Generated By Microwave (i.e., 1mm To 1m) Patents (Class 427/575)
  • Publication number: 20130337194
    Abstract: A magnetic data storage medium may include a substrate, a magnetic recording layer, a protective carbon overcoat, and a monolayer covalently bound to carbon atoms adjacent a surface of the protective carbon overcoat. According to this aspect of the disclosure, the monolayer comprises at least one of hydrogen, fluorine, nitrogen, oxygen, and a fluoro-organic molecule. In some embodiments, a surface of a read and recording head may also include a monolayer covalently bound to carbon atoms of a protective carbon overcoat.
    Type: Application
    Filed: July 24, 2013
    Publication date: December 19, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Paul M. Jones, Xiaoping Yan, Lei Li, James Dillon Kiely, Christopher Loren Platt, Michael J. Stirniman, Jiping Yang, Yiao-Tee Hsia
  • Patent number: 8603402
    Abstract: A microwave-excited plasma device is proposed. The device comprises of a plurality of microwave plasma reaction units which are capable of generating plasma independently such that a large-area plasma is able to be generated by all of the units. Besides, the high cost of the large-area microwave coupling window and its deformation together with possible breakage caused by atmospheric pressure can be prevented. Moreover, when a plurality of permanent magnets is assembled upon each of the plasma reaction units, the microwave-excited plasma device is improved to be a large-area electron cyclotron resonance (ECR) plasma device.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chen Chang, Kun-Ping Huang, Yu-Tse Hsieh
  • Publication number: 20130302536
    Abstract: The invention relates to a method for producing a transparent bather layer system, wherein in a vacuum chamber at least two transparent barrier layers and a transparent intermediate layer disposed between the two barrier layers are deposited on a transparent plastic film, wherein for deposition of the barrier layers aluminium is vaporised and simultaneously at least one first reactive gas is introduced into the vacuum chamber and wherein for deposition of the intermediate layer aluminium is vaporised and simultaneously at least one second reactive gas and a gaseous or vaporous organic component are introduced into the vacuum chamber.
    Type: Application
    Filed: February 15, 2012
    Publication date: November 14, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Guenther, Bjoern Meyer, Steffen Straach, Thomas Kuehnel, Sebastian Bunk, Nicolas Schiller
  • Patent number: 8574687
    Abstract: In a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by cold gas spraying, the method has the steps of: producing a reactive gas flow (5) having at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow having reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dirk Janz, Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Publication number: 20130287969
    Abstract: The invention relates to a method for producing a transparent barrier layer system, wherein in a vacuum chamber at least two transparent barrier layers and a transparent intermediate layer disposed between the two barrier layers are deposited on a transparent plastic film, wherein for deposition of the barrier layers aluminium is vaporised and simultaneously at least one first reactive gas is introduced into the vacuum chamber and wherein for deposition of the intermediate layer aluminium is vaporised and simultaneously at least one second reactive gas is introduced into the vacuum chamber, and a silicon-containing layer is deposited as intermediate layer by means of a PECVD process.
    Type: Application
    Filed: February 15, 2012
    Publication date: October 31, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Guenther, Bjoern Meyer, Steffen Straach, Thomas Kuehnel, Sebastian Bunk, Nicolas Schiller
  • Publication number: 20130280542
    Abstract: In a method for producing a pyrolysis compatible component of a cooking appliance, designed to carry out a pyrolysis operation a silicon dioxide coating is applied on a base part of the component by PECVD deposition. PECVD deposition can hereby involve high-rate PECVD deposition at a speed faster than 0.5 ?m/min.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 24, 2013
    Applicant: BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH
    Inventors: Jochen Herbolsheimer, Frank Jördens, Jürgen Salomon, Philipp Schaller, Gerhard Schmidmayer
  • Publication number: 20130264303
    Abstract: The method serves for the plasma treatment of workpieces. The workpiece is inserted into a chamber of a treatment station that can be at least partially evacuated. The plasma chamber is bounded by a chamber bottom, a chamber top and a lateral chamber wall. The plasma treatment involves depositing a coating on the workpiece. The ignition of the plasma is performed by microwave energy. The coating consists at least of a gas barrier layer and a protective layer. The gas barrier layer contains SiOx and the protective layer contains carbon. The protective is produced from a gas that contains at least a silicon compound and argon.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 10, 2013
    Applicant: KHS CORPOPLAST GMBH
    Inventors: Arne Andersen, Michael Herbort, Sonke Siebels
