Electric Discharge (e.g., Corona, Glow Discharge, Etc.) Patents (Class 427/562)
  • Publication number: 20090263668
    Abstract: A plasma cross-linked surface coating of an oligomer has resulted in a low friction surface coating that is also highly durable. The coated device comprises a metal substrate and a plasma cross-linked coating of an oligomer having a molecular weight less than 10,000, and in one embodiment a molecular weights between 1000 and 10,000.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 22, 2009
    Inventors: Moses M. DAVID, Gregory D. Clark
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Publication number: 20090202739
    Abstract: A method for forming a polymeric coating on a substrate surface, by plasma treating a mixture comprising a free-radical initiated polymerisable monomer having one or more free-radical polymerisable groups in the presence of a free radical initiator, wherein said plasma treatment is a soft ionisation plasma process (a process wherein precursor molecules are not fragmented during the plasma process and as a consequence, the resulting polymeric coating has the physical properties of the precursor or bulk polymer) aid depositing the resulting polymeric coating material onto a substrate surface.
    Type: Application
    Filed: October 12, 2005
    Publication date: August 13, 2009
    Applicant: DOW CORNING IRELAND LTD.
    Inventors: Liam O'Neill, Lesley Ann O'Hare, Andrew James Goodwin
  • Publication number: 20090148623
    Abstract: The invention relates to a method for producing a microbial substance-releasing layer on a technical surface. The inventive method comprises three steps: a) producing a solution from polyvinylacetate, a preservative agent and a solvent, b) applying the solution to the technical surface, and c) drying the solution applied to the technical surface while forming the layer. The inventive method is characterized by using benzoic acid, sorbic acid, natamycin, bacteriocines, plant extracts or mixtures thereof as the preservative agent and an ethanol/water mixture, ethyl acetate or acetone as the solvent.
    Type: Application
    Filed: March 24, 2006
    Publication date: June 11, 2009
    Inventors: Dieter Sandmeier, Eva Kensbock
  • Patent number: 7544397
    Abstract: The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: June 9, 2009
    Assignee: Stormedia Texas, LLC
    Inventors: Vijayen Veerasamy, Manfred Weiler, Eric Li
  • Patent number: 7531205
    Abstract: A method of continuously coating at least one substrate with a buffer layer as a support for a ceramic superconducting material is disclosed. The method includes loading the at least one substrate onto a respective feed spool and feeding the at least one substrate through a vacuum deposition chamber. The method further includes coating the at least one substrate while the at least one substrate is bombarded by ion beams from dual RF-ion sources forming at least one coated substrate, and reloading the at least one coated substrate onto a respective take up spool.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: May 12, 2009
    Assignee: Superpower, Inc.
    Inventors: Venkat Selvamanickam, Srinivas Sathiraju
  • Patent number: 7517561
    Abstract: A method for depositing a coating onto a glass substrate for adhesive bonding. The process comprises depositing a coating where the surface is cleaned during a first time period, and depositing a high-velocity impact polymer reaction coating on the surface at ambient air pressure during a second time period using an atmospheric pressure air plasma. The coated glass can be bonded using a CASE compound, consisting of coatings, adhesives, sealants, elastomers, and combinations thereof. The opposing surface of the CASE compound is adjacent to a frame, such as an automotive vehicle windshield flange.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: April 14, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Larry Haack, Ann Straccia, Joseph Holubka
  • Patent number: 7501161
    Abstract: In a first aspect, a method is provided for use during plasma processing. The first method includes the steps of (1) placing a substrate on a substrate holder of a plasma chamber; (2) positioning a cover frame adjacent and below a perimeter of the substrate; and (3) employing the cover frame to reduce arcing during plasma processing within the plasma chamber. Numerous other aspects are provided.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: March 10, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Li Hou, Qunhua Wang, Edwin Sum, John M. White
  • Publication number: 20090047445
    Abstract: A method of forming a piezoelectric device is disclosed. In one such method, a coating material is formed. The coating material has a piezoelectric precursor. The coating material is applied to a first electrode. The precursor is heated to a temperature that is above the Curie temperature of the precursor, but below the melting temperature of the precursor. While the precursor is above its Curie temperature, a voltage is applied across the precursor. While the voltage is applied across the precursor, the temperature of the precursor is reduced to below the Curie temperature.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 19, 2009
