Inorganic Oxide Containing Plating Or Implanted Material Patents (Class 427/529)
  • Patent number: 6899928
    Abstract: The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: May 31, 2005
    Assignee: The Regents of the University of California
    Inventors: James R. Groves, Paul N. Arendt, Robert H. Hammond
  • Patent number: 6864415
    Abstract: A photoelectric cell that includes a first insulating base, having on its surface a first electrode layer, which has on its surface a metal oxide semiconductor film, which includes anatase titanium oxide particles, on which a photosensitizer is absorbed and a second insulating base having on its surface a second electrode layer and an electrolyte sealed between the metal oxide semiconductor film and the second electrode layer. The first electrode layer and the second electrode layer are arranged opposite from each other. At least one of the first and second insulating bases with an electrode layer is transparent.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 8, 2005
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Tsuguo Koyanagi, Michio Komatsu, Hirokazu Tanaka, Katsuhiro Shirono
  • Patent number: 6797339
    Abstract: A method of forming a thin film on the surface of a substrate such as silicon, in which a gas cluster (which is a massive atomic or molecular group of a reactive substance taking the gaseous form at room temperature under atmospheric pressure) is formed and then ionized, and the cluster ions are then irradiated onto a substrate surface under an acceleration voltage to cause a reaction. It is possible to form a high quality ultra-thin film having a very smooth interface, without causing any damage to the substrate, even at room temperature.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 28, 2004
    Assignees: Research Development Corporation of Japan, Sanyo Electric Co., Ltd.
    Inventors: Makoto Akizuki, Mitsuaki Harada, Atsumasa Doi, Isao Yamada
  • Publication number: 20040180216
    Abstract: A coated article is provided which includes a layer including titanium oxycarbide. In order to form the coated article, a layer of titanium oxide is deposited on a substrate by sputtering or the like. After sputtering of the layer including titanium oxide, an ion beam source(s) is used to implant at least carbon ions into the titanium oxide. When implanting, the carbon ions have sufficient ion energy so as to knock off oxygen (O) from TiOx molecules so as to enable a substantially continuous layer comprising titanium oxycarbide to form near a surface of the previously sputtered layer.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Vijayen S. Veerasamy, Scott V. Thomsen, Rudolph Hugo Petrmichl
  • Patent number: 6787199
    Abstract: This invention provides a composite device whereby surface reflection and interference colors can be inhibited, photocatalytic decomposition performance may be improved and hydrophilicity-acquiring rate may be improved. A mixture film (14) is deposited on the surface of a base (12). The mixture film (14) is a colorless and transparent mixture film with a high light transmittance made of a mixture of boron oxide and photocatalytic titanium oxide.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: September 7, 2004
    Assignee: Murakami Corporation
    Inventors: Masakazu Anpo, Masato Takeuchi, Satoru Dohshi, Norihiko Kuzuya
  • Patent number: 6787198
    Abstract: The present invention involves the hydrothermal treatment of nanostructured films to form high k PMOD™ films for use in applications that are temperature sensitive, such as applications using a polymer based substrate. After a PMOD™ precursor is deposited and converted on a substrate, and possibly after other process steps, the amorphous, nanoporous directly patterned film is subjected to low temperature hydrothermal treatment to densify and possibly crystallize the resulting high dielectric PMOD™ film. A post hydrothermal treatment bake is then performed to remove adsorped water.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 7, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Shyama P. Mukherjee, Harold O. Madsen, Paul J. Roman, Jr., Leo G. Svendsen
  • Patent number: 6723388
    Abstract: This invention comprises methods for making nanostructured and nanoporous thin film structures of various compositions. These films can be directly patterned. In these methods, precursor films are deposited on a surface and different components of the precursor film are reacted under selected conditions, forming a nanostructured or nanoporous film. Such films can be used in a variety of applications, for example, low k dielectrics, sensors, catalysts, conductors or magnetic films. Nanostructured films can be created: (1) using one precursor component and two reactions, (2) using two or more components based on differential rates of photochemical conversion, (3) using two precursors based on the thermal sensitivity of one precursor and the photochemical sensitivity of the other, and (4) by photochemical reaction of a precursor film and selected removal of a largely unreacted component from the film.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 20, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Leo G. Svendsen, Shyama P. Mukheriee, Paul J. Roman, Jr., Ross H. Hill, Harold O. Madsen, Xin Zhang, Donna Hohertz
  • Publication number: 20040053026
    Abstract: An attenuating embedded phase shift photomask blank that produces a phase shift of the transmitted light is formed with an optically translucent film made of metal, silicon, nitrogen or metal, silicon, nitrogen and oxygen. A wide range of optical transmission (0.001% up to 20% at 193 nm) is obtained by this process. A post deposition process is implemented to obtain the desired properties (stability of optical properties with respect to laser irradiation and acid treatment) for use in industry. A special fabrication process for the sputter target is implemented to lower the defects of the film.