  • Publication number: 20130256272
    Abstract: A surface wave plasma (SWP) source couples pulsed microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). To prevent impingement of the microwave energy onto the surface of a substrate when plasma density is low between pulses, an ICP source, such as a helical inductive source, a planar RF coil, or other inductively coupled source, is provided between the SWP source and the substrate to produce plasma that is opaque to microwave energy. The ICP source can also be pulsed in synchronism with the pulsing of the MW plasma in phase with the ramping up of the MW pulses. The ICP also adds an edge dense distribution of plasma to a generally chamber centric MW plasma to improve plasma uniformity.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jianping Zhao, Lee Chen, Vincent M. Donnelly, Demetre J. Economou, Merritt Funk, Radha Sundararajan
  • Patent number: 8518182
    Abstract: A substrate processing apparatus comprising: a processing chamber which is to accommodate at least one substrate; a gas supply system which is to supply processing gas into the processing chamber; an exhaust system which is to exhaust atmosphere in the processing chamber; and at least one pair of electrodes which are to bring the processing gas into an active state and which are accommodated in protection tubes such that the electrodes can be inserted into and pulled out from the protection tubes, wherein the electrodes are accommodated in the protection tube in a state where at least a portion of the electrodes is bent, and the electrodes are formed of flexible members, is disclosed.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 27, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Shizue Ogawa, Kazuyuki Toyoda, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Patent number: 8513137
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 20, 2013
    Assignees: Rohm Co., Ltd., Tadahiro Ohmi
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Patent number: 8512798
    Abstract: The present invention is a high-throughput, ultraviolet (UV) assisted metalorganic chemical vapor deposition (MOCVD) system for the manufacture of HTS-coated tapes. The UV-assisted MOCVD system of the present invention includes a UV source that irradiates the deposition zone and improves the thin film growth rate. The MOCVD system further enhances the excitation of the precursor vapors and utilizes an atmosphere of monatomic oxygen (O) rather than the more conventional diatomic oxygen (O2) in order to optimize reaction kinetics and thereby increase the thin film growth rate. In an alternate embodiment, a microwave plasma injector is substituted for the UV source.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 20, 2013
    Assignee: SuperPower, Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Publication number: 20130209183
    Abstract: Tungsten carbide drill bits for removing material from alloys and other hard materials are disclosed. A conventional drill bit is modified by removing material from the forward portion of the bit to increase the radius of the cutting edge. The drill bit is then coated with a nanostructured diamond film using a chemical vapor deposition process.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 15, 2013
    Inventors: Yuag-Shan Kevin Chuo, Raymond G. Thompson
  • Publication number: 20130202814
    Abstract: The method and the device are used to plasma-treat workpieces. The workpiece is inserted into a chamber of a treatment station that can be at least partially evacuated. The plasma chamber is bounded by a chamber bottom, a chamber cover, and a lateral chamber wall. A coating is deposited on the workpiece by means of the plasma treatment. The plasma is ignited by pulsed microwave energy. Switch-on phases and switch-off phases of a microwave input are specified by a controller.
    Type: Application
    Filed: September 1, 2011
    Publication date: August 8, 2013
    Applicant: KHS CORPOPLAST GMBH
    Inventors: Sonke Siebels, Sebastian Kytzia
  • Publication number: 20130158189
    Abstract: The present invention is related to a method or the deposition of a chlorinated polymeric layer onto a ubstrate, said method comprising the steps of:—generating a plasma in a gaseous medium by means of a plasma device;—placing the substrate in contact with the plasma, or in the post-plasma area;—introducing in said plasma or in the post-plasma area a chlorinated precursor of the chlorinated polymer.
    Type: Application
    Filed: July 12, 2011
    Publication date: June 20, 2013
    Inventors: Francois Reniers, Julie Hubert
  • Publication number: 20130142964
    Abstract: A device for applying electromagnetic microwave radiation in a plasma inside a substrate tube including inner and outer cylindrical walls defining an annular cavity therebetween, the inner wall having a circumferential applicator slit, an elongate microwave guide arranged with a first end in communication with the annular cavity and a second end in communication with a microwave generating means for supplying microwaves to the annular cavity, and means for supplying a cooling gas through the elongate microwave guide to a position near the applicator slit.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 6, 2013
    Applicant: Draka Comteq B.V.
