Magnetic Field Or Force Utilized Patents (Class 427/598)
  • Patent number: 6875480
    Abstract: The present invention is to provide a method of enhancement of electrical conductivity for conductive polymer by use of field effect control, wherein on the substrate, whose surface was treated with a field, was coated by a containing monomer or oligomer solution of conductive polymer, through a field mechanism a monomer or oligomer of conductive polymer can demonstrate the sequential order molecular structure layer on the substrate, on this molecular structure layer was coated by an available amount of oxidant to proceed the polymerization, it was subjected to a field during polymerization to form 3-dimensional order stacking structure in order to increase the functional characteristic and electrical conductivity for conductive polymer.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: April 5, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Tsung-Hsiung Wang, Jing-Pin Pan
  • Patent number: 6866891
    Abstract: A method for targeted deposition of a nanotube on a planar surface includes providing a ram made from elastomeric material and having a relief structure on its surface. A microfluid capillary system, with an inlet and an outlet, is then formed by applying the ram to a planar substrate. A dispersion of nanotubes is brought into contact with the inlet, thereby enabling capillary force to disperse the nanotubes. through the microfluid capillary system. The resulting dispersion of nanotubes is then dried and the ram removed.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: March 15, 2005
    Assignee: Infineon Technologies AG
    Inventors: Maik Liebau, Eugen Unger, Georg Dusberg
  • Patent number: 6844378
    Abstract: A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 18, 2005
    Assignee: Sandia Corporation
    Inventors: James E. Martin, Robert A. Anderson, Rodney L. Williamson
  • Patent number: 6835423
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: December 28, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6829121
    Abstract: A magnetoresistive film includes a nonmagnetic film, and a structure in which magnetic films are formed on the two sides of the nonmagnetic film. At least one of the magnetic films is a perpendicular magnetization film. A magnetic film whose easy axis of magnetization is inclined from a direction perpendicular to the film surface is formed at a position where the magnetic film contacts the perpendicular magnetization film but does not contact the nonmagnetic film. A memory, magnetic element, magnetoresistive element, and magnetic element manufacturing method are also disclosed.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 7, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takashi Ikeda, Akio Koganei, Kazuhisa Okano
  • Patent number: 6818155
    Abstract: Coupling components to an underlying substrate using a composition of a polymer and magnetic material particles. Upon applying the composition between the component and the printed circuit board, the composition may be subjected to a magnetic field to align the magnetic material particles into a conductive path between the component and the underlying substrate. At the same time the polymer-based material may be cured or otherwise solidified to affix the conductive path formed by the magnetic material particles.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: November 16, 2004
    Assignee: Intel Corporation
    Inventors: George Hsieh, Terrance J. Dishongh, Norman J. Armendariz, David V. Spaulding
  • Publication number: 20040202797
    Abstract: A method of manufacturing electric machines comprised of geometrically patterned arrays of permanent magnets, soft magnetic materials, and electrical conductors deposited by kinetic spraying methods directly atop a carrier. The magnets and planar coils of the present invention may be integrally formed atop carriers to form electrical machines such as motors, generators, alternators, solenoids, and actuators. The manufacturing techniques used in this invention may produce highly defined articles that do not require additional shaping or attaching steps. Very high-purity permanent and soft magnetic materials, and conductors with low oxidation are produced.