    Type: Application
    Filed: September 8, 2003
    Publication date: March 18, 2004
    Inventors: Marie Angelopoulos, Katherina E. Babich, Cameron James Brooks, S. Jay Chey, C. Richard Guarnieri, Michael Straight Hibbs, Kenneth Christopher Racette
  • Patent number: 6683012
    Abstract: Metal which forms a crystalline insulation layer is sputtered at a target and deposited as a film on a silicon substrate, the metal is chemically combined with reactive gas around the silicon substrate to thereby grow a crystal layer of a crystalline insulation substance, and a voltage is applied to the substrate so that ions of the reactive gas around the substrate are attracted to a surface of the silicon substrate and chemically combined with silicon, whereby an insulation silicon compound layer is formed. As a result, a structure is obtained in which a crystalline insulation layer is formed on a crystalline silicon layer through an amorphous insulation film which is formed by a silicon compound which has an excellent insulation characteristic.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 27, 2004
    Assignee: Rohm Co., Ltd.
    Inventors: Tomonobu Hata, Kimihiro Sasaki, Akira Kamisawa
  • Patent number: 6638857
    Abstract: An e-beam deposition method and apparatus uses a metallic target and localized oxygen ambient to produce an oxide film for deposition. A metallic target is first heated, then exposed to a stream of oxide, resulting in the formation of a relatively thin layer of oxide on the metallic target surface. Since the oxide has a higher vapor pressure than the underlying metal, when the target is impinged by an electron-beam current, the oxide will preferentially vaporize and be deflected toward the surface to coated.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: October 28, 2003
    Assignee: TriQuint Technology Holding Co.
    Inventor: Utpal Kumar Chakrabarti
  • Patent number: 6627320
    Abstract: A method for producing a composition for vapor deposition comprising sintering a vapor source mixture prepared by mixing vapor sources that contain titanium dioxide and niobium pentoxide. The method is capable of forming a high-refraction layer even in low-temperature vapor deposition on a substrate. An antireflection film is formed having good scratch resistance, good chemical resistance and good heat resistance, of which the heat resistance decreases little with time, that is useful in a variety of optical elements.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: September 30, 2003
    Assignee: Hoya Corporation
    Inventors: Takeshi Mitsuishi, Hitoshi Kamura, Kenichi Shinde, Hiroki Takei, Akinori Kobayashi, Yukihiro Takahashi, Yuko Watanabe
  • Patent number: 6602558
    Abstract: A non-linear optical silica thin film (22) whose main material is SiO2—GeO2 is formed by irradiating positive or negative polar particles and polarization orientation is carried out in the silica thin film. For example, by repeating, while forming the silica thin film (22), forming the thin film in a state of irradiating positive particles, forming the thin film in a neutral state, such as irradiation of neutral particles or non-irradiation of particles, forming the thin film in a state of irradiating negative particles, and forming the thin film in a neutral state, a plurality of regions (22-1, 22-2, and 22-3) in different states of polarization orientation are formed in a direction of film thickness of the silica thin film (22). Distribution of charges arises in the silica thin film (22) being formed by irradiation of polar particles and polarization orientation is automatically carried out in the silica thin film (22).