    Inventor: Draka Comteq B.V.
  • Publication number: 20130101730
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicants: FRAUNHOFER USA, BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Board of Trustees of Michigan State University, Fraunhofer USA
  • Patent number: 8404313
    Abstract: Provided herein is a method for the synthesis of nanocrystalline diamond (NCD) wires by depositing nanocrystalline diamond on Si nanowires using chemical vapor deposition methods. Seeding the nanowires in solutions containing nanodiamond powers, NCD wires are fabricated in typical CVD growth conditions within a very short time. NCD wires were 0.5-5 ?m in diameter, depending on the growth time, with lengths in the range of 20-100 ?m. The average elastic modulus determined by nanoindentation is 474.16±13.48 GPa. The unique mechanical properties of the NCD wire make it a potential material for active components of both electronic and electromechanical devices.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: March 26, 2013
    Assignee: University of South Florida
    Inventors: Ashok Kumar, Manoj Kumar Singh
  • Patent number: 8394197
    Abstract: Enhanced corrosion resistance is achieved in a coating by using a germanium-containing precursor and hollow cathode techniques to form a first layer directly on the surface of a workpiece, prior to forming an outer layer, such as a layer of diamond-like carbon (DLC). The use of a germanium or germanium-carbide precursor reduces film stress and enables an increase in the thickness of the subsequently formed DLC. Germanium incorporation also reduces the porosity of the layer. In one embodiment, a cap layer containing germanium is added after the DLC in order to further reduce the susceptibility of the coating to chemical penetration from the top.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 12, 2013
    Assignee: Sub-One Technology, Inc.
    Inventors: Andrew W. Tudhope, Thomas B. Casserly, Karthik Boinapally, Deepak Upadhyaya, William J. Boardman
  • Publication number: 20130052370
    Abstract: The present invention relates to a method for manufacturing a fuel cell electrode (E) by depositing a catalytic layer (2) on a diffusion layer (3), characterized in that said catalyst is deposited on the diffusion layer (3) by ionized physical vapor deposition (IPVD) in a vacuum chamber. The invention also relates to a method for manufacturing a fuel cell half-core comprising an ionic membrane (1), a catalytic layer (2) and a diffusion layer (3) by depositing the catalytic layer (2) on a support (1; 3), characterized in that said catalyst is deposited on the support (1; 3) by ionized physical vapor deposition (IPVD) in a vacuum chamber.
    Type: Application
    Filed: April 28, 2011
    Publication date: February 28, 2013
    Applicant: DREUX AGGLOMERATION
    Inventors: Marjorie Cavarroc, Matthieu Vogt, Aboubakr Ennajdaoui
  • Publication number: 20130052119
    Abstract: An object of the present invention is to solve problems such as high temperature processing and long processing time, which are issues of formation of a graphene film by thermal CVD, thereby providing a technique of forming a transparent conductive carbon film using a crystalline carbon film formed at lower temperature within a short time using a graphene film, and the method of the present invention is characterized by setting the temperature of a base material to 500° C. or lower and the pressure to 50 Pa or less, and also depositing a transparent conductive carbon film on a surface of a base material by a microwave surface-wave plasma CVD method in a gas atmosphere in which an oxidation inhibitor as an additive gas for suppressing oxidation of the surface of the base material is added to a carbon-containing gas or a mixed a carbon-containing gas and an inert gas.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 28, 2013
    Inventors: Jaeho Kim, Masatou Ishihara, Yoshinori Koga, Kazuo Tsugawa, Masataka Hasegawa, Sumio Iijima, Takatoshi Yamada
  • Patent number: 8383210
    Abstract: A method is described of depositing film of an amorphous or microcrystalline material, for example silicon, from a plasma on to a substrate. Microwave energy is introduced into a chamber as a sequence of discrete microwave pulses, a film precursors gas is introduced into the chamber as a sequence of discrete gas pulses, and gas for generating atomic hydrogen is supplied to the chamber at least during each microwave pulse. Each microwave pulse is followed in non-overlapping fashion with a precursor gas pulse, and each precursor gas pulse is followed by a period during which there is neither a microwave pulse nor a precursor gas pulse.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 26, 2013
    Assignees: Dow Corning Europe S.A., Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20130022760
