Metal, Metal Alloy, Or Metal Oxide Containing Coating Material Patents (Class 427/564)
  • Patent number: 6426125
    Abstract: According to an exemplary embodiment of the invention, a method of forming a plurality of layers on an article comprises steps of generating a plasma by forming an arc between a cathode and an anode; injecting a first material comprising an organic compound into the plasma to deposit a first layer on the article; injecting a second material comprising an organometallic material into the plasma to form a second layer on the first layer; and injecting a third material comprising a silicon containing organic compound into the plasma to deposit a third layer on the second layer. The invention also relates to an article of manufacture comprising a substrate; an interlayer disposed on the substrate; a second layer disposed on the interlayer, the second layer comprising an inorganic ultraviolet absorbing material; and a third layer disposed on the second layer, the third layer comprising an abrasion resistant material.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: July 30, 2002
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Charles Dominic Iacovangelo
  • Patent number: 6379748
    Abstract: Tantalum and titanium source reagents are described, including tantalum amide and tantalum silicon nitride precursors for the deposition of tantalum nitride material on a substrate by processes such as chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing. The precursors may be employed to form diffusion barrier layers on microelectronic device structures enabling the use of copper metallization and ferroelectric thin films in device construction.
    Type: Grant
    Filed: January 17, 2000
    Date of Patent: April 30, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gautam Bhandari, Thomas H. Baum
  • Patent number: 6365016
    Abstract: A method and apparatus for depositing a coating on a substrate. A method of coating a substrate comprises evaporating a first reactant; introducing the evaporated reactant into a plasma; and depositing the first reactant on a surface of the substrate. This method may be used to deposit an electrically conductive, ultraviolet filter coating at high rate on a glass or polycarbonate substrate, for example. An apparatus for depositing a UV filter coating on a polymeric substrate comprises a plasma generator having an anode and a cathode to form a plasma, and a first inlet for introducing a first reactant into the plasma, the first reactant comprising an evaporated material that is deposited on the substrate by the plasma. Optionally, a nozzle can be utilized to provide a controlled delivery of the first reactant into the plasma.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 2, 2002
    Assignee: General Electric Company
    Inventors: Charles Dominic Iacovangelo, Keith Milton Borst, Elihu Calvin Jerabek, Patrick Peter Marzano, Barry Lee-Mean Yang
  • Patent number: 6350494
    Abstract: A solder jet apparatus is disclosed The solder jet apparatus is a continuous mode solder jet that includes a blanking system and raster scan system. The use of the raster scan and blanking systems allows for a continuous stream of solder to be placed anywhere on the surface in any desired X-Y plane. This allows for greater accuracy as well as greater product throughput. Additionally, with the raster scan system, repairs to existing soldered surfaces can be quickly and easily performed using a map of the defects for directing the solder to the defects.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: February 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Patent number: 6342277
    Abstract: The present invention provides for sequential chemical vapor deposition by employing a reactor operated at low pressure, a pump to remove excess reactants, and a line to introduce gas into the reactor through a valve. A first reactant forms a monolayer on the part to be coated, while the second reactant passes through a radical generator which partially decomposes or activates the second reactant into a gaseous radical before it impinges on the monolayer. This second reactant does not necessarily form a monolayer but is available to react with the monolayer. A pump removes the excess second reactant and reaction products completing the process cycle. The process cycle can be repeated to grow the desired thickness of film.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: January 29, 2002
    Assignee: Licensee for Microelectronics: ASM America, Inc.
    Inventor: Arthur Sherman
  • Patent number: 6306467
    Abstract: A method of solid free form fabrication of an object includes the steps of providing a substrate, forming a plurality of molten droplets, and spraying the molten droplets upward against the substrate to form a net shape object.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: October 23, 2001
    Assignee: Ford Global Technologies, Inc.