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: August 5, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Osamu Komeda, Hiroshi Hasegawa
  • Patent number: 6541079
    Abstract: A method of forming a layer of oxide or oxynitride upon a substrate including first placing a substrate having an upper surface and a lower surface in a high vacuum chamber and then exposing the upper surface to a beam of atoms or molecules, or both, of oxygen or nitrogen or a combination of same at a temperature sufficient to form a reacted layer on the upper surface of said substrate wherein said layer has a chemical composition different from the chemical composition of said substrate. The reacted upper layer is then exposed simultaneously in the chamber to atomic or molecular beams of oxygen, nitrogen or both and to a beam of metal atoms or metal molecules selected from the group consisting of Al, Si, Zr, La, Y, Sc, Sr, Ba, Ti, Ta, W, Cr, Zr, Ca, Mg, Be, Pr, Nd and Hf to form a metal oxide, a metal nitride or a metal oxynitride layer in said layer.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: April 1, 2003
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Eduard A. Cartier, Supratik Guha
  • Patent number: 6538194
    Abstract: A photoelectric cell that includes a first insulating base, having on its surface a first electrode layer, which has on its surface a metal oxide semiconductor film, which includes anatase titanium oxide particles, on which a photosensitizer is adsorbed and a second insulating base having on its surface a second electrode layer and an electrolyte sealed between the metal oxide semiconductor film and the second electrode layer. The first electrode layer and the second electrode layer are arranged opposite from each other. At least one of the first and second insulating bases with an electrode layer is transparent.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: March 25, 2003
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Tsuguo Koyanagi, Michio Komatsu, Hirokazu Tanaka, Katsuhiro Shirono
  • Patent number: 6517687
    Abstract: An ultraviolet radiation absorbing layer formed over a polymeric substrate is disclosed herein. The layer is a doped metal oxide coating. The layer exhibits excellent weatherability and UV absorbing properties. The layer is preferably deposited by arc plasma deposition or by sputtering.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventor: Charles Dominic Iacovangelo
  • Patent number: 6511718
    Abstract: A venturi mist generator creates a mist comprising droplets having a mean diameter less than one micron from liquid precursors containing multi-metal polyalkoxide compounds. The mist is mixed and then passed into a gasifier where the mist droplets are gasified at a temperature of between 100° C. and 250° C., which is lower than the temperature at which the precursor compounds decompose. The gasified precursor compounds are transported by carrier gas through insulated tubing at ambient temperature to prevent both condensation and premature decomposition. The gasified precursors are mixed with oxidant gas, and the gaseous reactant mixture is injected through a showerhead inlet into a deposition reactor in which a substrate is heated at a temperature of from 300° C. to 600 ° C. The gasified precursors decompose at the substrate and form a thin film of solid material on the substrate. The thin film is treated at elevated temperatures of from 500° C. to 900° C.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: January 28, 2003
    Assignee: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Larry D. McMillan, Narayan Solayappan, Jeffrey W. Bacon
  • Patent number: 6509066
    Abstract: A series of processes have been discovered whereby uniform oxygen doping of lead chalcogenides have been achieved by using vapor deposition combined with in situ or ex situ ion implantation allowing the high yield manufacture of high S/N infrared detectors.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: January 21, 2003
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Steven Jost
  • Patent number: 6475573
    Abstract: A substrate is coated with a coating system including at least one diamond-like carbon (DLC) inclusive layer(s) using an ion beam deposition technique. Prior and/or during the ion beam deposition of the DLC inclusive layer, the substrate (e.g., glass substrate) is heated to a temperature of from about 100-400 degrees C. so that at least a surface of the substrate is heated when the DLC inclusive layer(s) is deposited thereon via the ion beam deposition technique. This heating may result in improved adherence of a coating system to the underlying substrate.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: November 5, 2002
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Rudolph Hugo Petrmichl
  • Publication number: 20020127353
    Abstract: A transparent electroconductive film has a polymer film, a primary layer formed on the polymer film, and a transparent electroconductive thin film or a multi-lamination film composed of at least one metal-compound layer and at least one electroconductive-metal layer, formed on the primary layer. The primary layer is made of silicon compound. The primary layer is formed by sputtering, using a target having a density of 2.9 g/cm3 or more.
