Immersion Bath Utilized Patents (Class 427/601)
  • Patent number: 9520563
    Abstract: Organic semiconductor material can be patterned from a solution onto a substrate by selectively wetting the substrate with the solution while applying a mechanical disturbance (such as stirring the solution while the substrate is immersed, or wiping the solution on the substrate). The organic semiconductor material can then be precipitated out of the solution, for example to bridge gaps between source and drain electrodes to form transistor devices. In some embodiments, the solution containing the organic semiconductor material can be mixed in an immiscible host liquid. This can allow the use of higher concentration solutions while also using less of the organic semiconductor material.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: December 13, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stefan Christian Bernhardt Mannsfeld, Armon Sharei, Zhenan Bao
  • Publication number: 20150125758
    Abstract: Disclosed is a preparation method of graphene film. The method comprises the following steps: providing a clean substrate, followed by positively charged processing of the substrate surface; preparing suspension of graphene with negative charges on surface and the suspension of graphene with positive charges on surface respectively; immersing the surface-treated substrate into the suspension of graphene with negative charges on surface for 5-20 minutes, then taking the substrate out, washing, drying, and then immersing it into the suspension of graphene with positive charges on surface for 5-20 minutes, then taking the substrate out, washing, drying, so alternately repeated 10 to 50 times to obtain a graphene film precursor, and finally reducing the graphene film precursor at 500-1000° C. to obtain the grapheme film.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 7, 2015
    Inventors: Mingjie Zhou, Feng Wu, Yaobing Wang
  • Patent number: 9017773
    Abstract: A method is described for depositing nanostructures, such as nanostructures of conducting polymers, carbon nanostructures, or combinations thereof. The process comprises placing the nanostructures in a liquid composition comprising an immiscible combination of aqueous phase and an organic phase. The mixture is mixed for a period of time sufficient to form an emulsion and then allowed to stand undisturbed so that the phases are allowed to separate. As a result the nanostructure materials locate at the interface of the forming phases and are uniformly dispersed along that interface. A film of the nanostructure materials will then form on a substrate intersecting the interface, said substrate having been placed in the mixture before the phases are allowed to settle and separate.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Julio M. D'Arcy, Richard B. Kaner
  • Publication number: 20150096442
    Abstract: A composite membrane for separations includes a fabric with a non-woven array of intermingled carbon nanotubes, and a dopant incorporated with the fabric to form a non-porous, permeable composite. The composite membrane may be used to separate a target gas from a liquid by mounting the composite membrane in a housing chamber, and conditioning a permeate side of the chamber to establish a driving force for the target gas across the non-porous, permeable composite membrane.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 9, 2015
    Inventors: Carl Sims, Quan Liu
  • Publication number: 20140332066
    Abstract: Disclosed is an active material for a counter-electrode. The material comprises a carbon aerogel and platinum loaded on the carbon aerogel, the platinum having a mass content of 1% to 5% in the active material for a counter-electrode. The active material for a counter-electrode has a relatively high photoelectric conversion efficiency. In addition, also provides are a method for preparing the active material for a counter-electrode, a solar cell counter-electrode using the active material for a counter-electrode and a method for preparing the solar cell counter-electrode.
    Type: Application
    Filed: November 23, 2011
    Publication date: November 13, 2014
    Applicants: OCEAN'S LIGHTING SCIENCE & TECHNOLOGY CO., LTD., SHENZHEN OCEAN'S KING LIGHTING ENGINEERING CO., LTD.
    Inventors: Mingjie Zhou, Ping Wang, Xiaoming Feng, Jixing Chen
  • Patent number: 8883255
    Abstract: Disclosed is a process for producing a resin-coated metal pigment comprising 100 parts by weight of a metal pigment and 0.1 to 50 parts by weight of a resin, wherein the resin is attached on the surface of the metal pigment, the process comprising applying an ultrasonic vibration during resin coating treatment.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 11, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Fahmi Yunazar, Shigeki Katsuta
  • Publication number: 20140305571
    Abstract: Advantageous films and coatings (e.g., transparent conductive films), and improved methods for fabricating such films and/or coatings, are provided. The improved methods for fabricating transparent conductive films/coatings may involve trapping at least a portion of a layered material (e.g., graphene sheet(s) or layer(s) of graphite) at an interface of a phase separated system (e.g., at an interface of two non-mixing solvents). Transparent, one to four layer, conductive films/coatings of pristine natural flake graphene are produced by kinetically trapping graphene sheets at an interface of a phase separated system (e.g., at an oil/water interface).