    Inventors: Dawn Roberta White, Daniel Edward Wilkosz, Sankaran Subramaniam
  • Patent number: 6291028
    Abstract: A method and apparatus for depositing a layer having improved film quality at an interface. The method includes the steps of introducing an inert gas into a processing chamber and forming a plasma from the inert gas by applying RF power to the chamber at a selected rate of increase. After RF power has reached full power, a process gas including a reactant gas is introduced to deposit the layer. In a preferred embodiment, the reactant gas is tetraethoxysilane. In another preferred embodiment, the process gas further includes fluorine.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 18, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Anand Gupta, Virendra V. S. Rana, Amrita Verma, Mohan K. Bhan, Sudhakar Subrahmanyam
  • Patent number: 6277436
    Abstract: A liquid delivery MOCVD method for deposition of dielectric materials such as (Ba,Sr) titanates and (Zr,Sn) titanates, in which metal source compounds are dissolved or suspended in solvent and flash vaporized at temperatures of from about 100° C. to about 300° C. and carried via a carrier gas such as argon, nitrogen, helium, ammonia or the like, into a chemical vapor deposition reactor wherein the precursor vapor is mixed with an oxidizing co-reactant gas such as oxygen, ozone, N2O, etc., to deposit the high dielectric metal oxide film on the substrate at a temperature of from about 400° C. to about 1200° C. at a chemical vapor deposition chamber pressure of from about 0.1 torr to about 760 torr. Such process may for example be employed to form a (Ba,Sr) titanate dielectric material wherein at least 60 atomic % of the total metal content of the oxide is titanium.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: August 21, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gregory T. Stauf, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20010014405
    Abstract: A discharge electrode comprising a material having solid lubricant effect, such as molybdenum, is used to generate discharge in a pulse form between the discharge electrode and a workpiece, the surface of which is to be treated, in working liquid containing carbon components, such as water. Material consumed or melted from the discharge electrode, generated because of the electric discharge energy based on the pulse form discharge, gets adhered to and deposited onto a surface of the workpiece thereby forming a coat having lubricant effect on the surface of the workpiece.
    Type: Application
    Filed: March 30, 2001
    Publication date: August 16, 2001
    Inventors: Takashi Yuzawa, Akihiro Goto, Toshio Moro
  • Publication number: 20010006147
    Abstract: A method for treating a silicon substrate is described. The silicon substrate is placed into a sputtering equipment. A sputtering step is performed to simultaneously dry clean and amorphize the silicon substrate surface by using the sputtering equipment. A titanium film is deposited on the silicon substrate by the sputtering equipment.
    Type: Application
    Filed: February 6, 2001
    Publication date: July 5, 2001
    Inventor: Su-Chen Fan
  • Patent number: 6254940
    Abstract: The present invention related to methods of manufacturing oxide, nitride, carbide, and boride powders and other ceramic, organic, metallic, carbon and alloy powders and films and their mixtures having well-controlled size and crystallinity characteristics. This invention relates, more particularly, to a development in the synthesis of the ceramic, metallic, composite, carbon and alloy nanometer-sized particles with precisely controlled specific surface area, or primary particle size, crystallinity and composition. The product made using the process of the present invention and the use of that product are also claimed herein.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: July 3, 2001
    Assignee: University of Cincinnati
    Inventors: Sotiris E. Pratsinis, Srinivas Vemury
  • Patent number: 6245394
    Abstract: An auxiliary anode (30) having a ring-shaped permanent magnet (31) is placed in a vacuum chamber (11) such that the auxiliary anode is coaxial with a central axis of a hearth (20) and is positioned so as to surround an upper area of the hearth. A plasma beam generated by a plasma beam generator (13) using arc discharge is guided into the hearth. Magnesium (Mg) is used as a vaporization material on the hearth. Gas mixed with oxygen is supplied into the vacuum chamber. As a result, magnesium oxide particles sublimated from the hearth react with oxygen plasma generated by the plasma to form a magnesium oxide (MgO) film on a substrate (40).
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: June 12, 2001
    Assignee: Sumitomo Heavy Industries, Inc.