    Type: Application
    Filed: November 21, 2001
    Publication date: September 12, 2002
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Masato Yoshikawa, Yoshinori Iwabuchi, Yukihiro Kusano, Mitsuhiro Nishida
  • Publication number: 20020040847
    Abstract: A method of forming an insulation film includes the steps of forming an insulation film on a substrate, and modifying a film quality of the insulation film by exposing the insulation film to atomic state oxygen O* or atomic state hydrogen nitride radicals NH* formed with plasma that uses Kr or Ar as inert gas.
    Type: Application
    Filed: May 31, 2001
    Publication date: April 11, 2002
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa
  • Patent number: 6368425
    Abstract: Techniques are disclosed for improving the tribology between an air bearing surface of a magnetic recording head and a magnetic recording medium. In addition, techniques are described for reducing resistance to wear and corrosion of the air bearing surface of the recording head as well as resistance to corrosion of the recording medium. Various ion beam techniques can be used to enhance the properties of the recording head and recording medium, and include ion implant techniques, ion mixing techniques and ion burnishing techniques.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: April 9, 2002
    Assignee: Seagate Technology LLC
    Inventors: Peter R. Segar, Bal K. Gupta, Jeffery K. Berkowitz, Sanghamitra Sahu
  • Patent number: 6352741
    Abstract: High temperature superconductive (HTS) integrated circuits can be fabricated in three ways according to the invention. First, a planar multiple layer HTS integrated circuit is fabricated using multiple HTS layers. The layers include altered regions which have been bombarded using ion implantation to destroy superconductivity of the altered regions without interrupting the lattice structure of the altered regions. Second, a planar multiple-layer HTS integrated circuit includes upper and lower HTS layers, each including central and opposing regions. A first implant energy is used to destroy superconducting properties of the opposing regions of the lower HTS layer without interrupting the lattice structure. A second implant energy is used to destroy superconducting properties of a top portion of the central region to define a contact. Third, a HTS integrated circuit is formed from a single HTS layer using three ion implantation steps and ions having first, second and third energies and range.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: March 5, 2002
    Assignee: TRW Inc.
    Inventors: Hugo W. K. Chan, Arnold H. Silver
  • Patent number: 6350961
    Abstract: The invention relates to a method and device for improving the surface of a substrate. Plasma is produced by a luminous discharge, close to the substrate to be treated, using a hollow cathode and an anode assigned thereto. A reactive gas located in the area of the luminous discharge is activated, causing a change to occur on the surface of substrate to provide the desired improvement. The hollow cathode is brought to a self-cleansing temperature and maintained at said temperature, whereby the parasitic deposits caused by the reactive gas are removed and/or converted. The self-cleansing temperature is stabilized by taking into account the following factors: the heating of the hollow cathode by the luminous discharge, thermal conduction carried out by the reactive gas and radiation in the direction of a cooled anode arranged at a small distance from the hollow cathode.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: February 26, 2002
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Thomas Jung
  • Patent number: 6338879
    Abstract: A method for manufacturing a solid lubricant film for cutting tools, having a hard material layer positioned on a tool steels, high-speed steels or cemented carbide substrate, includes the steps of: depositing on the hard material layer a solid lubricant oxide layer (MOX :0.2≦×<2) where the metal M is selected from Si, Zr, Ni, Fe, Co, Cr or combinations thereof. The thickness (t) of the solid lubricant oxide layer is 0.01 &mgr;m≦t<3.0 &mgr;m. The solid lubricant oxide film is deposited on the harden layer by heating a vacuum ion-plating chamber to a temperature of between from 150° C. to 450° C., and depositing on the coated cutting tool the solid lubricant oxide layer by an ion-plating. A negative bias charge is applied using a direct current of from −15 V to −1000 V or a high frequency alternating current equivalent to an effective negative bias charge of the direct current of from −15 V to −1000 V.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: January 15, 2002
    Assignee: Nachi-Fujikoshi Corp.