    Inventors: John K. Schneider, Jack C. Kitchens
  • Patent number: 7473436
    Abstract: Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: January 6, 2009
    Assignees: The United States of America as represented by the Administrator of the National Aeronautics and Space Administrator, SETI Institute
    Inventors: Bishun N. Khare, Meyya Meyyappan
  • Patent number: 7465478
    Abstract: A method of processing a workpiece includes placing the workpiece on a workpiece support pedestal in a main chamber with a gas distribution showerhead, introducing a process gas into a remote plasma source chamber and generating a plasma in the remote plasma source chamber, transporting plasma-generated species from the remote plasma source chamber to the gas distribution showerhead so as to distribute the plasma-generated species into the main chamber through the gas distribution showerhead, and applying plasma RF power into the main chamber.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo
  • Patent number: 7393562
    Abstract: A method of providing material into a deposition chamber is provided. A reservoir is in fluid communication with the deposition chamber. A metastable specie is provided and contained within the reservoir prior to flowing the metastable specie from the reservoir into the deposition chamber. For atomic layer deposition, the metastable specie can be purged from the containment reservoir and the metastable specie can be compressed into the reaction chamber from the reservoir. A portion of the metastable specie is deposited onto a substrate.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gurtej S. Sandhu
  • Publication number: 20080008841
    Abstract: A method for improving the adhesion characteristics of a secondary coating to a coated substrate material using a corona or plasma discharge treatment, in which the treatment is limited to a finite duration of time sufficient to increase the surface energy of the coated substrate above that of the secondary coating but insufficient to cause a loss or diminishment of the adhesion between any layers of coating of the coated substrate material or between the bottommost layer of the coating and the bare substrate. A secondary coating is applied to the treated substrate and at a desired thickness and cured or dried, depending upon its composition. The limited duration discharge treatment functions to improve the adhesion of the secondary coating to the coated substrate material without adversely affecting any previously applied coating layers.
    Type: Application
    Filed: January 25, 2007
    Publication date: January 10, 2008
    Inventors: Ralph Locke, Roger C. Jaussi
  • Patent number: 7279201
    Abstract: This invention relates to a method of forming a precursor for chemical vapour deposition including the steps of: (a) forming metal ions at a source, (b) introducing the ions into a reaction chamber; and (c) exposing the ions to a gas or gasses within the chamber to react with the ions to form the precursor.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: October 9, 2007
    Assignee: Aviza Europe Limited
    Inventor: John Macneil
  • Patent number: 7276266
    Abstract: Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: October 2, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Bishun N. Khare, Meyya Meyyappan
  • Patent number: 7244474
    Abstract: A chemical vapor deposition process is carried out in a reactor chamber with an ion shower grid that divides the chamber into an upper ion generation region and a lower process region, the ion shower grid having plural orifices oriented in a non-parallel direction relative to a surface plane of the ion shower grid. A workpiece is placed in the process region facing the ion shower grid, the workpiece having a workpiece surface generally facing the surface plane of the ion shower grid. A gas mixture is furnished comprising deposition precursor species into the ion generation region and the process region is evacuated at an evacuation rate sufficient to create a pressure drop across the ion shower grid from the ion generation region to the process region whereby the pressure in the ion generation region is at least several times the pressure in the process region.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: July 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Tsutomu Tanaka, Kenneth S. Collins, Amir Al-Bayati, Kartik Ramaswamy, Andrew Nguyen
  • Patent number: 7214413
    Abstract: The invention relates to a surface treatment device comprising: electrodes (24a, 24b) that are used to initiate an electric arc of stabilised plasma (14); a stabilising channel (12) which is disposed in a body (10) in order to confine the electric arc of stabilised plasma; conduits (38, 39) which are disposed in the body and used to introduce a treatment gas Q1, uniformly distributed along the arc, upstream of the arc in a direction that is essentially perpendicular to axis A of said arc in such a way as to form an activated gas curtain (8); means for introducing a complementary treatment gas Q2 downstream of the electric arc; and a support (28) that is used to hold the object or material to be treated in place and to position the object or material surface to be treated in relation to the body (10).