    Inventors: Toshiyuki Sakemi, Masaru Tanaka
  • Patent number: 6180185
    Abstract: An apparatus for forming a film on a substrate includes a gas inlet and an insert attached to the gas inlet, the insert including a deposition source material such as lithium. To form the film on the substrate, the substrate is mounted in a vacuum chamber. After the vacuum chamber is pumped down to a subatmospheric pressure, a first process gas such as argon is provided through the gas inlet and insert and into a plasma region proximate the substrate. Power is then coupled to generate a plasma inside of the insert which heats the insert and causes the deposition source material to vaporize. The deposition source material vapor is mixed with a plasma polymerizable material in the plasma region proximate the substrate causing a plasma enhanced chemical vapor deposition (PECVD) thin film such as silicon oxide including the deposition source material (e.g. lithium) to be deposited on the substrate.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: January 30, 2001
    Inventor: John T. Felts
  • Patent number: 6177142
    Abstract: An apparatus for forming a film on a substrate includes a gas inlet and an insert attached to the gas inlet, the insert including a deposition source material such as lithium. To form the film on the substrate, the substrate is mounted in a vacuum chamber. After the vacuum chamber is pumped down to a subatmospheric pressure, a first process gas such as argon is provided through the gas inlet and insert and into a plasma region proximate the substrate. Power is then coupled to generate a plasma inside of the insert which heats the insert and causes the deposition source material to vaporize. The deposition source material vapor is mixed with a plasma polymerizable material in the plasma region proximate the substrate causing a plasma enhanced chemical vapor deposition (PECVD) thin film such as silicon oxide including the deposition source material (e.g. lithium) to be deposited on the substrate.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: January 23, 2001
    Inventor: John T. Felts
  • Patent number: 6143142
    Abstract: The invention describes composite coatings, in particular comprising carbon and another metallic element such as silicon or aluminium. These coatings have improved properties compared with pure tetrahedral amorphous carbon coatings, in that they have reduced stress levels and can be deposited at higher thicknesses, whilst retaining acceptable hardness and other useful mechanical properties. Also described are methods of making composite coatings, materials for making the coatings and substrates coated therewith. Specifically, a method of applying a coating to a substrate using a cathode arc source, comprises generating an arc between a cathode target and an anode of the source and depositing positive target ions on the substrate to form the coating, wherein the coating is a composite of at least first and second elements and the target comprises said at least first and second elements.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: November 7, 2000
    Assignee: Nanyang Technological University
    Inventors: Xu Shi, Hong Siang Tan, Beng Kang Tay
  • Patent number: 6132812
    Abstract: The invention pertains to a method for the production of an anode for X-ray tubes, and the invention also pertains to the resulting anode. In the invention, a coating that emits X-ray radiation is applied by inductive vacuum plasma spraying onto the base element. Using this method, an improved fatigue crack resistance and a reduced roughening of the coating on the anode is achieved.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: October 17, 2000
    Assignee: Schwarzkopf Technologies Corp.
    Inventors: Peter Rodhammer, Dietmar Sprenger
  • Patent number: 6071595
    Abstract: The present invention is directed to a method and apparatus for producing a highly-textured surface on a copper substrate with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.