    Inventor: Manabu Yasuoka
  • Patent number: 6335062
    Abstract: A method of ion implantation using oxygen backfill and a modified surface layer formed therefrom are provided. The method of ion implantation includes the steps of placing a substrate metal in an ion implantation vacuum chamber, introducing oxygen into the ion implantation vacuum chamber and directing a beam of ions at the substrate metal. The modified surface includes a substrate metal and implanted atoms at a surface of the substrate metal. The implanted atoms are integrated with the substrate metal. The substrate metal has an implanted atom concentration of at least 5 atomic % to a depth of over 250 Å.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: January 1, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bruce D. Sartwell, Paul M. Natishan
  • Patent number: 6303192
    Abstract: A method for making a multi-layered integrated circuit structure, includes depositing a methyl compound spin on glass layer over a substrate. The spin on glass layer is treated by plasma-deposition to form a SiO2 skin on the methyl compound spin on glass layer and then treated again by plasma-deposition to form a cap layer which adheres to the SiO2 skin.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: October 16, 2001
    Assignee: Philips Semiconductor Inc.
    Inventors: Rao V. Annapragada, Tekle M. Tafari, Subhas Bothra
  • Patent number: 6300641
    Abstract: A process for modifying the surfaces of a polymer, ceramic, ITO or glass by irradiating energized ion particles onto the surfaces of the polymer, ceramic, ITO or glass, while blowing a reactive gas directly over the surface of the polymer, ceramic, ITO or glass under a vacuum condition, to decrease the wetting angle of the surface. The process can be widely used in the fields of polymers because it provides effects of increasing the spreading of aqueous dyestuffs, increasing adhesive strength with other materials and inhibition of light scattering by decreasing the wetting angle of the material surface.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: October 9, 2001
    Assignee: Korea Institute of Science and Technology
    Inventors: Seok Keun Koh, Hyung Jin Jung, Won Kook Choi, Kyong Sop Han, Sik Sang Gam
  • Patent number: 6294223
    Abstract: A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: September 25, 2001
    Assignee: Georgia Tech Research Corp.
    Inventors: Janet M Hampikian, Eden M Hunt
  • Patent number: 6251417
    Abstract: An inorganic antimicrobial composition has the formula AB2O4, wherein A and B are low temperature far infrared irradiating metals, A is Mg, Zn, Mn, Ni, Co, or Fe(II), B is Al, Cr(III), Mn(III) or Fe(III), and O is oxygen. An antimicrobial article is made by coating said composition on a porous honeycomb-shaped substrate. An organic antimicrobial article is made from a quarternary ammonium salt coated on a porous honeycomb-shaped substrate. Processes of making the antimicrobial articles are provided.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: June 26, 2001
    Inventors: Yen-Kuen Shiau, Chung-Hsun Wu
  • Patent number: 6245394
    Abstract: An auxiliary anode (30) having a ring-shaped permanent magnet (31) is placed in a vacuum chamber (11) such that the auxiliary anode is coaxial with a central axis of a hearth (20) and is positioned so as to surround an upper area of the hearth. A plasma beam generated by a plasma beam generator (13) using arc discharge is guided into the hearth. Magnesium (Mg) is used as a vaporization material on the hearth. Gas mixed with oxygen is supplied into the vacuum chamber. As a result, magnesium oxide particles sublimated from the hearth react with oxygen plasma generated by the plasma to form a magnesium oxide (MgO) film on a substrate (40).
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: June 12, 2001
    Assignee: Sumitomo Heavy Industries, Inc.