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: May 8, 2007
    Assignee: APIT Corp. S.A.
    Inventors: Pavel Koulik, Mikhaïl Samsonov, Zorina Evguenia
  • Patent number: 7211708
    Abstract: A chemical-reaction inducing means is provided in an exhaust line connecting a processing space for subjecting a substrate or a film to plasma processing to an exhaust means, and at least either an unreacted gas or byproduct exhausted from the processing space are caused to chemically react without allowing plasma in the processing space to reach the chemical-reaction inducing means, thereby improving the processing ability of the chemical-reaction inducing means to process the unreacted gas or byproduct.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 1, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Shishido, Shotaro Okabe, Masahiro Kanai, Yuzo Koda, Yasuyoshi Takai, Tadashi Hori, Koichiro Moriyama, Hidetoshi Tsuzuki, Hiroyuki Ozaki
  • Patent number: 7166335
    Abstract: A layer formation method is disclosed which comprises supplying gas to a discharge space, exciting the supplied gas at atmospheric pressure or at approximately atmospheric pressure by applying a high frequency electric field across the discharge space, and exposing a substrate to the excited gas, wherein the high frequency electric field is an electric field in which a first high frequency electric field and a second high frequency electric field are superposed, frequency ?2 of the second high frequency electric field is higher than frequency ?1 of the first high frequency electric field, strength V1 of the first high frequency electric field, strength V2 of the second high frequency electric field and strength IV of discharge starting electric field satisfy relationship V1?IV>V2 or V1>IV?V2, and power density of the second high frequency electric field is not less than 1 W/cm2.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: January 23, 2007
    Assignee: Konica Corporation
    Inventors: Kazuhiro Fukuda, Yasuo Morohoshi, Akira Nishiwaki, Yoshikazu Kondo, Yoshiro Toda, Kiyoshi Oishi
  • Patent number: 7074460
    Abstract: A surface treatment method in which a surface of a part (7) is contacted with at least one activated species. The activated species is obtained by activating a gaseous medium containing at least two of the following elements: carbon, nitrogen, boron and oxygen. Preferably, the activated species is a neutral excited CN species. The activated species brings at least one interstitial element to the metal part (7) surface which is borne and maintained at a temperature enabling the interstitial element to be diffused into a surface layer of the metal part (7).
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 11, 2006
    Assignee: Nitruvid
    Inventors: Laurent Poirier, Jean-Paul Lebrun, Bernard Delmas
  • Patent number: 6988463
    Abstract: An ion source is provided wherein depositing gas and/or maintenance gas is/are introduced into the ion source via the vacuum/depositing chamber, thereby reducing the amount(s) of undesirable insulative build-ups on the anode and/or cathode of the source in an area proximate the electric gap between the anode and cathode. In certain embodiments, an insulative and/or dielectric insert(s) and/or layer(s) is/are provided in at least part of an area between the anode and cathode so as to help reduce undesirable insulative build-ups on the anode and/or cathode. More efficient ion source operations is thus achievable.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: January 24, 2006
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Rudolph Hugo Petrmichl
  • Patent number: 6982071
    Abstract: Ion beam-deposited, nitrogen-doped C:H films having substantially lower resistivities than undoped ion beam-deposited C:H films and suitable for use as hard, abrasion-resistant overcoat layers for magnetic recording media, such as hard disks, are formed by supplying a mixture of hydrocarbon and nitrogen gases to an ion beam generator. Nitrogen atom content of the films is controlled to within from about 5 to about 25 at. % by appropriate selection of the ratio of hydrocarbon gas flow to nitrogen gas flow. The resultant IBD i-C:HN films exhibit a reduced tendency for charge build-up thereon during hard disk operation by virtue of their lower resistivity vis-à-vis conventional a-C:H materials.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: January 3, 2006
    Assignee: Seagate Technology LLC
    Inventors: Xiaoding Ma, Kevin J. Grannen, Jing Gui, Jeffrey A. McCann, Mark A. Shows
  • Patent number: 6936310
    Abstract: In a plasma processing method making use of a plasma processing gas of a reactant gas and an inert gas, it is aimed at enhancing an efficiency of use of high-frequency power and a reactant gas to increase a processing rate. The plasma processing method comprises supplying high frequency power to an electrode 2 opposed to a substrate 6 to thereby generate plasma between the electrode 2 and the substrate 6 on the basis of a plasma processing gas comprising a reactant gas and an inert gas to perform film formation, etching, surface treatment or the like on the substrate 6, pressure P(Torr) of the plasma processing gas being set to satisfy the following relationship 2×10?7(Torr/Hz)×f(Hz)?P(Torr)?500(Torr) where f(Hz) is a frequency of high frequency power.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: August 30, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroaki Takeuchi, Tohru Okuda