    Type: Grant
    Filed: January 24, 1996
    Date of Patent: June 6, 2000
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Kenneth A. Jensen, Arthur N. Curren, Robert F. Roman
  • Patent number: 6059937
    Abstract: The present invention relates to a sensor for detecting hydrocarbon type gas such as methane gas and propane gas, and process for manufacturing thereof. SiO.sub.2 was deposited in 1 .mu.m by ion beam sputtering with a mixed gas (3:2) of argon and oxygen on a silicon wafer in the process. In case of a propane sensor, platinum electrode is deposited in 600 .ANG. by ion beam sputtering on a tin oxide thin film synthesized by ionized beam of which the oxygen ion energy is 0 to 500 eV by using poly alumina. In case of a methane sensor, heat treatment at 500.degree. C. was performed for 1 hour in the air in order for the thin film to be stable at high operation temperature, while heat treatment was not performed in case of propane sensor. The sensor was manufactured by adding platinum or palladium thereto by argon ion beam sputtering. The thin film type tin oxide sensor according to the present invention exhibited an excellent selectivity of 47.4% even at low temperature of 150.degree. C.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: May 9, 2000
    Assignee: Korea Gas Corporation
    Inventors: Seok Keun Koh, Hyung Jin Jung, Seok Kyun Song, Won Kook Choi, Dongsoo Choi, Jin Seok Jeon
  • Patent number: 6007878
    Abstract: A process for producing an optical recording medium is disclosed which has a substrate and a recording film and an inorganic dielectric film, which are superposed on said substrate. The inorganic dielectric film is formed using a plasma processing device including a microwave guide means provided with an endless ring waveguide.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: December 28, 1999
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kunio Takada, Nobumasa Suzuki, Toshimori Miyakoshi
  • Patent number: 5989990
    Abstract: The present invention relates to tinoxide thin film, a process for manufacturing thereof comprising the step of depositing tin while providing oxygen or ionized oxygen around a substrate, and relates to a gas detecting sensor prepared by the use of such tinoxide thin film.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: November 23, 1999
    Assignee: Korea Gas Corporation
    Inventors: Seok Keun Koh, Hyung Jin Jung, Seok Kyun Song, Won Kook Choi, Dongsoo Choi, Jin Seok Jeon
  • Patent number: 5952059
    Abstract: A method is provided for forming a piezoelectric layer with improved texture. In the method, a metallic material is evaporated. A noble gas is combined with a reactant gas. An atomic reactant gas flow is generated from the combined gas using a plasma source. The atomic reactant gas flow is introduced to the evaporated metallic material in the presence of a substrate under molecular flow pressure conditions to form a piezoelectric layer with improved texture on the surface of the substrate.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: September 14, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Edward A. Beam, III, Andrew J. Purdes
  • Patent number: 5906861
    Abstract: A borophosphosilicate glass is deposited on a substrate (50) by heating the substrate (50), and contacting the substrate with a mixture of the gases tetramethylcyclotetrasiloxane, trimethylborate, trimethylphosphite, and oxygen, without the presence of a carrier gas. The first three of the gases are produced from liquid sources by controlled vaporization and flow. The gases react at the heated substrate (50) to deposit the glass upon the substrate. In a reactor (52) for depositing the glass, the tetramethylcyclotetrasiloxane and trimethylborate are introduced at a gas inlet location (79), and the trimethylphosphite and oxygen are heated and introduced at another gas inlet location (90). The tetramethylcyclotetrasiloxane and trimethylborate mixture flows toward the location where the trimethylphosphite and oxygen are introduced, and whereat the gases are mixed. This gaseous mixture flows past the heated substrate (50) to deposit the glass thereon.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: May 25, 1999
    Assignee: Raytheon Company
    Inventors: Brian Mack, Warren Mc Arthur
  • Patent number: 5891531
    Abstract: A process for producing a thin film of a fluoride comprising reacting a gaseous fluorinating agent and gas of a volatile organometallic compound in a gas phase in a reactor, wherein a plasma of the gaseous fluorinating agent obtained by activating the gaseous fluorinating agent by microwave under a condition of electron cyclotron resonance is used as a fluorine source, and the fluoride is deposited on a substrate by reacting the plasma of the gaseous fluorinating agent with the gas of a volatile organometallic compound at outside of an area of generation of the plasma. A thin film of a fluoride which contains very little impurities such as carbon, oxygen, and organic substances, and is highly pure, transparent, and consolidated is produced.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: April 6, 1999
    Assignee: Yamamura Glass Co., Ltd.