    Type: Application
    Filed: February 6, 2004
    Publication date: October 14, 2004
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: John Ginder, Robert McCune, Franco Leonardi
  • Patent number: 6800321
    Abstract: Methods for reducing hysteresis losses in superconductor coated ribbons where a flux distribution is set into the superconductor coated ribbon prior to the application of alternating current.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: October 5, 2004
    Assignee: The Regents of the University of California
    Inventor: Stephen P. Ashworth
  • Patent number: 6790378
    Abstract: The present invention includes coating composition having magnetic properties for application to a substrate. The coating composition includes a plurality of strontium and or barium hexaferrite particles having a random magnetic pole alignment. The coating composition also includes a binder adhesive capable of suspending the strontium hexaferrite particles. The binder adhesive is a natural rubber capable of adhering in a substantially thin film to the substrate. The strontium hexaferrite particles are normally present between 50% to 98% of the coating composition's total weight when dried on the substrate. The thickness of the film of the coating composition ranges from 0.5 mils to 20 mils, and has 6 to 24 magnetic pole changes per linear inch. The binder adhesive allows for manipulation of the strontium hexaferrite particles to a non-random magnetic pole alignment after the ferromagnetic particles have dried in the binder adhesive on the substrate.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 14, 2004
    Inventors: R. William Graham, Daniel F. Peters, Charles E. Adams, Ricky L. Helton
  • Publication number: 20040170757
    Abstract: Process for depositing, on a substrate (1), a product of interest (2), according to a basic area (3) which has a low value, referred to as a “spot”, according to which process:
    Type: Application
    Filed: April 27, 2004
    Publication date: September 2, 2004
    Inventors: Agnes Perrin, Alain Theretz, Thierry Delair, Bernard Mandrand
  • Patent number: 6773765
    Abstract: Disclosed is a process for making a flexible magnet with an induced anisotropy, and in particular to a process for making a flexible anisotropic magnet by thermal spraying in the presence of an applied magnetic field. The method may be used to fabricate a substrate having a flexible anisotropic magnetic coating or a free standing anisotropic flexible magnet.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: August 10, 2004
    Assignee: The Research Foundation of State University of New York
    Inventors: Richard J. Gambino, Dongil Shin, Jeffrey A. Brogan
  • Patent number: 6773763
    Abstract: A method of manufacturing a permanent magnet by the steps of preparing an admixture of magnetic material and binder material, the admixture material having a particle size of less than 325 mesh. Then heating a carrier gas to a temperature substantially below the melting point of either component of the admixture. The admixture is introduced into the carrier gas and the admixture is sprayed atop a ductile carrier. The admixture adheres to the carrier and forms a solid permanent magnet. An electric field is applied to the sprayed admixture to create a permanent magnetic moment.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: August 10, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Franco Leonardi, John Matthew Ginder, Robert Corbly McCune
  • Publication number: 20040142198
    Abstract: A kinetically sprayed magnetostrictive/magnetic material, comprising: magnetostriction particles; magnetic particles with coercivity; a ductile matrix for bonding the magnetostriction particles and magnetic particles with coercivity together; wherein an applied magnetic field will align the magnetic particles with coercivity and subsequently the magnetostriction particles such that the magnetostrictive material will produce a detectable change in the magnetostrictive/magnetic material when placed under an applied stress.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 22, 2004
    Inventor: Thomas Hubert Van Steenkiste
  • Patent number: 6761935
    Abstract: A method of producing a metallic coating on an object emerging from a bath of molten metal. The object can for example be a wire or a plate. A magnetic field is created near the point of exit of the object. The object leaves the bath of molten metal via an exit channel containing a meniscus of the bath of molten metal. The thickness of the metallic coating is controlled as a function of the second derivative of the curve of the meniscus and of a capillary number Ca representing the ratio between the viscous forces of the molten metal and the forces of surface tension at the surface of the molten metal.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: July 13, 2004
    Assignee: Delot Process
    Inventors: Gérald Sanchez, José Delot
  • Patent number: 6759097
    Abstract: Methods and devices for producing images on coated articles are provided. The methods generally comprise applying a layer of magnetizable pigment coating in liquid form on a substrate, with the magnetizable pigment coating containing a plurality of magnetic non-spherical particles or flakes. A magnetic field is then applied to selected regions of the pigment coating while the coating is in liquid form, with the magnetic field altering the orientation of selected magnetic particles or flakes. Finally, the pigment coating is solidified, affixing the reoriented particles or flakes in a non-parallel position to the surface of the pigment coating to produce an image such as a three dimensional-like image on the surface of the coating. The pigment coating can contain various interference or non-interference magnetic particles or flakes, such as magnetic color shifting pigments.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: July 6, 2004
    Assignee: Flex Products, Inc.