    Inventors: Toshiyuki Sakemi, Masaru Tanaka
  • Patent number: 6204196
    Abstract: A method of forming a film having enhanced reflow characteristics at low thermal budget is disclosed, in which a surface layer of material is formed above a base layer of material, the surface layer having a lower melting point than the base layer. In this way, a composite film having two layers is created. After reflow, the surface layer can be removed using conventional methods.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: March 20, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Randhir P. S. Thakur
  • Patent number: 6176979
    Abstract: A method of manufacturing an object in a vacuum treatment apparatus having a vacuum recipient for containing an atmosphere, includes the steps of supporting a substrate on a work piece carrier arrangement in the recipient and treating the substrate to manufacture the object in the vacuum recipient. The treating process includes generating electrical charge carriers in the atmosphere and in the recipient which are of the type that form electrically insulating material and providing at least two electroconductive surfaces in the recipient. Power, such as a DC signal, is supplied to at least one of the electroconductive surfaces so that at least one of the electroconductive surfaces receives the electrically insulating material for covering at least part of that electroconductive surface. This causes electrical isolation of that electroconductive surface which leads to arcing and damage to the object.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: January 23, 2001
    Assignee: Balzers Aktiengesellschaft
    Inventors: Hans Signer, Eduard K{umlaut over (u)}gler, Klaus Wellerdieck, Helmut Rudigier, Walter Haag
  • Patent number: 6162512
    Abstract: A process for modifying a nitride surface includes irradiating energized ion particles onto the nitride surface while blowing a reactive gas directly on the nitride surface under a vacuum condition. An aluminum nitride for a direct bond copper (DBC) can be obtained by forming a thin copper film on the thusly modified nitride.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: December 19, 2000
    Assignee: Korea Institute of Science and Technology
    Inventors: Seok Keun Koh, Hyung Jin Jung, Won Kook Choi, Yong Bai Son
  • Patent number: 6153271
    Abstract: A process for depositing a transparent coating of indium tin oxide on a substrate comprising providing said substrate in a partial vacuum environment and conducting electron beam evaporation of tin oxide doped indium oxide granules while operating an ion source providing oxygen adjacent said substrate until a coating of indium tin oxide is deposited on at least a portion of said substrate.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 28, 2000
    Assignee: General Vacuum, Inc.
    Inventor: Gerald T. Mearini
  • Patent number: 6146765
    Abstract: A transparent conductive film of a zinc oxide type containing gallium and silicon, which contains silicon in an amount of from 0.01 to 1.5 mol % in terms of SiO.sub.2.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: November 14, 2000
    Assignee: Asahi Glass Company Ltd.
    Inventors: Akira Mitsui, Kazuo Sato, Masami Miyazaki, Junichi Ebisawa, Yasuo Hayashi, Masao Higeta, Katsuaki Aikawa, Atsushi Hayashi
  • Patent number: 6143366
    Abstract: A process is disclosed for reducing the crystallization temperature of amorphous or partially crystallized ceramic films by providing a higher pressure under which the crystallization of the amorphous or partially crystallized ceramic films can be significantly enhanced. The present invention not only improves quality, performance and reliability of the ceramic films, but also reduces the cost for production. By lowering the crystallization temperature, the cost for thermal energy consumed during the crystallization process is greatly reduced. In addition, the interaction or interdiffusion occurring between films and substrates is significantly suppressed or essentially prevented, avoiding the off-stoichiometry and malfunction of thin films, which usually occur in the conventional high-temperature crystallization processes. The process of present invention also decreases the grain size of formed films, thus reducing the roughness of films and producing relatively smooth, good quality films.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: November 7, 2000
    Inventor: Chung Hsin Lu
  • Patent number: 6143373
    Abstract: A process for fabricating synthetic materials by atomic alloying of a host material. Energetic high vapor pressure modifier elements or species are introduced into the host matrix of a fluidic precursor high metling point material so as to obtain an engineered material characterized by a range of controllable optical electrical, thermal, chemical or mechanical properties not exhibited by either the modifier or the precursor material. The method for forming a synthetically engineered material by forming a fluid host matrix material on a moving substrate surface, such as a wheel; directing a plurality of discrete fluid modifier materials, activated or unactivated, in a stream, as from a nozzle, toward the substrate surface in a direction such that it converges with the host matrix material to produce a ribbon of modified material.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: November 7, 2000
    Assignee: Energy Conversion Devices, Inc.