    Inventors: Akio Konishi, Ryohei Terai, Yoji Kawamoto
  • Patent number: 5858476
    Abstract: Apparatus and methods for treatment of materials by producing gaseous product material in the form of high purity molecules including metal oxides, metal carbides, etc., using catalytic and non-catalytic processes, and stoichiometrically depositing the gaseous product material on articles, substrates or base materials in the fields of semi-conductors, superconductors, thin optical films, wear and corrosion and the like. The deposition of high purity gas phase material produced by the disclosed methods are useful in forming common refractory layers, films, and bodies such as ferroelectric, superconducting and semiconductor materials, to name a few. Catalytic reaction for the formation and desorption of the molecules, etc., may be monitored by the use of work function measurements. Such measurements also provide a basis for detecting the presence of impurities, gasification of the surface catalyst, and conditions which favor maximum gas phase molecular formation.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 12, 1999
    Inventor: Harold E. Siess
  • Patent number: 5849370
    Abstract: A method for creating a dielectric coating on a substrate produces near bulk density metal oxide coatings with extremely low surface roughness, microstructure and low defect density. The coatings have a low scatter of less than 50 ppm, low loss of less than 100 ppm, and an environmental stability of 0.1 or less spectral shift. A high vacuum chamber is provided which includes a substrate carrier device, an electron beam gun, a substrate, an evaporant source of coating material, a plasma bridge neutralizer and an ion gun. Coating material is evaporated with the electron beam gun to form a coating material evaporant that is directed to the substrate. An ion gun is directed toward the substrate and produces ions that arrive substantially simultaneously with the coating material evaporant at the substrate. The ions provide a momentum assist to the coating material. The result is a formation of a desirable dielectric thin film of coating material on the substrate.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: December 15, 1998
    Assignee: Spectra-Physics Lasers, Inc.
    Inventors: Hakchu Lee, Ronald Kubota, Larry Basegio, Marc Kevin von Gunten
  • Patent number: 5830540
    Abstract: A method and apparatus for reactive plasma surfacing includes at least two electrodes between which reactive gases are passed. The reactive gases are ionized by the arc between the electrodes, creating a plasma of heated, ionized, reactive gases. The plasma is then applied to a surface to be treated, causing a chemical reaction between the plasma and the surface and resulting in a new diffusional substrate surface on the treated object. The process occurs at substantially atmospheric pressure, and may include an inert gas to shield the process from the surrounding environment.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: November 3, 1998
    Assignee: Eltron Research, Inc.
    Inventor: Jim Bowers
  • Patent number: 5804258
    Abstract: In a process for coating a substrate surface with a layer of inorganic material, the inorganic material is vaporised in a vacuum chamber evacuated to at least 10.sup.-3 mbar by bombarding with an electron beam from a high voltage electron-beam gun and deposited on the substrate surface. Gas discharging is created between the point of incidence (A) of the electron beam on the inorganic material to be vaporised and an anode such that the electrostatic charge created by the high voltage electron-beam gun flows off via the anode. This way damage to the substrate, which may arise as a result discharging phenomena, can be effectively avoided.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: September 8, 1998
    Assignee: Alusuisse Technology & Management Ltd.