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Charles T. Markantes, Paul G. Coombs, Matthew R. Witzman
  • Patent number: 6733613
    Abstract: An anisotropic conductive compound is cured by exposing it to heat while in the presence of an AC magnetic field followed by a static, substantially homogeneous DC magnetic field.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 11, 2004
    Inventor: S. Kumar Khanna
  • Patent number: 6723396
    Abstract: Oriented materials and methods for their formation are disclosed. The oriented material is formed by depositing an oriented component from an oriented liquid crystal medium. Oriented materials having multiple layers and methods for their formation are also disclosed.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: April 20, 2004
    Assignee: Western Washington University
    Inventor: David L. Patrick
  • Patent number: 6716487
    Abstract: An article of manufacture for the construction of environmentally compatible stickers which are decorated using inkjet printing methods comprising a polymer plastisol biodegradable rubber resin as its primary ingredient to form one layer from bonding multiple layers. This removable/reusable sticker can even be used for preventing slippery in bathtub. And it is environmental friendly because of its biodegradable character when discarded. The inkjet printing method application is also effective in reducing number of manufacturing steps or processing stages to create vibrant custom inkjet produced images all at a relatively low cost.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: April 6, 2004
    Inventor: Sang G. Song
  • Patent number: 6716488
    Abstract: A ferrite layer formation process that may be performed at a lower temperature than conventional ferrite formation processes. The formation process may produce highly anisotropic structures. A ferrite layer is deposited on a substrate while the substrate is exposed to a magnetic field. An intermediate layer may be positioned between the substrate and the ferrite to promote bonding of the ferrite to the substrate. The process may be performed at temperatures less than 300° C. Ferrite film anisotropy may be achieved by embodiments of the invention in the range of about 1000 dyn-cm/cm3 to about 2×106 dyn-cm/cm3.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 6, 2004
    Assignee: Agere Systems Inc.
    Inventors: Debra Anne Fleming, Gideon S. Grader, David Wilfred Johnson, Jr., John Thomson, Jr., Robert Bruce Van Dover
  • Publication number: 20040052976
    Abstract: Non-spherical particles including a major dimension, for example flakes of material, are positioned with the major dimension oriented generally along an article surface in respect to which the particle is disposed. The particles, disposed in a fluid medium, the viscosity of which can be increased to secure the particles in position, are positioned using a force on the particles. The force includes torque force from a magnetic field, force from flow of the fluid medium, the force of gravity, and the force of surface tension alone or in combination with the force of gravity.
    Type: Application
    Filed: September 16, 2003
    Publication date: March 18, 2004
    Applicant: General Electric Company
    Inventors: Matthew B. Buczek, Andrew Jay Skoog, Jane Ann Murphy, Daniel Gustov Backman, Israel S. Jacobs, John Frederick Ackerman
  • Patent number: 6696107
    Abstract: The present invention relates to a method for producing an ordered array of nanoparticles on a substrate surface and to a nanomaterial having such an ordered array of nanoparticles. Particularly, but not exclusively, the invention relates to the provision of an ordered array of magnetic nanocrystals on a substrate surface. Although the present invention is not limited to the production of a magnetic array, one important object of the present invention is the production of a material suitable for use as an ultra high density magnetic data storage medium. According to the present invention there is provided a method of producing a structure comprising a plurality of nanoparticles distributed across a surface of a substrate in a predetermined array, the method comprising the steps of: i) providing a substrate which has a passivated surface; ii) depositing nanoparticles on to said surface; and iii) displacing said particles over said surface to configure them in said predetermined array.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: February 24, 2004
    Assignee: Council for the Central Laboratory of the Research Councils
    Inventor: Derek A. Eastham
  • Publication number: 20040013820
    Abstract: A tapered profile magnetic field pulsed laser deposition (PLD) system and method for depositing a thin film on a substrate are provided. The system includes a tapered pulsed coil arranged relative to a confinement magnetic device so that the plume discharged from the confinement magnetic device is collected and concentrated by an inwardly tapered surface of the tapered pulsed coil which causes the plume to be deflected towards a substrate on which the charged species are deposited to form the thin film. In yet a further aspect, a device for maintaining cleanliness of an interior of a deposition chamber laser entry window through which a laser beam enters and converges to a target is provided. A plume that is generated when a laser beam ablates the target is ionized as a result of radioactive members such that the ionized plume is deflected toward one of the first members (e.g., metal plates) as opposed to coating the interior of the laser entry window.