    Abstract: A plasma nitriding method includes performing a high nitrogen-dose plasma nitriding process on an object having an oxide film by introducing a processing gas containing a nitrogen gas into a processing chamber of a plasma processing apparatus and generating a plasma containing a high nitrogen dose; and performing a low nitrogen-dose plasma nitriding process on the object by generating a plasma containing a low nitrogen dose. After the performing the high nitrogen-dose plasma nitriding process is completed, a plasma seasoning process is performed in the chamber by generating a nitrogen plasma containing a trace amount of oxygen by introducing a rare gas, a nitrogen gas and an oxygen gas into the chamber and setting a pressure in the chamber in a range from about 532 Pa to 833 Pa and a volume flow rate ratio of the oxygen gas in all the gases in a range from about 1.5% to 5%.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 24, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshinori Debari, Masaki Sano
  • Patent number: 8318267
    Abstract: An object to be processed which has silicon on its surface is loaded in a processing chamber. A plasma of a processing gas containing oxygen gas and nitrogen gas is generated in the processing chamber. The silicon on the surface of the object to be processed is oxidized by the plasma, thereby forming a silicon oxide film.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: November 27, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yoshiro Kabe, Junichi Kitagawa, Sunao Muraoka
  • Patent number: 8308897
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 13, 2012
    Assignees: Rohm Co., Ltd.
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Publication number: 20120279943
    Abstract: A method and apparatus for processing a substrate is provided. In one embodiment, the apparatus is in the form of a processing chamber that includes a chamber body having a processing volume defined therein. A substrate support, a gas delivery tube assembly and a plasma line source are disposed in the processing volume. The gas delivery tube assembly includes an inner tube is disposed in an outer tube. The inner tube has a passage for flowing a cooling fluid therein. The outer tube has a plurality of gas distribution apertures for providing processing gas into the processing volume.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 8, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Helinda Nominanda, Tae Kyung Won, Seon-Mee Cho, Beom Soo Park, Soo Young Choi
  • Publication number: 20120263886
    Abstract: A system and process for the formation of thin film materials. The process includes forming a plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The system includes a deposition chamber having a plurality of delivery points for injecting two or more streams into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma.
    Type: Application
    Filed: April 29, 2012
    Publication date: October 18, 2012
    Inventor: Stanford R. Ovshinsky
  • Publication number: 20120251737
    Abstract: A plasma-nitriding method for plasma-nitriding a silicon nitride film includes loading a target object into a processing chamber and mounting the target object on a mounting table; heating the target object; supplying a processing gas containing a nitrogen-containing gas and a rare gas into the processing chamber while introducing a microwave into the processing chamber, generating an electric field in the processing chamber, and generating a plasma by exciting the processing gas; and plasma-nitriding and modifying a silicon nitride film formed on the target object by the generated plasma. The silicon nitride film is a silicon nitride film formed at a film forming temperature ranging from 200° C. to 400° C. by an ALD method, and the silicon nitride film is plasma-nitrided at a processing temperature whose maximum is equal to the film forming temperature in the ALD method to form a silicon nitride film modified by a low-temperature nitrogen-containing plasma.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshinori OSAKI, Takeshi Kuroda
  • Publication number: 20120213948
    Abstract: A system for repairing a crack in a component, or forming a joint between two components, is described. The system includes a filler material; a plasma-generating material; and a ceramic cover that is positioned around the crack, or around an interface region between two components that are to be joined. The filler material is positioned proximate to the crack or the interface region; and the plasma generating material is positioned in the vicinity of the crack or the interface region. A microwave generator for generating a microwave field inside an enclosure region enclosed by the cover, and proximate to the crack or interface region, also forms part of the system. Related methods for filling at least one cavity in a casting component are also described.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 23, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jeffrey Jon Schoonover, Mahesh Chandran, Sarah Lillian Katz, Laurent Cretegny, Drew Brisco, David John Smith, Vasile Bogdan Neculaes
  • Patent number: 8222125
    Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: July 17, 2012
    Assignee: Ovshinsky Innovation, LLC
    Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
  • Publication number: 20120171391