  • Patent number: 6924004
    Abstract: A particle beam deposition apparatus includes a particle source for generating a plurality of particles in suspended form, an expansion chamber, and a deposition chamber connected to the expansion chamber by an aerodynamic focusing stage, and containing a substrate. The aerodynamic focusing stage may be comprised of a plurality of aerodynamic focusing elements, or lenses. Particles, including nanoparticles, may be deposited on the substrate by generating an aerosol cloud of particles, accelerating the particles into the expansion chamber, creating a collimated beam out of the particles by passing them through the aerodynamic focusing lenses and into a deposition chamber, and impacting the particles into the substrate.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: August 2, 2005
    Assignee: Regents of the University of Minnesota
    Inventors: Nagaraja P. Rao, Joachim Heberlein, William Gerberich, Steven L. Girshick, Peter H. McMurry
  • Patent number: 6902773
    Abstract: The fabrication of an overcoat layer starts with a low energy ion beam to avoid magnetic layer implantation problems, followed by higher deposition energies where the higher energy atoms are implanted into the previously formed lower energy overcoat layer, rather than the magnetic layer. The energy gradient ion beam deposition process therefore results in a thin overcoat layer that is denser than a comparable layer formed by low energy magnetron sputtering, and which overcoat layer provides good mechanical and corrosion protection to the magnetic layer.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: June 7, 2005
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Daryl J. Pocker, Jan-Ulrich Thiele, Richard L. White, Bing K. Yen
  • Patent number: 6849306
    Abstract: A plasma treatment method for surface treatment of a substrate with an atmospheric pressure plasma treatment apparatus is disclosed. The apparatus has a first electrode and a second electrode opposed to each other, a discharge space between the opposed electrodes, a voltage application means for applying voltage across the discharge space, a gas supply means for supplying a reactive gas and an inert gas to the discharge space. The method is one wherein the reactive gas at the discharge space is excited at atmospheric pressure or at approximately atmospheric pressure by applying voltage through the voltage application means to generate discharge plasma, and a substrate is exposed to the discharge plasma to be subjected to surface treatment, and wherein the reactive gas is not directly in contact with the discharge surface of the first electrode or the second electrode.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: February 1, 2005
    Assignee: Konica Corporation
    Inventors: Kazuhiro Fukuda, Yoshikazu Kondo, Yoshiro Toda, Kiyoshi Oishi, Akira Nishiwaki, Wataru Mizuno, Koji Fukazawa
  • Patent number: 6841201
    Abstract: An apparatus and method that generates plasma using a microwave radiation supply. The plasma is used to treat a surface of a workpiece at approximately atmospheric pressure. Plasma excites a working gas to create an excited gaseous species without degradation from undue heat caused by the plasma. The gaseous species exit an outlet of the apparatus to treat the surface of a workpiece when the outlet is juxtaposed with the workpiece.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 11, 2005
    Assignee: The Procter & Gamble Company
    Inventors: Vesselin Nikolov Shanov, Saswati Datta, Seved Farhad Miralai, John Andrew McDaniel
  • Patent number: 6838125
    Abstract: A method for depositing a film on a substrate is provided. In one aspect, the method includes providing a metal-containing precursor to an activation zone, and activating the metal-containing precursor to form an activated precursor. The activated precursor gas is transported to a reaction chamber, and a film is deposited on the substrate using a cyclical deposition process, wherein the activated precursor gas and a reducing gas are alternately adsorbed on the substrate. Also provided is a method of depositing a film on a substrate using an activated reducing gas.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Ling Chen, Vincent W. Ku
  • Patent number: 6818259
    Abstract: Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: November 16, 2004
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Steven L. Koontz
  • Patent number: 6800336
    Abstract: A method for coating surfaces, for which a precursor material is caused to react with the help of plasma and the reaction product is deposited on a surface, the reaction as well as the deposition taking place at atmospheric pressure, such that a plasma jet is generated by passing a working gas through an excitation zone and the precursor material is supplied with a lance separately from the working gas to the plasma jet.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: October 5, 2004