    Type: Application
    Filed: July 17, 2003
    Publication date: January 22, 2004
    Inventor: Fred J. Cadieu
  • Publication number: 20040009309
    Abstract: A magnetic field is applied to planarize magnetic pigment flakes relative to a surface. Pigment flakes, such as optically variable pigment flakes, are used in a variety of paints, inks, extrusions, powder coatings, and other forms for decorative and security applications. In many applications pigment flakes tend to align parallel to each other and to the surface to which they are applied. If the pigment flakes include a suitable magnetic structure, a magnetic field can be applied to subsequently align the flakes or enhance the alignment of the flakes in the plane of the substrate if the carrier that the flakes are dispersed in is still fluid. In some printing operations, pigment flakes that are applied parallel to the substrate are pulled out of plane when the print screen or printing die is lifted off the substrate. Application of a magnetic field can re-align pigment flakes to the plane of the substrate, enhancing the visual quality of the printed image, especially with optically variable pigments.
    Type: Application
    Filed: November 13, 2002
    Publication date: January 15, 2004
    Applicant: Flex Products, Inc., a JDS Uniphase Company
    Inventors: Vladimir P. Raksha, Charles T. Markantes, Dishuan Chu, Paul G. Coombs
  • Publication number: 20030215663
    Abstract: Thin, flexible composite materials, which are magnetic or magnetizable and processes for producing and using the materials. The composite material contains a laminate formed from a mixture of magnetic or magnetizable particles, binder particles (and optionally active particles), applied to and fused and/or coalesced with a first substrate. The composite preferably contains an additional second substrate fused to and/or coalesced with, the laminate on the side of the laminate opposite that of the first substrate.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 20, 2003
    Inventor: Evan E. Koslow
  • Patent number: 6649223
    Abstract: The apparatus for plasma treatment of a non-conductive hollow substrate (5), comprises a plasma chamber (12) provided with two oppositely facing field admission windows (8, 9), and first and second opposite coil arrangements (20, 30) located on an outer surface (8a; 9a) of the first and second windows respectively. The first and second coil arrangements being connected to power supply means (4) such that a current (I) of a same direction flows simultaneously in the first and second coil arrangements. The two coil arrangements (20, 30) induce through the substrate a magnetic flux (7) transversal and perpendicular to a substrate depth (L) for generating an electrical field in the substrate plan.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: November 18, 2003
    Assignee: European Community (EC)
    Inventors: Pascal Colpo, François Rossi
  • Patent number: 6620464
    Abstract: Construction substrates that have one or more coatings are disclosed. In one embodiment the coating is an adhesive mixture that is magnetically induced to attract a magnetic template. The template that is magnetic or magnetically attracted, that is applied to a construction substrate, is used to create a pattern when a subsequent coating is applied to the substrate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope of meaning of the claims.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: September 16, 2003
    Assignee: Vincor
    Inventor: Vincent Sciandra
  • Publication number: 20030165637
    Abstract: Methods and devices for producing images on coated articles are provided. The methods generally comprise applying a layer of magnetizable pigment coating in liquid form on a substrate, with the magnetizable pigment coating containing a plurality of magnetic non-spherical particles or flakes. A magnetic field is then applied to selected regions of the pigment coating while the coating is in liquid form, with the magnetic field altering the orientation of selected magnetic particles or flakes. Finally, the pigment coating is solidified, affixing the reoriented particles or flakes in a non-parallel position to the surface of the pigment coating to produce an image such as a three dimensional-like image on the surface of the coating. The pigment coating can contain various interference or non-interference magnetic particles or flakes, such as magnetic color shifting pigments.