    Abstract: Embodiments of the present invention generally provide deposition processes for a silicon-containing dielectric layer using an improved microwave-assisted CVD chamber. In one embodiment, a method of processing a substrate in a processing chamber is provided. The method generally includes applying a microwave power to an antenna coupled to a microwave source disposed within the processing chamber, wherein the microwave source is disposed relatively above a gas feeding source configured to provide a gas distribution coverage covering substantially an entire surface of the substrate, and exposing the substrate to a microwave plasma generated from a processing gas provided by the gas feeding source to deposit a silicon-containing layer on the substrate at a temperature lower than about 200 degrees Celsius, the microwave plasma using a microwave power of about 500 milliWatts/cm2 to about 5,000 milliWatts/cm2 at a frequency of about 1 GHz to about 10 GHz.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Tae Kyung WON, Helinda NOMINANDA, Seon-Mee CHO, Soo Young CHOI, Beom Soo PARK, John M. WHITE, Suhail ANWAR, Jozef KUDELA
  • Publication number: 20120160809
    Abstract: A microwave supply unit 20 of a plasma processing apparatus 11 includes a stub member 51 configured to be extensible from the outer conductor 33 toward the inner conductor 32. The stub member 51 serves as a distance varying device for varying a distance in the radial direction between a part of the outer surface 36 of the inner conductor 32 and a facing member facing the part of the outer surface of the inner conductor 32 in the radial direction, i.e., the cooling plate protrusion 47. The stub member 51 includes a rod-shaped member 52 supported at the outer conductor 33 and configured to be extended in the radial direction; and a screw 53 as a moving distance adjusting member for adjusting a moving distance of the rod-shaped member 52 in the radial direction.
    Type: Application
    Filed: August 16, 2010
    Publication date: June 28, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kiyotaka Ishibashi, Osamu Morita
  • Patent number: 8206776
    Abstract: Methods of reducing pollution problems in power lines systems are disclosed herein. In one embodiment, the method comprises applying Lotus Effect materials as a (superhydrophobicity) protective coating for external electrical insulation system applications. Further disclosed are methods of fabricating/preparing Lotus Effect coatings. Selected inorganic or polymeric materials are applied on the insulating material surface, and stable superhydrophobic coatings can be fabricated. Various UV stabilizers and UV absorbers can be incorporated into the coating system to enhance the coating's UV stability. Other aspects, features, and embodiments are also discussed and claimed.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 26, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Jun Li, Lianhua Fan, Ching-Ping Wong, Franklin Cook Lambert
  • Publication number: 20120156424
    Abstract: A nanosheet includes a 2H—SiC layer having a first surface and a second surface, the first and second surfaces being opposed to each other; a first graphene layer formed of 1-10 graphenes being disposed on the first surface; and a second graphene layer formed of 1-10 graphenes being disposed on the second surface.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: Academia Sinica
    Inventors: Kuei-hsien Chen, Ming-Shien Hu, Chun-Chiang Kuo, Li-chyong Chen
  • Publication number: 20120156392
    Abstract: Disclosed is a method capable of accelerating the growth of oriented carbon nanotubes when manufacturing the oriented carbon nanotubes by a plasma CVD. Under the circulation of a gas which is the raw material of the carbon nanotubes, plasma is generated by an antenna (6) provided in a depressurized treatment chamber (2), and substrates (9, 15) provided with a reaction prevention layer and a catalyst material layer which are formed on a base material are held at a distance, to which a radical can reach and an attack of an ion generated as a by-product of the radical can be avoided, from a plasma generation area (7). The tip (6a) of the antenna (6) can be controlled so as to match with the position of the anti-node of a stationary wave (27) of microwaves.
    Type: Application
    Filed: August 30, 2010
    Publication date: June 21, 2012
    Applicants: WASEDA UNIVERSITY, HONDA MOTOR CO., LTD.
    Inventors: Hiroshi Kawarada, Ryogo Kato, Toshiyuki Ohashi, Toshio Tokune, Hidefumi Nikawa
  • Publication number: 20120148762
    Abstract: The present disclosure relates to a method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Publication number: 20120148761
    Abstract: A microwave waveguide, and a system and method related to a microwave waveguide, is described. One embodiment includes an integrated microwave waveguide comprising a waveguide block, a first waveguide section in the waveguide block, a second waveguide section in the waveguide block, a first impedance transition section integrated with the first waveguide section in the waveguide block, wherein the first impedance section comprises a first conduit with a first end and a second end, wherein the first conduit is tapered from the first end to the second end, and a second impedance transition section integrated with the second waveguide section in the waveguide block, wherein the second impedance section comprises a second conduit with a third end and a fourth end, wherein the second conduit is tapered from the third end to the fourth end, and wherein the second end of the first impedance transition section and the fourth end of the second impedance transition section are connected.