    Inventors: Wolfgang Lohwasser, Andre Wisard
  • Patent number: 5597064
    Abstract: The present invention provides inexpensive electric contact materials having higher hardness and higher melting point and being more excellent in the points of wear resistance and environmental resistance over the electric contact materials of Ag type, Au type, platinum group type, etc. having been used so far, production methods thereof and electric contacts used said contact materials.In the electric contact materials of the invention, basically, a covering layer having at least one selected from transition metals of groups IVa (Ti, Zr, Hf, etc.), Va (V, Nb, Ta, etc.) and VIa (Cr, Mo, W, etc.) as a major ingredient is formed on the substrate as an electric contact in a thickness of 0.03 to 100 .mu.m, and, if need be, a fixed intermediate layer is formed between said covering layer of electric contact and substrate or a fixed surface layer is formed on the outside of covering layer of electric contact, thus aiming at further improvement in the characteristics of contact.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: January 28, 1997
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masanori Ozaki, Keiji Mashimo
  • Patent number: 5565247
    Abstract: A process for forming a functional deposited film by way of RF plasma CVD process, comprising generating plasma in a substantially enclosed plasma generation chamber provided with an electrode arranged at the periphery of said plasma generation chamber by applying a RF power through said electrode into said plasma generation chamber, and forming said functional deposited film on a substrate placed in a deposition chamber communicated with said plasma generation chamber, wherein said substrate is arranged so as to isolate from a zone where said plasma is generated, characterized by comprising causing a magnetic field in said plasma generation chamber by means of a magnetic field generation means such that a magnetic flux density with a maximum intensity in the range of from 500 to 1000 Gauss is provided on the inner wall face side of and in parallel to the inner wall face of said plasma generation chamber; supplying a plasma generating raw material gas to a zone where said magnetic field resides; applying a RF
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: October 15, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobumasa Suzuki
  • Patent number: 5534311
    Abstract: Structures having a controlled three-dimensional geometry are deposited by lectrostatically focused deposition using charged particle beam and gaseous precursors, or polarizable precursors with or without a charged particle beam. At least one apertured electrode is electrically biased with respect to the substrate surface. The resulting electrostatic field and field gradient focuses the charged particle beam or polarizable gaseous precursor molecules, and controls the three-dimensional geometry of the deposited structure. By this method, an array including many deposited structures may be simultaneously deposited on a single substrate. Thus, the disclosed method provides a fact and simple way of fabricating one or more arrays of three-dimensional structures. The method is particularly useful in the fabrication of arrays of sharp-tipped, cone-shaped conductive structures, such as field emitter tips and contacts.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: July 9, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jonathan L. Shaw, Henry F. Gray
  • Patent number: 5516588
    Abstract: A composite body, especially for use as a cutting tool, for the lining of combustion chambers or for movable parts intended to have low wear which has a substrate of hard metal, steel, cermet or nickel or cobalt alloy. The substrate is provided with at least one fine-crystalline alpha-Al.sub.2 O.sub.3 layer deposited by plasma activated CVD at 400.degree. to 750.degree. C. With plasma activation by pulsed direct voltage with the substrate connected as the cathode.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: May 14, 1996
    Assignee: Widia GmbH
    Inventors: Hendrikus van den Berg, Ralf Tabersky, Udo Konig, Norbert Reiter
  • Patent number: 5453305
    Abstract: A plasma reactor and method for forming a dense plasma from a gas is described incorporating a housing, a gas inlet to the housing, a pump for evacuating the housing, a magnetic coil to generate a magnetic field in the housing, a radio frequency power supply, an electrode or induction coil in the housing, a microwave power supply. The invention overcomes the problem of an upper plasma density limit independent of increases in microwave power.
    Type: Grant
    Filed: September 2, 1993
    Date of Patent: September 26, 1995
    Assignee: International Business Machines Corporation
    Inventor: Young H. Lee
  • Patent number: 5441774
    Abstract: In process for forming a coating of phosphor particles on a fluorescent lamp glass, a polymer is deposited on the phosphor particles and the phosphor particles are entrained in a carrier gas with the polymer in a non-adhering state, and then the phosphor particles are coated on the fluorescent lamp glass with the polymer in an adhering state for retaining the phosphor particles on the fluorescent glass and, the coated fluorescent glass is heated to a temperature above the decomposition temperature of the polymer for removing the polymer and to form a coating of phosphor particles on a fluorescent lamp glass.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: August 15, 1995
    Assignee: Osram Sylvania Inc.