    Type: Application
    Filed: December 23, 2002
    Publication date: September 4, 2003
    Applicant: Flex Products, Inc.
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Charles T. Markantes, Paul G. Coombs, Matthew R. Witzman
  • Patent number: 6598425
    Abstract: A method and apparatus for manufacturing optical components. A burner generates soot, and a surface area collector collects the soot. The burner is disposed such that the soot collected within the surface area collector is substantially not reheated by subsequently deposited soot. Magnetic forces direct the soot to desired location(s) within the surface area collector. The surface area collector operates at relatively low temperatures sufficient to retain rather volatile substances, such as fluorine, in the soot.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: July 29, 2003
    Assignee: Corning Incorporated
    Inventors: Daniel W. Hawtof, Joseph M. Whalen
  • Patent number: 6599583
    Abstract: A method for forming segmented through holes in a printed circuit board. The segmented through holes comprise a plurality of electrically conductive pathways disposed on the walls of a single through hole. The segmented through hole can be disposed in a two sided circuit board assembly or in a composite, multi layer circuit board assembly.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: July 29, 2003
    Inventor: N. Edward Berg
  • Publication number: 20030122252
    Abstract: After a barrier film is formed on a pad electrode, Ni particles having a diameter of 2 &mgr;m or less are selectively deposited on the barrier film, thereby forming a Ni fine particle film. Then, a bump electrode made of a solder ball is provided on the pad electrode through the Ni fine particle film. Thereafter, the bump electrode is melted by a heat treatment to join the Ni fine particle film to the bump electrode. Thus, a bump electrode structure is finished.
    Type: Application
    Filed: December 9, 2002
    Publication date: July 3, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Sakata, Keiichi Sasaki, Nobuo Hayasaka, Katsuya Okumura, Hirotaka Nishino
  • Publication number: 20030116747
    Abstract: A coating, such as ink or paint, is used, where particles in the coating are selected based on electric, magnetic, or light/photo properties, and are dispersed in the coating to provide a desired physical color. In one approach, the application of the coating to the substrate such as paper is controlled using an electric or magnetic field. In another approach, a pattern is formed in a coating on a substrate by targeting an electric, magnetic or photo field to specific locations on the coating. In yet another approach, the color of a coating that is applied to an object is shifted to match a background color so that the coating appears to be erased. In this approach, the coating may be in the form of a label, such as a bar code, that can be read by a scanner at a point of sale location. In another approach a pattern or code is scrambled or removed by applying an electric, magnetic, or photo field to specific locations on the coating or substrate.
    Type: Application
    Filed: December 20, 2001
    Publication date: June 26, 2003
    Inventors: Kwok-Wai Lem, Ronald P. Rohrbach
  • Publication number: 20030104142
    Abstract: To prevent the film forming characteristic deterioration by a magnetic field of a magnetic filter to thereby make vacuum arc vapor deposition uniform, in the invention, plurality of magnets includes a terminal magnet closest to a plasma injection hole located at the other end of duct and specified magnets. The terminal magnet located closest to plasma injection hole may be set to incline to a plasma injection plane of the plasma injection hole. Further, at lease one of specified magnets may be inclined to the plasma injection plane. Further more, at least one of magnetic field generating coils may be formed with a plurality of electromagnetic coils, which are inclined at different angles with respect to a cross section of the duct. One of electromagnetic coils may be selectively energized by current on a basis of setting and controlling of deflection magnetic field generated by the magnetic filter.