    Type: Application
    Filed: January 30, 2008
    Publication date: June 14, 2012
    Inventors: Michael W. Stowell, Harald Gaertner
  • Publication number: 20120148763
    Abstract: A surface wave plasma CVD apparatus, includes: a waveguide (3) that is connected to a microwave source (2), and in which a plurality of slot antennas (S) are formed thereof; a dielectric plate (4) for conducting microwaves emitted from the plurality of slot antennas (S) into a plasma processing chamber (1) so that a surface wave plasma is produced; an insulating shield member (lb) that is arranged so as to surround a layer formation processing region (R) in which the surface wave plasma is produced; and a gas ejection portion (52) that ejects process material gas into the layer formation processing region (R).
    Type: Application
    Filed: October 4, 2010
    Publication date: June 14, 2012
    Applicant: SHIMADZU CORPORATION
    Inventor: Masayasu Suzuki
  • Patent number: 8168268
    Abstract: A deposition system and process for the formation of thin film materials. In one embodiment, the process includes forming an initial plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the initial plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The deposition system includes a deposition chamber having a plurality of delivery points for injecting two or more streams (source materials or carrier gases) into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma. Injection of different material streams is also synchronized in time.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 1, 2012
    Assignee: Ovishinsky Innovation, LLC
    Inventor: Stanford R. Ovshinsky
  • Publication number: 20120094034
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony Chiang
  • Patent number: 8138458
    Abstract: The invention performs uniform chemical reactions with high efficiency by action of microwave onto reaction targets placed within a flow path along a center axis of a waveguide for transmission of microwave. The microwave chemical reaction device includes a circular waveguide for transmission of TM or TE mode microwave or a square waveguide for transmission of TE mode microwave and a flow path shielded from a space within the waveguide by a bulkhead of low microwave loss and coaxially extending along the center axis of the waveguide. Reaction targets to be subjected to chemical reactions are accommodated in the flow path and the microwave acts on the reaction targets within the flow path.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha IDX
    Inventors: Tadashi Okamoto, Eiji Matsuo, Masahiro Yasuda
  • Publication number: 20120064260
    Abstract: A surface wave plasma CVD apparatus includes a waveguide connected to a microwave source with slot antennae; a dielectric member that introduces microwaves from slot antennae into a plasma processing chamber to generate surface wave plasma; a moving device that reciprocatory moves a subject of film formation such that the subject passes a film formation processing region facing the dielectric member; a control device that controls the reciprocatory movement of the subject of film formation by the moving device depending on film forming conditions to perform film formation on the subject; and gas ejection parts provided in parallel in a direction at right angles to a direction along which the subject is moved at predetermined positions between the subject that passes through the film formation processing region and the dielectric member. Each of the gas ejection parts has a slit extending parallel to the dielectric member.
    Type: Application
    Filed: May 15, 2009
    Publication date: March 15, 2012
    Applicant: SHIMADZU CORPORATION
    Inventor: Masayasu Suzuki
  • Patent number: 8133562
    Abstract: A plastic formed article comprising a plastic substrate and a vapor deposited film formed on the surface of the plastic substrate by a plasma CVD method, wherein the vapor deposited film includes an organometal vapor deposited layer having an element ratio C/Si of 2.5 to 13 and an element ratio O/M of not larger than 0.5, and a hydrocarbon vapor deposited layer; and the hydrocarbon vapor deposited layer has a thickness in a range of 40 to 180 nm, exhibits peaks stemming from CH, CH2 and CH3 over a region of wave numbers of 3200 to 2600 cm?1 as measured by FT-IR, and has a CH2 ratio of not larger than 35% and a CH3 ratio of not less than 40%. A film is deposited on a plastic formed article without deteriorated by oxidation, without thermally deformed or without thermally deteriorated not only when PET or polyolefin is used but also when polylactic acid is used as the plastic substrate.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: March 13, 2012
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Takurou Ito, Hiroki Mori, Hiroshi Nakao, Kazuhiko Yamazaki
  • Publication number: 20120027955
    Abstract: A reactor and method for production of nanostructures produces, for example, metal oxide nanowires or nanoparticles. The reactor includes a metal powder delivery system wherein the metal powder delivery system includes a funnel in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes delivering a plasma-forming gas substantially longitudinally into a dielectric tube; delivering a sheath gas into the tube; forming a plasma from the plasma-forming gas by applying microwave energy to the plasma-forming gas; delivering a metal powder into the dielectric tube; and reacting the metal powder within the plasma to form metal oxide nanostructures.