    Inventors: Arunava Dutta, Leonard V. Dullea
  • Patent number: 5415756
    Abstract: A process for depositing a compound of a metal and a reactive gas includes heating a metal target (32), in an evacuated chamber (22) to a predetermined reaction temperature. The reaction temperature is above a critical temperature which is higher than about half the melting point of the metal but below the vaporization temperature of the metal target. At this reaction temperature, the metal target reacts with the reactive gas to produce, in gaseous form, the compound or a sub-compound of the metal and the reactive gas. The gaseous compound or sub-compound is reacted with the reactive gas on a substrate (36) to form a solid layer of the compound on the substrate.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: May 16, 1995
    Assignee: University of Houston
    Inventors: John C. Wolfe, Wong S. Ho, Darian L. Licon, Yat-Lung Chau
  • Patent number: 5350607
    Abstract: Sapphire, a highly stable oxide of aluminum having the chemical formula of Al.sub.2 O.sub.3, is placed in a crucible. The crucible is heated to vaporize the sapphire therein. The sapphire vapor is ejected through a nozzle in the crucible and into a region having a vacuum pressure of approximately 10.sup.-5 Torr or less. As the vapor leaves the crucible through the nozzle, atom aggregates or clusters are formed through a supercooled phenomenon due to adiabatic expansion. The vacuum region has disposed therein a substrate comprised of one of various materials, including metals, oxides or silicon. The sapphire vapor is accelerated towards the substrate where it deposits on a surface of the substrate in a uniformly distributed thin layer.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: September 27, 1994
    Assignee: United Technologies Corporation
    Inventors: Scott M. Tyson, Richard Y. Kwor, Leonard L. Levenson
  • Patent number: 5350606
    Abstract: A ferroelectric thin film consisting of a single crystal of BaTiO.sub.3 which has a perovskite structure is produced by a method comprising evaporating Ba and Ti in an atomic ratio of 1:1 from discrete evaporation sources of Ba and Ti to deposit them on a substrate in a vacuum deposition vessel while supplying a small amount of an oxygen gas to the reactor.
    Type: Grant
    Filed: June 9, 1993
    Date of Patent: September 27, 1994
    Assignees: Kanegafuchi Chemical Industry Co., Ltd., Nippon Steel Corporation, NEC Corporation, Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Toshio Takada, Takahito Terashima, Kenji Iijima, Kazunuki Yamamoto, Kazuto Hirata, Yoshichika Bando
  • Patent number: 5314723
    Abstract: In process for forming a coating of phosphor particles on a fluorescent lamp glass, a polymer is deposited on the phosphor particles and the phosphor particles are entrained in a carrier gas with the polymer in a non-adhering state, and then the phosphor particles are coated on the fluorescent lamp glass with the polymer in an adhering state for retaining the phosphor particles on the fluorescent glass and, the coated fluorescent glass is heated to a temperature above the decomposition temperature of the polymer for removing the polymer and to form a coating of phosphor particles on a fluorescent lamp glass.
    Type: Grant
    Filed: June 9, 1992
    Date of Patent: May 24, 1994
    Assignee: GTE Products Corporation
    Inventors: Arunava Dutta, Lenoard V. Dullea
  • Patent number: 5290609
    Abstract: A dielectric film of a capacitor is formed using the plasma CVD apparatus. A thin Ta layer is deposited on a semiconductor wafer by using Ta(N(CH.sub.3).sub.2).sub.5 gas and H.sub.2 radicals. The thin Ta layer is then oxidized by O.sub.2 radicals to form a thin Ta.sub.2 O.sub.5 layer. An Si.sub.3 N.sub.4 layer is then formed on the Ta.sub.2 O.sub.5 layer by using SiH.sub.4 and NH.sub.3 gases. The Ta.sub.2 O.sub.5 layer and the Si.sub.3 N.sub.4 layer are alternately laminated one upon the other several times to form a dielectric film of laminated structure. The dielectric film can thus have a composition close to the stoichiometric composition and it can be made high in dielectric constant and excellent in withstand voltage.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: March 1, 1994
    Assignees: Tokyo Electron Limited, Yasuhiro Horiike
    Inventors: Yasuhiro Horiike, Kohei Kawamura
  • Patent number: 5284824