    Type: Application
    Filed: November 27, 2002
    Publication date: June 5, 2003
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: Yasuo Murakami, Takashi Mikami, Kiyoshi Ogata, Hiroshi Murakami
  • Patent number: 6569812
    Abstract: A polycrystalline silver member is stuck on a given long member made of Hastelloy material or stainless steel material, to make a long base material. Then, an yttrium-based high temperature superconducting film is fabricated in the long base material by a CVD method with applying a magnetic field of preferable 2T or over. Thereby, an yttrium-based high temperature superconducting tape can be provided which can maintain the superconductivity under a higher magnetic field environment.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: May 27, 2003
    Assignee: Tohoku University
    Inventors: Kazuo Watanabe, Mitsuhiro Motokawa
  • Patent number: 6558738
    Abstract: A circuit pattern is formed with an electrically conductive paste composed by mixing electrically conductive fillers, the shapes of which have aspect ratios, and a magnetic material, a shape of which has an aspect ratio, in a resin 4. In addition, a circuit pattern is formed with complexes 10 of electrically conductive fillers, the shapes of which have aspect ratios, and a magnetic material 2, and the circuit pattern 21 is hardened while a magnetic line of force is applied in the thickness direction of the circuit pattern 21.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: May 6, 2003
    Assignee: Yazaki Corporation
    Inventor: Hitoshi Ushijima
  • Publication number: 20030082396
    Abstract: Thin, flexible composite materials, which are magnetic or magnetizable and processes for producing and using the materials. The composite material contains a laminate formed from a mixture of magnetic or magnetizable particles, binder particles (and optionally active particles), applied to and fused and/or coalesced with a first substrate. The composite preferably contains an additional second substrate fused to and/or coalesced with, the laminate on the side of the laminate opposite that of the first substrate.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 1, 2003
    Inventor: Evan E. Koslow
  • Patent number: 6555180
    Abstract: A system and method for directing metal or ceramic particles toward a substrate (18) in a vacuum chamber includes a powder hopper (11), an enclosure (12) containing multiple differentially pumped vacuum chambers (19), a charging lamp (13), a tube (14), multiple charging and heating diodes 15, and an electromagnetic field generating device (EFGD) (17). The hopper (11) holds metal or ceramic particles, the chambers (19) propel the particles through the tube (14) towards substrate (18) positioned close to the tube, charging lamp (13) charges the particles, diodes (15) are used to heat the particles, and the EFGD (17) controls the direction of the particles propelled out of the tube.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 29, 2003
    Assignee: Vanderbilt University
    Inventors: William Hofmeister, David Gustafson, Bridget Rogers
  • Publication number: 20030077397
    Abstract: The invention relates to a method for manufacturing a hot-dip plated metal strip comprising the steps of: introducing a metal strip into a molten metal bath of plating metal to adhere the molten metal onto the surface of the metal strip; taking out the metal strip, after turning the running direction of the metal strip, from the molten metal bath without applying external force from outside the surface of the metal strip; adjusting the plating weight of the molten metal adhered onto the metal strip; and controlling the shape of the metal strip using magnetic force in non-contact state directly before or after the step of adjusting the coating weight. The invention prevents adhesion of dross to the metal strip without degrading the productivity, and thus manufactures a high quality hot-dip plated metal strip.
    Type: Application
    Filed: November 7, 2002
    Publication date: April 24, 2003
    Applicant: NKK Corporation
    Inventors: Kazuhisa Kabeya, Kyohei Ishida, Munehiro Ishioka, Hideyuki Takahashi, Toshio Ishii, Yoichi Miyakawa, Akira Gamou, Yoshikazu Suzuki
  • Publication number: 20030077404
    Abstract: A magnetic paint conveyor system having a conveyor for conveying ferromagnetic items into and through a powder-coating paint booth. A permanent magnet is mounted on one side of a magnetically-conductive conveyor belt for the conveyor. As the magnetically-conductive conveyor belt slides over the permanent magnet, magnetic attractive forces are transferred through the belt. The ferromagnetic items are magnetically connected to the magnetically-conductive conveyor belt over the length of the permanent magnet. A feed conveyor may be provided for supplying ferromagnetic items to the magnetized portion of the magnetically-conductive conveyor belt. The ferromagnetic items fall off the magnetically-conductive conveyor belt onto an exit conveyor when they extend just beyond the end of the permanent magnet. The exit conveyor may lead to, for example, a curing oven. A belt cleaner is provided to clean powder paint particles off the belt for reuse.