    Type: Application
    Filed: October 9, 2008
    Publication date: February 2, 2012
    Inventors: Mahendra Kumar Sunkara, Jeong H. Kim, Vivekanand Kumar
  • Patent number: 8101245
    Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 24, 2012
    Assignee: Ovshinsky Innovation, LLC
    Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
  • Patent number: 8097082
    Abstract: A method and apparatus for adjust local plasma density during a plasma process. One embodiment provides an electrode assembly comprising a conductive faceplate having a nonplanar surface. The nonplanar surface is configured to face a substrate during processing and the conductive faceplate is disposed so that the nonplanar surface is opposing a substrate support having an electrode. The conductive faceplate and the substrate support form a plasma volume. The nonplanar surface is configured to adjust electric field between the conductive plate and the electrode by varying a distance between the conductive plate and the electrode.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: January 17, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jianhua Zhou, Deenesh Padhi, Karthik Janakiraman, Hang Yu, Siu F. Cheng, Yoganand Saripalli, Tersem Summan
  • Patent number: 8075950
    Abstract: Provided are a process for economically preparing a graphene shell having a desired configuration which is applicable in various fields wherein in the process the thickness of the graphene shell can be controlled, and a graphene shell prepared by the process.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: December 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-young Choi, Hyeon-Jin Shin, Seon-mi Yoon
  • Publication number: 20110256347
    Abstract: The invention relates to a method for depositing a diamond coating onto a substrate, said method resulting in the production of a coating characterised by a novel morphology of the diamond in the form of pyramids containing submicronic grains. The method is carried out by chemical vapour deposition by controlling the applied electric field.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 20, 2011
    Inventors: Jean-Pierre Manuad, Angéline Poulon, Lionel Teule-Gay, Cyril Faure
  • Publication number: 20110256371
    Abstract: A coating for cutting tools or wear parts has at least one crystalline SixC1-x-y-zNyMz layer formed by means of a PVD method and at least one hard carbon layer, which is diamond or DLC. Si and C are essential components of the SixC1-x-y-zNyMz layer and M is one or more elements selected from among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, B, Al and Ru (wherein 0.4?x?0.6, 0?y?0.1, and 0?z?0.2). The SixC1-x-y-zNyMz layer has a half-value width of an SiC peak observed at 34° to 36° of diffraction angle when X-ray diffraction (XRD) is carried by using a CuK? ray is 3° or less. A method for forming the coating layer using PVD is carried out under certain temperature and substrate bias conditions.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 20, 2011
    Applicant: Iscar, Ltd.
    Inventor: Albir A. Layyous
  • Patent number: 8021723
    Abstract: A method for processing a substrate by plasma CVD includes: (i) forming a film on a substrate placed on a susceptor by applying RF power between the susceptor and a shower plate in the presence of a film-forming gas in a reactor; and (ii) upon completion of step (i), without unloading the substrate, applying amplitude-modulated RF power between the susceptor and the shower plate in the absence of a film-forming gas but in the presence of a non-film-forming gas to reduce a floating potential of the substrate.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: September 20, 2011
    Assignee: ASM Japan K.K.
    Inventors: Yasushi Fukasawa, Mitsutoshi Shuto, Yasuaki Suzuki
  • Patent number: RE43651
    Abstract: A method of coating a surface with a polymer layer, which method comprises exposing said surface to a plasma comprising a monomeric unsaturated organic compound which comprises a chain of carbon atoms, which are optionally substituted by halogen; provided that where the compound is a perhalogenated alkene, it has a chain of at least 5 carbon atoms; so as to form an oil or water repellent coating on said substrate.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: September 11, 2012
    Assignee: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Jas P. S. Badyal, Stephen Richard Coulson, Colin R. Willis, Stuart A. Brewer