    Inventor: Stanford R. Ovshinsky
  • Patent number: 6103010
    Abstract: A thin ferromagnetic film is deposited directly onto the surface of a waveguide. The crystalline orientation of the ferromagnetic film is restricted to a predetermined orientation by pulverizing nuclei that do not have the predetermined orientation.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: August 15, 2000
    Assignee: Alcatel
    Inventor: Christian Belouet
  • Patent number: 6103321
    Abstract: A method of manufacturing an ultraviolet resistant object, wherein the object has at least a portion made of a polymer material, and is provided with an ultraviolet shielding film covering at least a portion of a surface of the portion made of the polymer material, including the steps of forming the ultraviolet shielding film by vapor deposition over the surface of the portion to be covered with the film; and irradiating, prior to the formation of the ultraviolet shielding film or in an initial stage of the film forming step, the film formation surface with ions with an energy in a range from 0.05 keV to 2 keV to attain the total irradiation rate in a range from 1.times.10.sup.13 ions/cm.sup.2 to 5.times.10.sup.17 ions/cm.sup.2.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: August 15, 2000
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Yasushi Fujinami, Akinori Ebe, Osamu Imai, Kiyoshi Ogata
  • Patent number: 6094292
    Abstract: A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: July 25, 2000
    Assignee: Trustees of Tufts College
    Inventors: Ronald B. Goldner, Alexandra Gerouki, Te-Yang Liu, Mark A. Goldner, Terry E. Haas
  • Patent number: 6083567
    Abstract: A surface of a substrate is vacuum coated with a material by sequentially implanting and depositing ions from a single ion source. First ions of the coating material are initially implanted into the surface of the substrate to form an implanted substrate layer. Next, second ions of the material are deposited on the implanted substrate layer to form a seed layer. Third ions of the material are then implanted into the seed layer to form an intermixed layer. Fourth ions of the material are deposited over the intermixed layer to form the coating over the substrate.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: July 4, 2000
    Assignee: University of Maryland, Baltimore County
    Inventors: Oleg Vesnovsky, Timmie Topoleski, Victor Pushnykh
  • Patent number: 6077492
    Abstract: A titanium oxide photocatalyst having metal ions of one or more metals incorporated therein selected from the group consisting of Cr, V, Cu, Fe, Mg, Ag, Pd, Ni, Mn and Pt, wherein the metal ions are implanted from the surface to deep inside of the bulk of the photocatalyst in an amount of at least 1.times.10.sup.15 ions per g of the titanium oxide; a process for producing the photocatalyst; and a photocatalytic reaction method using the photocatalyst.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: June 20, 2000
    Assignee: Petroleum Energy Center
    Inventors: Masakazu Anpo, Hiromi Yamashita, Sakunobu Kanai, Kazuhito Sato, Takanori Fujimoto
  • Patent number: 6059937
    Abstract: The present invention relates to a sensor for detecting hydrocarbon type gas such as methane gas and propane gas, and process for manufacturing thereof. SiO.sub.2 was deposited in 1 .mu.m by ion beam sputtering with a mixed gas (3:2) of argon and oxygen on a silicon wafer in the process. In case of a propane sensor, platinum electrode is deposited in 600 .ANG. by ion beam sputtering on a tin oxide thin film synthesized by ionized beam of which the oxygen ion energy is 0 to 500 eV by using poly alumina. In case of a methane sensor, heat treatment at 500.degree. C. was performed for 1 hour in the air in order for the thin film to be stable at high operation temperature, while heat treatment was not performed in case of propane sensor. The sensor was manufactured by adding platinum or palladium thereto by argon ion beam sputtering. The thin film type tin oxide sensor according to the present invention exhibited an excellent selectivity of 47.4% even at low temperature of 150.degree. C.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: May 9, 2000
    Assignee: Korea Gas Corporation
    Inventors: Seok Keun Koh, Hyung Jin Jung, Seok Kyun Song, Won Kook Choi, Dongsoo Choi, Jin Seok Jeon
  • Patent number: 6042896
    Abstract: A method for preventing radioactive contamination of porous surfaces comprising providing an apparatus for handling radioactive material comprising a porous surface; exposing the porous surface to a vacuum; depositing a flowable precursor material onto the porous surface, wherein the porous surface comprises pores and the vacuum is effective to substantially fill the pores with the flowable precursor material; subjecting the flowable precursor material to energy sufficient to convert the flowable precursor material to an effective sealant film comprising amorphous carbon. In a preferred embodiment, the porous surface is an anodized aluminum surface.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: March 28, 2000