    Type: Application
    Filed: October 19, 2001
    Publication date: April 24, 2003
    Applicant: The Coleman Company, Inc.
    Inventor: Donald L. Hartley
  • Publication number: 20030077391
    Abstract: A method for making cured Anisotropic Conductive Elastomer (ACE) material, the ACE comprising a mixture of magnetic conductive particles and an elastomer, wherein uncured ACE material is spread on a carrier and then cured with heat under a magnetic field, the method comprising coating the carrier with a layer of material that is solid when the uncured ACE is applied, but melts at the ACE curing temperature, spreading uncured ACE material on the carrier over the coating, and heating the ACE material to a temperature at least sufficient to melt the coating layer, to allow the conductive particles to protrude into the melted carrier layer.
    Type: Application
    Filed: October 2, 2002
    Publication date: April 24, 2003
    Inventor: Everett Simons
  • Patent number: 6548124
    Abstract: A method for the controlled nanometer-scale deposition of molecules on a surface, by means of coherently controlled optical focusing. The coherent control is conveniently performed by inducing a linear superposition of molecular bound states, by means of electromagnetic fields supplied by an applied laser beam. The optical focusing is conveniently performed by passing a beam of such suitably prepared molecules through another electromagnetic field supplied by a standing wave induced by two interacting laser beams. Altering the characteristics of the laser beams alters the forces operating on the molecules, thus directing them to the desired position on the surface. Selection of the frequencies, intensities, and relative phases of the electromagnetic fields, as well as the geometry of the interaction between the molecular beam and the electromagnetic fields, enables deposition of aperiodic molecular patterns on the surface with a resolution of 10 to 15 nanometers.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: April 15, 2003
    Assignees: Yeda Research & Development Co. Ltd.
    Inventors: Paul Brumer, Bijoy Dey, Moshe Shapiro
  • Patent number: 6528110
    Abstract: A method for modifying a porous mechanical component by using an ER or MR substance including the steps of providing at least one porous component having a porosity sufficient to receive the MR substance within a plurality of pores and impregnating the component with the MR substance.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: March 4, 2003
    Assignee: Visteon Global Technologies, Inc.
    Inventor: Norman Szalony
  • Publication number: 20030030027
    Abstract: The present invention includes magnetizable coating composition for application to a substrate. The coating composition includes a plurality of strontium and or barium hexaferrite particles having a random magnetic pole alignment. The coating composition also includes a binder adhesive capable of suspending the strontium hexaferrite particles. The binder adhesive is a latex capable of adhering in a substantially thin film to the substrate. The strontium hexaferrite particles are normally present between 50% to 98% of the coating composition's total weight when dried on the substrate. The thickness of the film of the coating composition is at least about 0.5 mils thick, and has 6 to 24 magnetic pole changes per linear inch. The binder adhesive allows for manipulation of the strontium hexaferrite particles to a non-random magnetic pole alignment after the ferromagnetic particles have dried in the binder adhesive on the substrate.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 13, 2003
    Inventors: R. William Graham, Daniel F. Peters, Charles E. Adams, Ricky L. Helton
  • Patent number: 6514575
    Abstract: Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: February 4, 2003
    Assignee: University of Iowa Research Foundation
    Inventors: Johna Leddy, Sudath Amarasinghe
  • Publication number: 20030021910
    Abstract: A plasma processing apparatus and method is equipped with a vacuum chamber, helmholtz coils, a microwave generator and gas feeding systems. An auxiliary magnet is further provided in order to strengthen the magnetic field in the vacuum chamber to produce centrifugal drifting force which confine the plasma gas about the, center position of the vacuum chamber.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 30, 2003
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoki Hirose, Takashi Inujima, Toru Takayama
  • Publication number: 20030012871
    Abstract: A method for modifying a porous mechanical component by using an ER or MR substance including the steps of providing at least one porous component having a porosity sufficient to receive the MR substance within a plurality of pores and impregnating the component with the MR substance.