    Inventors: Peter Förnsel, Christian Buske, Uwe Hartmann, Alfred Baalmann, Guido Ellinghorst, Klaus D Vissing
  • Patent number: 6797339
    Abstract: A method of forming a thin film on the surface of a substrate such as silicon, in which a gas cluster (which is a massive atomic or molecular group of a reactive substance taking the gaseous form at room temperature under atmospheric pressure) is formed and then ionized, and the cluster ions are then irradiated onto a substrate surface under an acceleration voltage to cause a reaction. It is possible to form a high quality ultra-thin film having a very smooth interface, without causing any damage to the substrate, even at room temperature.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 28, 2004
    Assignees: Research Development Corporation of Japan, Sanyo Electric Co., Ltd.
    Inventors: Makoto Akizuki, Mitsuaki Harada, Atsumasa Doi, Isao Yamada
  • Patent number: 6797336
    Abstract: The present invention is a method and apparatus for the synthesis of multi-component substances, comprising entities of at least two elements, molecules, grains, crystals, structural units, or phases of matter, in which the scale of the distribution of the elements, molecules, or phases of matter may range from on the order of nanometers or less, to about one millimeter, depending upon the specific materials and process conditions that are chosen. The method and apparatus of the present invention further provides processes for preparing these compositions of matter as thin films or particles.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 28, 2004
    Assignee: AMBP Tech Corporation
    Inventors: James F. Garvey, Gary S. Tompa, Stuart G. MacDonald, Robert L. DeLeon
  • Patent number: 6787199
    Abstract: This invention provides a composite device whereby surface reflection and interference colors can be inhibited, photocatalytic decomposition performance may be improved and hydrophilicity-acquiring rate may be improved. A mixture film (14) is deposited on the surface of a base (12). The mixture film (14) is a colorless and transparent mixture film with a high light transmittance made of a mixture of boron oxide and photocatalytic titanium oxide.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: September 7, 2004
    Assignee: Murakami Corporation
    Inventors: Masakazu Anpo, Masato Takeuchi, Satoru Dohshi, Norihiko Kuzuya
  • Patent number: 6770332
    Abstract: In a case where a CF film is used as an interlayer dielectric file for a semiconductor device, when a wiring of tungsten is formed, the CF film is heated to a temperature of, e g., about 400 to 450° C. At this time, F containing gases are emitted from the CF film, so that there are various disadvantages due to the corrosion of the wiring and the decrease of film thickness. In order to prevent this, it is required to enhance thermostability. A compound gas of C and F, e.g., C4F8 gas, a hydrocarbon gas, e.g., C2H4 gas, and CO gas are used as thin film deposition gases. These gases are activated to deposit a CF film on a semiconductor wafer 10 at a process temperature of 400° C. using active species thereof. Since the number of diamond-like bonds are greater than the number of graphite-like bonds by the addition of CO gas, the bonds are strengthened and difficult to be cut even at a high temperature, so that thermostability is enhanced.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: August 3, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Risa Nakase, Takeshi Aoki, Akira Suzuki, Yoshihiro Kato
  • Publication number: 20040121084
    Abstract: A method for making a piezoelectric element including a piezoelectric film formed on a substrate by a gas deposition technique includes the steps of ejecting ultra-fine particles of a piezoelectric material having a perovskite structure from an ejecting device toward the substrate, and applying an electric field to the ultra-fine particles traveling to the substrate. The substrate may be composed of a metal or a resin.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 24, 2004
    Inventor: Koji Kitani
  • Patent number: 6726963
    Abstract: A fuel cell and methods of producing same are provided. The fuel cell includes a fuel electrode, an oxygen electrode and a proton conductor material disposed there between. The fuel cell can be produced by producing an arc discharge across a pair of electrodes composed of carbon to form a carbonaceous material which can be deposited onto a proton conductor material to form at least one of the fuel and oxygen electrode thereon.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: April 27, 2004
    Assignee: Sony Corporation
    Inventor: Kiyoshi Yamaura
  • Publication number: 20040045636
    Abstract: A surface treatment method in which a surface of a part (7) is contacted with at least one activated species. The activated species is obtained by activating a gaseous medium containing at least two of the following elements: carbon, nitrogen, boron and oxygen. Preferably, the activated species is a neutral excited CN species. The activated species brings at least one interstitial element to the metal part (7) surface which is borne and maintained at a temperature enabling the interstitial element to be diffused into a surface layer of the metal part (7).