    Type: Application
    Filed: April 9, 2014
    Publication date: October 16, 2014
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Douglas H. Adamson, Steven Woltornist, Andrey V. Dobrynin
  • Patent number: 8834953
    Abstract: The present invention relates to a protein-binding material including a mesoporous silica and a method for selectively separating and purifying using the protein-binding material. More specifically, the present invention relates to a method of preparing a magnetic mesoporous silica responding to a magnetic field by adsorbing a precursor of a transition metal or its ion, such as an iron (Fe) precursor, onto a mesoporous silica, and to a protein-binding material prepared by coating the surface of the magnetic mesoporous silica with a transition metal or its ion so as to be capable of binding to a specific protein labeled with histidine, and also to a method of selectively separating and purifying a specific protein using the protein-binding material.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Korea Institute of Ceramic Engineering and Technology
    Inventors: Jeong Ho Chang, Jiho Lee, Soo Youn Lee
  • Patent number: 8802202
    Abstract: A method of surface coating a metallic object, including removing substantially all of the existing silver sulfide tarnish if present, ultrasonically cleaning the object with immersion in a solvent, uniformly dispersing selected nanoparticles over the surface of the object by sonicating the object in an ultrasonic bath containing the selected nanoparticles. The invention further includes quickly rinsing the object with solvent upon removal from the ultrasonic bath to inhibit formation of large agglomerates, drying the object with a flow of gas, optically inspecting the object for the presence of agglomeration and applying a barrier layer conformal coating and a protective layer conformal coating.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: August 12, 2014
    Inventors: Suneeta S. Neogi, Jayant Neogi
  • Publication number: 20140193661
    Abstract: A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes the steps of: (a) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (b) maintaining the suspension by agitation in the reservoir; (c) immersing the substrate in the reservoir; (c) applying a first coating of the suspension to the substrate; (d) removing the substrate with the applied first coating from the reservoir; and (e) sintering the sinterable particles to the substrate thereby forming a coated substrate.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicant: Mott Corporation
    Inventors: James K. Steele, Wayne F. White, Alfred M. Romano, Kenneth L. Rubow
  • Publication number: 20140154577
    Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
    Type: Application
    Filed: June 21, 2012
    Publication date: June 5, 2014
    Applicant: Molecular Rebar Design, LLC
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8722155
    Abstract: A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic “cross-talk” between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 13, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Bart Raeymaekers, Dipen N. Sinha
  • Publication number: 20140079892
    Abstract: Disclosed is a process for producing a resin-coated metal pigment comprising 100 parts by weight of a metal pigment and 0.1 to 50 parts by weight of a resin, wherein the resin is attached on the surface of the metal pigment, the process comprising applying an ultrasonic vibration during resin coating treatment.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 20, 2014
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Fahmi YUNAZAR, Shigeki KATSUTA
  • Publication number: 20130344259
    Abstract: An alcohol-free aqueous pearl treatment composition that includes a water-based emulsion of particle size less than 1.0 microns, wherein, in use, the alcohol-free aqueous pearl treatment composition infuses into pearls to inhibit ageing of the pearls. This disclosure describes a method for the treatment of pearls including the steps of: a) introducing into a bath an alcohol-free aqueous composition, the composition comprising a water-based emulsion of particle size less than 1.0 microns; b) introducing one or more pearls into the bath; and c) operating the bath for a prescribed period to allow the alcohol-free aqueous composition to infuse into the one or more pearls in a first treatment step; wherein, in use, the alcohol-free aqueous composition inhibits ageing of the one or more pearls.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 26, 2013
    Inventors: Stephen Paul Birkbeck, Christian Sarbach
  • Patent number: 8555806
    Abstract: An apparatus for making an electrode of a dye-sensitized solar cell, includes a dye container, a number of nozzles, a roller and a number of holders. The dye container has a chamber for receiving a dye material, and the chamber has a top wall and a number of through holes formed through the top wall. The nozzles each have an opening facing toward a substrate to be formed into the electrode and configured for jetting a working material to the substrate. The roller rolls the working material on the substrate. The holders are rotatably mounted on the top wall and each hold a corresponding substrate to first receive the working material and then to be submerged into the dye material through one of the through holes of the dye container by rotation, thereby obtaining the electrode of a dye-sensitized solar cell.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 15, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Publication number: 20130260157
