposition (APCVD) using TiCl4 vapor. The invention is also suitable for depositing other metallic oxide films from their metallic halides such as SnCl4, GeCl4, and VCl4. The present invention provides a process that deposits a novel, fluorine modified, titanium dioxide film (TiO2) onto hot glass by atmospheric pressure chemical vapor deposition using TiCl4 vapor. The process uses injection of TiCl4 into a hot, nonoxygen containing carrier gas and blends the carrier gas and TiCl4 vapor with an oxygen containing gas stream containing a haze reducing quantity of a fluorine containing compound before contacting a surface of hot glass with the blended mixture. The process is capable of depositing a fluorine modified, TiO2 film at deposition rates exceeding 900 Å per second. The crystalline phase of the fluorine modified film is essentially anatase.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: July 31, 2001
    Assignee: ATOFINA Chemicals, Inc.
    Inventor: Glenn P. Florczak
  • Publication number: 20010008797
    Abstract: A method for forming a film according to the invention includes a setting step for putting an object to be processed in a processing container that can be brought into a vacuum, and a film-forming step for introducing both of a high-melting-point metal composition gas and a reducing gas into the processing container in order to deposit a predetermined film onto a surface of the object to be processed, subsequently to the setting step. In addition, the method also includes a pre-flowing step for introducing only one of the high-melting-point metal composition gas and the reducing gas into the processing container for a predetermined time, before the setting step.
    Type: Application
    Filed: January 11, 2001
    Publication date: July 19, 2001
    Inventor: Toshio Hasegawa
  • Publication number: 20010004478
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Application
    Filed: March 27, 1998
    Publication date: June 21, 2001
    Inventors: JUN ZHAO, ASHOK SINHA, AVI TEPMAN, MEI CHANG, LEE LUO, ALEX SCHREIBER, TALEX SAJOTO, STEFAN WOLFF, CHARLES DORNFEST, MICHAL DANEK
  • Patent number: 6242045
    Abstract: Metal nitrides are prepared by reacting a metal halide with an amine at an elevated temperature. The process is useful for depositing titanium nitride and vanadium nitride films onto glass, to make solar control automotive and architectural glazings.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 5, 2001
    Assignee: Visteon Global Technologies, Inc.
    Inventors: James William Proscia, Keith Brian Williams, Gene P. Reck
  • Patent number: 6238739
    Abstract: A method for forming a Ti1-xAlxN coating on a part without plasma enhancement, wherein a chemical vapor deposition chamber is heated to 250-500° C.; the part to be coated is heated to 550-650° C. and placed in said chamber; and a mixture of titanium and aluminium chlorides, NH3 and H2 is injected into the chamber. The molar amount of NH3 is greater than the molar amount of chlorides, and the molar amount of hydrogen is over five times greater than the molar amount of chlorides.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: May 29, 2001
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Roland Madar, Alain Rouault, Elisabeth Blanquet, Claude Bernard, Anne-Marie Dutron
  • Patent number: 6211065
    Abstract: The present invention provides a method of depositing an amorphous fluorocarbon film using a high bias power applied to the substrate on which the material is deposited. The invention contemplates flowing a carbon precursor at rate and at a power level so that equal same molar ratios of a carbon source is available to bind the fragmented fluorine in the film thereby improving film quality while also enabling improved gap fill performance. The invention further provides for improved adhesion of the amorphous fluorocarbon film to metal surfaces by first depositing a metal or TiN adhesion layer on the metal surfaces and then stuffing the surface of the deposited adhesion layer with nitrogen. Adhesion is further improved by coating the chamber walls with silicon nitride or silicon oxynitride.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: April 3, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Eugene Tzou, Lie-Yea Cheng, Turgut Sahin, Yaxin Wang
  • Patent number: 6204204
    Abstract: A method and apparatus are disclosed for depositing a tantalum-containing diffusion barrier, such as a TaN barrier layer, by dissolving a tantalum-bearing organometallic precursor, such as PEMAT or PDEAT, in an inert, low viscosity, high molecular weight, low volatility solvent, such as octane, heptane, decane or toluene. The precursor-solvent solution is vaporized and flowed over a substrate to deposit the barrier. The precursor solution has a viscosity substantially similar to that of the solvent by maintaining the ratio of precursor to solvent at a generally low value, such as approximately 10% precursor. The boiling point of the solvent is substantially similar to the boiling point of the precursor, such as within 50% of the precursor boiling point at one atmosphere, to enhance repeatability of barrier film quality.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: March 20, 2001
    Assignee: CVC Products, Inc.
    Inventors: Ajit P. Paranjpe, Mehrdad M. Moslehi, Randhir S. Bubber, Lino A. Velo
  • Patent number: 6177145
    Abstract: The invention includes a semiconductor processing method of making electrical contact to a node. An insulating layer is formed over a substrate, and an opening is formed through the insulating layer to the substrate. A layer of electrically conductive material is formed within the opening. The electrically conductive material is capable of absorbing oxygen when exposed to an oxygen containing ambient. The conductive material is exposed to a plasma to densify at least an outermost exposed portion of the conductive material and reduce a capability of the layer to absorb oxygen when exposed to the oxygen containing ambient. The layer of electrically conductive material is not exposed to the oxygen containing ambient before being exposed to the plasma.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: January 23, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gurtej S. Sandhu