    Abstract: A method for manufacturing an oxide superconductor film is disclosed, which comprises the steps of: preparing a substrate; depositing an oxide superconductor film on said substrate by chemical vapor deposition (CVD); and supplying excited oxygen to or near a film deposition site on said substrate during the deposition of said film.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: February 8, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Etsuo Noda, Setsuo Suzuki, Osami Morimiya, Kazuo Hayashi
  • Patent number: 5268208
    Abstract: A plasma enhanced chemical vapor deposition method is provided for depositing an oxide film onto a substrate surface. Deposition is achieved even onto a surface of a glass or other relatively non-receptive substrate. A sub-film is deposited under plasma enhanced chemical vapor deposition conditions more strongly favoring deposition, followed by deposition of the desired oxide film under second plasma enhanced chemical vapor deposition conditions less strongly favoring deposition. High quality oxide films can be achieved by deposition at second plasma enhanced chemical vapor deposition conditions only marginally favoring deposition over etching.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: December 7, 1993
    Assignee: Ford Motor Company
    Inventors: Annette J. Krisko, James W. Proscia
  • Patent number: 5236747
    Abstract: A workpiece having a surface to be metallised is placed in an enclosure. A plasma is produced in a plasma tube which extends into the enclosure, the plasma having a post-discharge zone in which the surface to be metallised is placed. Vapour of a metal carbonyl compound is injected into the enclosure, such compound dissociating in the post-discharge plasma to cause the metal to be deposited on the surface.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: August 17, 1993
    Assignee: Plasmametal
    Inventors: Odile Dessaux, Pierre W. N. Goudmand, Abdellah Ben Taleb, Catherine Cannesson
  • Patent number: 5227363
    Abstract: A method makes a superconducting oxide thin film by irradiating an oxygen radical beam with necessary elements of the compound onto a substrate mounted in a molecular beam epitaxy system. The process can selectively form the superconducting oxide thin film on the substrate more efficiently in a direct reaction manner while maintaining the vacuum chamber of the molecular beam epitaxy system at a higher vacuum level.
    Type: Grant
    Filed: February 19, 1992
    Date of Patent: July 13, 1993
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroaki Furukawa, Masao Nakao
  • Patent number: 5206059
    Abstract: A method of forming a composite material by flame spraying. A composite thermal spray coating is formed by heating and accelerating a particulate material with a thermal spray gun and atomizing a molten metal to produce a combined, high-velocity stream containing both the heated particulate material and the atomized molten metal. The spray stream is directed to a substrate on which the composite coating is formed by a deposition of the materials.
    Type: Grant
    Filed: March 4, 1991
    Date of Patent: April 27, 1993
    Assignee: Plasma-Technik AG
    Inventor: Daniel R. Marantz
  • Patent number: 5192578
    Abstract: For coating workpieces having basic bodies (3), with a ceramic, electrically non-conducting material, during the coating process a pulsating dc voltage is applied to the basic bodies (3) or their holders (36). Preferably the pulse height is changed during vaporization used for the coating process, from high negative values to smaller negative values. A further layer can be applied onto the workpieces coated in this way whereby these work-pieces, due to their excellent corrosion resistance, are suited as pieces of jewelry which can be exposed in particular to ocean water and body perspiration, as rolling bodies in which the use of oil or grease as corrosion protection can be dispensed with, and as separating and cutting tools for organic materials.
    Type: Grant
    Filed: November 14, 1990
    Date of Patent: March 9, 1993
    Assignee: Balzers AG
    Inventors: Jurgen Ramm, Helmut Daxinger, Rainer Buhl, Erich Bergmann
  • Patent number: 5178962
    Abstract: A composite of metal and an organic film having a high adhesiveness without deterioration of film quality is provided by exposing the surface of organic film to at least one of chemically reactive gas phase molecules and gas phase ions thereby forming functional groups on the surface of organic film, and forming a metallic film thereon through the functional groups.
    Type: Grant
    Filed: March 19, 1990
    Date of Patent: January 12, 1993
    Assignees: Hitachi, Ltd., Hitachi Chemical Company Ltd.
    Inventors: Toshio Miyamoto, Kunio Miyazaki, Ryuji Watanabe, Osamu Miura, Yukio Ookoshi, Yuichi Satsu, Michio Ohue, Shigeru Takahashi, Yoshiyuki Tsuru