    Type: Application
    Filed: February 21, 2003
    Publication date: March 11, 2004
    Inventors: Laurent Poirier, Jean-Paul Lebrun, Bernard Delmas
  • Patent number: 6703081
    Abstract: Vacuum treatment installation with a vacuum treatment chamber containing a plasma discharge configuration as well as a gas supply configuration. The plasma discharge configuration has at least two plasma beam discharge configurations with substantially parallel discharge axes and a deposition configuration is positioned along a surface which extends at predetermined distances from the beam axes and along a substantial section of the longitudinal extent of the discharge beam.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: March 9, 2004
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Johann Karner, Mauro Pedrazzini
  • Patent number: 6689425
    Abstract: Ion beam-deposited, nitrogen-doped C:H films having substantially lower resistivities than undoped ion beam-deposited C:H films and suitable for use as hard, abrasion-resistant overcoat layers for magnetic recording media, such as hard disks, are formed by supplying a mixture of hydrocarbon and nitrogen gases to an ion beam generator. Nitrogen atom content of the films is controlled to within from about 5 to about 25 at. % by appropriate selection of the ratio of hydrocarbon gas flow to nitrogen gas flow. The resultant IBD i-C:HN films exhibit a reduced tendency for charge build-up thereon during hard disk operation by virtue of their lower resistivity vis-à-vis conventional a-C:H materials.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: February 10, 2004
    Assignee: SeagateTechnology LLC
    Inventors: Xiaoding Ma, Kevin J. Grannen, Jing Gui, Jeffrey A. McCann, Mark A. Shows
  • Patent number: 6673722
    Abstract: An improved chemical vapor deposition or etching is shown in which cyclotron resonance and photo or plasma CVD cooperate to deposit a layer with high performance at a high deposition speed. The high deposition speed is attributed to the cyclotron resonance while the high performance is attributed to the CVDs.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: January 6, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6673386
    Abstract: A method for forming a pattern on a surface of a panel substrate, includes electrically charging pattern-forming material particles, jetting out the electrically charged pattern-forming material particles through a nozzle by applying electrostatic force to the pattern-forming material particles to form a pattern, and fixing the pattern onto the panel substrate.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daido Komyoji, Naoko Matsuda, Akira Fukano, Katsutoshi Ogawa, Akira Kumon, Hiroyuki Naka
  • Patent number: 6673392
    Abstract: A method of vertically aligning pure carbon nanotubes on a large glass or silicon substrate at a low temperature using a low pressure DC thermal chemical vapor deposition method is provided. In this method, catalytic decomposition with respect to hydro-carbon gases is performed in two steps. Basically, an existing thermal chemical vapor deposition method using hydro-carbon gases such as acetylene, ethylene, methane or propane is used. To be more specific, the hydro-carbon gases are primarily decomposed at a low temperature of 400-500° C. by passing the hydro-carbon gases through a mesh-structure catalyst which is made of Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of two or more of these materials.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 6, 2004
    Assignees: Samsung SDi Co., Ltd., Young-hee Lee
    Inventors: Young-hee Lee, Nae-sung Lee, Jong-min Kim
  • Patent number: 6656537
    Abstract: A method for plasma enhanced chemical vapor deposition of low vapor monomeric materials. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor on a substrate as a cryocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: December 2, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Eric Mast, Michael G. Hall
  • Patent number: 6649222
    Abstract: A method for treating substrates including the steps of: providing a substrate; exposing said substrate to a plasma glow discharge in the presence of a fluorocarbon gas; maintaining said gas at a pressure between about 50 mTorr and about 400 mTorr; generating said plasma as a modulated glow discharge; pulsing said discharge at an on time of 1-500 milliseconds; pulsing said glow at an off time of 1-1000 milliseconds; maintaining said plasma glow discharge at a power density of 0.02-10 watts/cm2; and applying a hydrophobic coating to said substrate.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: November 18, 2003