    Assignee: Southwest Research Institute
    Inventors: Louis Rodriguez, Geoffrey Dearnaley
  • Patent number: 6022598
    Abstract: A uniform film of sapphire and tungsten is deposited onto a surface of a substrate using the ionized cluster beam ("ICB") apparatus. During ICB deposition, a tungsten crucible containing sapphire is heated until a vapor of sapphire and tungsten is formed. The tungsten crucible is heated to form a tungsten vapor, which causes the crucible material to mix with the sapphire, thereby forming a vapor mixture of sapphire and tungsten. The vapor is ejected through a small nozzle into a vacuum region. The resulting adiabatic expansion of the vapor promotes formation of atomic clusters. Some of the clusters are ionized, and electrons are stripped off the clusters. The clusters are accelerated toward the substrate, which is also within the vacuum region. The clusters impact the surface of the substrate, where they are deposited to form the uniform sapphire/tungsten film. The film is deposited in an sapphire (aluminum oxide)/tungsten ratio of 2:1. The film has a relatively high index of refraction of approximately 2.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: February 8, 2000
    Assignee: United Technologies Corporation
    Inventors: Scott M. Tyson, Richard Y. Kwor, Leonard L. Levenson, deceased
  • Patent number: 6007683
    Abstract: The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: December 28, 1999
    Assignee: The Regents of the University of California
    Inventors: Alan F. Jankowski, Daniel M. Makowiecki, Glenn D. Rambach, Erik Randich
  • Patent number: 5989990
    Abstract: The present invention relates to tinoxide thin film, a process for manufacturing thereof comprising the step of depositing tin while providing oxygen or ionized oxygen around a substrate, and relates to a gas detecting sensor prepared by the use of such tinoxide thin film.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: November 23, 1999
    Assignee: Korea Gas Corporation
    Inventors: Seok Keun Koh, Hyung Jin Jung, Seok Kyun Song, Won Kook Choi, Dongsoo Choi, Jin Seok Jeon
  • Patent number: 5980974
    Abstract: An improved coated orthopaedic implant component is disclosed. The implant may be coated with platinum, iridium or other metals for improved characteristics. Ion beam coating orthopaedic parts by ion implanting the parts with zirconium ions while the parts are immersed in an oxygen-containing background gas is also disclosed. The adhesion of the graded interface zirconium oxide surface layer so formed is further improved by the initial removal of surface contamination using an ion bombardment and the deposition of an intermediate layer of platinum or similar metal or silicon between the orthopaedic metal component and the zirconium oxide. Furnace heating results in atomic interdiffusion to enhance adhesion between the surfaces. The zirconium oxide provides a low friction, low wear articulating surface. The graded interface may be characterized by a blackish color and a transition between pure zirconium oxide and pure intermediate layer that extends over a thickness of hundreds of Angstroms.
    Type: Grant
    Filed: April 16, 1996
    Date of Patent: November 9, 1999
    Assignee: Implant Sciences Corporation
    Inventors: Anthony J. Armini, Stephen N. Bunker
  • Patent number: 5962080
    Abstract: A method of depositing insulating thin films on a substrate employs a target that is formed of material which includes a constituent element of the insulating thin film. An ion beam preferably of inert gas is then directed toward the target to disperse the target material. Simultaneously, a second ion beam which includes another constituent element of the insulating thin film is also directed toward the substrate. The material from the target and the element of the second ion beam react in proper stoichiometry and is deposited onto the substrate as the insulating thin film.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: October 5, 1999
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Swie-In Tan
  • Patent number: RE37718
    Abstract: The present invention provides for faster and stronger tissue-implant bonding by treating a ceramic implant with an ion beam to modify the surface of the ceramic. The surface modification can give the ceramic improved ion-exchange properties depending upon the particular ceramic and the type of ions used. In a preferred embodiment, a bioactive ceramic orthopaedic, dental, or soft tissue implant is bombarded with a beam of cations. When implanted in the body, the surface modification causes an increase in the release of critical ions, such as calcium or phosphorus, from the surface of the ceramic implant, and thereby accelerates implant-tissue bond formation.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: May 28, 2002
    Assignee: Southwest Research Institute
    Inventors: Cheryl Blanchard, Geoffrey Dearnaley, James Lankford, Jr.