    Type: Application
    Filed: December 29, 2000
    Publication date: January 16, 2003
    Applicant: Visteon Global Technologies, Inc.
    Inventor: Norman Szalony
  • Patent number: 6500498
    Abstract: A method for fabricating a magneto-optic modulator, such as for use with a solid state ring resonator gyroscope. The method includes inducing a magnetic field at a substrate holder as a layer of magnetic material is being deposited on a substrate. The magnetic field helps to optimally orient the deposited magnetic material layer to improve the characteristics of the magneto-optic modulator. In addition to inducing a magnetic field, a low energy ion beam may be applied to optimize orientation. The method can be used to fabricate a magneto-optic modulator on a substrate containing a partially fabricated ring resonator without destroying previously fabricated components.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: December 31, 2002
    Assignee: Honeywell International Inc.
    Inventors: Carol M. Ford, Randy J. Ramberg
  • Patent number: 6465058
    Abstract: A method of applying blend drop granules to an asphalt coated sheet includes moving an asphalt coated sheet in a machine direction, and depositing blend drops of granules on a blend drop conveyor that is positioned above the asphalt coated sheet. The blend drop conveyor has an upper flight moving in a direction opposite the machine direction and a lower flight moving in the machine direction. The blend drops are moved from the upper flight to the lower flight of the blend drop conveyor while retaining the blend drops in contact with the blend drop conveyor by magnetic force. Finally. The blend drops are released from the blend drop conveyor for contact with the asphalt coated sheet.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: October 15, 2002
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: William Huykman, David P. Aschenbeck, John D. Phillips
  • Patent number: 6465053
    Abstract: Magnetic field sensors and magnetic memories have at least two magnetoresistive bridge elements (A,B,C,D), wherein each magnetoresistive element comprises a free (F) and a pinned (P) ferromagnetic layer. The magnetization directions of pinned ferromagnetic layers are different for the two bridge elements. In the method, in a first deposition step, a first ferromagnetic layer of one of the two said elements is deposited, during which deposition a magnetic field is applied to pin the magnetization direction MP in the first ferromagnetic layer in a first direction. Then, in a second deposition step, a second ferromagnetic layer of the other of the two said elements is deposited, during which deposition a magnetic field is applied to pin the magnetization direction in the second ferromagnetic layer in a second direction different from, preferably opposite to, the magnetization direction in the first ferromagnetic layer.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 15, 2002
    Inventors: Kars-Michiel Hubert Lenssen, Antonius Emilius Theodorus Kuiper, Joannes Baptist Adrianus Dionisius Van Zon
  • Patent number: 6454912
    Abstract: The present invention is related to methods and apparatus for processing weak ferroelectric films on semiconductor substrates, including relatively large substrates, e.g., with 300 millimeter diameter. A ferroelectric film of zinc oxide (ZnO) doped with lithium (Li) and/or magnesium (Mg) is deposited on a substrate in a plasma assisted chemical vapor deposition process such as an electron cyclotron resonance chemical vapor deposition (ECR CVD) process. Zinc is introduced to a chamber through a zinc precursor in a vaporizer. Microwave energy ionizes zinc and oxygen in the chamber to a plasma, which is directed to the substrate with a relatively strong field. Electrically biased control grids control a rate of deposition of the plasma. The control grids also provide Li and/or Mg dopants for the ZnO to create the ferroelectric film. A desired ferroelectric property of the ferroelectric film can be tailored by selecting an appropriate composition of the control grids.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: September 24, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20020127350
    Abstract: A method and apparatus for forming a layer on a substrate in a process chamber during a plasma deposition process are provided. A plasma is formed in a process chamber, a process gas with precursor gases suitable for depositing the layer are flowed into the process chamber, and a magnetic field having a strength less than about 0.5 gauss is attenuated within the process chamber. Attenuation of such a magnetic field results in an improvement in the degree of process uniformity achieved during the deposition.
    Type: Application
    Filed: March 7, 2001
    Publication date: September 12, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Kaveh Niazi, Tsutomu Tanaka, Canfeng Lai, Robert Duncan