    Assignee: The Procter & Gamble Company
    Inventors: Riccardo D'Agostino, Italo Corzani, Pietro Favia, Ritalba Lamendola, Gianfranco Palumbo
  • Patent number: 6632483
    Abstract: The present invention includes a method of forming an aligned film on a substrate. The film is deposited and aligned in a single step by a method comprising the step of bombarding a substrate with an ion beam at a designated incident angle to simultaneously (a) deposit the film onto the substrate and (b) arrange an atomic structure of the film in at least one predetermined aligned direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: October 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Alessandro Cesare Callegari, Praveen Chaudhari, James Patrick Doyle, Eileen Ann Galligan, Yoshimine Kato, James Andrew Lacey, Shui-Chih Alan Lien, Minhua Lu, Hiroki Nakano, Shuichi Odahara
  • Patent number: 6627267
    Abstract: A method for plasma enhanced chemical vapor deposition of low vapor pressure monomeric materials. The method includes making an evaporate by receiving a plurality of monomeric particles of the low vapor pressure monomeric materials as a spray into a flash evaporation housing, evaporating the spray on an evaporation surface, and discharging the evaporate through an evaporation outlet; making a monomer plasma from the evaporate by passing the evaporate proximate a glow discharge electrode; and cryocondensing the monomer plasma onto the substrate as a cryocondensed monomer. The invention also involves a method for making self-curing polymer layers in a vacuum chamber.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: September 30, 2003
    Assignee: Battelle Memorial Institute
    Inventor: John D. Affinito
  • Patent number: 6616986
    Abstract: The present invention provides for sequential chemical vapor deposition by employing a reactor operated at low pressure, a pump to remove excess reactants, and a line to introduce gas into the reactor through a valve. A first reactant forms a monolayer on the part to be coated, while the second reactant passes through a radical generator which partially decomposes or activates the second reactant into a gaseous radical before it impinges on the monolayer. This second reactant does not necessarily form a monolayer but is available to react with the monolayer. A pump removes the excess second reactant and reaction products completing the process cycle. The process cycle can be repeated to grow the desired thickness of film.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 9, 2003
    Assignee: ASM America Inc.
    Inventor: Arthur Sherman
  • Patent number: 6616985
    Abstract: An apparatus and method for injecting gas within a plasma reactor and tailoring the distribution of an active species generated by the remote plasma source over the substrate or wafer. The distribution may be uniform, wafer-edge concentrated, or wafer-center concentrated. A contoured plate or profiler modifies the distribution. The profiler is an axially symmetric plate, having a narrow top end and a wider bottom end, shaped to redistribute the gas flow incident upon it. The method for tailoring the distribution of the active species over the substrate includes predetermining the profiler diameter and adjusting the profiler height over the substrate.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 9, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Ronald Allan Powell, Gabriel I. Font-Rodriguez, Simon Selitser, Emerson Derryck Settles
  • Patent number: 6613395
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: September 2, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Patent number: 6610350
    Abstract: A method of modifying a surface of an ophthalmic lens, includes the steps of: generating plasma at an atmospheric pressure between electrodes of a plasma generating device; and blowing the plasma from the plasma generating device by introducing a gas between the electrodes. The ophthalmic lens, which is located outside the plasma generating device, is irradiated with the plasma blown out from the plasma generating device to modify the surface of the ophthalmic lens to form a final ophthalmic lens product.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: August 26, 2003
    Assignee: Menicon Co., Ltd.
    Inventors: Hiroaki Suzuki, Yuuji Gotou, Kazuhiko Nakada