    Abstract: A uniform nanocrystalline diamond thin film with minimized voids is formed on a silicon oxide-coated substrate and a method for fabricating same are disclosed. The nanocrystalline diamond thin film is formed by performing hydrogen plasma treatment, hydrocarbon plasma treatment or hydrocarbon thermal treatment on the substrate surface to maximize electrostatic attraction between the substrate surface and nanodiamond particles during the following ultrasonic seeding such that the nanodiamond particles are uniformly distributed and bound on the silicon oxide on the substrate.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Inventors: Wook Seong LEE, Hak Joo LEE, Young Joon BAIK, Jong Keuk PARK
  • Publication number: 20130251594
    Abstract: The present invention solves the technical problem of manufacturing process and design of optical chemical sensor, in which interaction of the indicator with the analyte allows quick and reliable spectrofluorimetric determination of organophosphates. The procedure for creation an optical chemical sensor with sol-gel membrane for detection of organophosphates, is characterized in that it begins with the preparation of the membrane so that the indicator C1, which is dissolved in ethanol (10?7 M), add tetraethoxysilane (TEOS) and methyltriethoxysilane (MTriEOS) and stirr in an ultrasonic bath for 10 minutes; to then add the catalyst solution (0.001 M HCI) and mix again in an ultrasonic bath for 20 minutes; to make coatings on the glass slides after 24 h of sol aging in a closed container at room temperature and so that the slide is dipped in the sol and slowly pulled out from it, and let to dry for 24 hours at room temperature to form a membrane; to wipe coating on one side slides before drying.
    Type: Application
    Filed: November 25, 2011
    Publication date: September 26, 2013
    Inventor: Aleksandra Lobnik
  • Patent number: 8541067
    Abstract: The method of laser treating Ti-6Al-4V to form surface compounds is a method of forming barrier layers on surfaces of Ti-6Al-4V workpieces. The Ti-6Al-4V workpiece is first cleaned and then a water-soluble phenolic resin is applied to at least one surface of the Ti-6Al-4V workpiece. The Ti-6Al-4V workpiece and the layer(s) of water soluble phenolic resin are then heated to carbonize the phenolic resin, thus forming a carbon film on the at least one surface. TiC particles are then inserted into the carbon film. Following the insertion of the TiC particles, a laser beam is scanned over the at least one surface of the Ti-6Al-4V workpiece. A stream of nitrogen gas is sprayed on the surface of the Ti-6Al-4V workpiece coaxially and simultaneously with the laser beam at a relatively high pressure, thus forming a barrier layer of TiCxN1-x, TiNx, Ti—C, and Ti2N compounds in the surface region.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas, Abdul Aleem Bangalore Jabbar
  • Publication number: 20130059203
    Abstract: Provided are an anode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. An anode active material for a lithium secondary battery according to the present invention includes: active particles by means of which lithium ions may be absorbed/released; and a coating layer coated on the surface of the active particles, wherein the coating layer includes a first material which is a hollow nanofiber and a second material which is a carbon precursor or LTO.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: ROUTE JJ CO., LTD.
    Inventors: Ji Jun Hong, Ki Taek Byun, Hyo Won Kim
  • Publication number: 20130015122
    Abstract: The nanocomposite membrane includes a composite of carbon nanotubes coated or chemically bonded with metal oxide nanoparticles. This composite is embedded within a polymeric matrix via interfacial polymerization on a polysulfone support. The metal oxide particles are selected to exhibit catalytic activity when filtering pollutants from water in a water treatment system, or for separating a gas from a liquid, or for selectively separating particles or ions from solution for reverse osmosis (e.g., for desalination systems), or other filtration requirements. A method of fabricating the nanocomposite membrane is also included herein.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: TAWFIK ABDO SALEH AWADH
  • Publication number: 20120263777
    Abstract: An environment-friendly porous bead-satellite nanoparticles composite which has excellent recovery and repeated usage performance and can be used as a catalyst, an antiviral agent, or an antimicrobial, and a fabrication method thereof are provided. The porous bead-satellite nanoparticles composite includes a porous bead, a molecule having a first end coupled to the surface of the porous bead and including a functional group at a second end, and satellite nanoparticles coupled to the functional group, wherein the porous bead may have a core-shell structure including a cluster core of nanoparticles and a porous bead shell covering the cluster core.
    Type: Application
    Filed: August 4, 2011
    Publication date: October 18, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyoungja WOO, Hye Hun PARK, Wooyoung PARK
  • Publication number: 20120264188
    Abstract: The present invention relates to a protein-binding material including a mesoporous silica and a method for selectively separating and purifying using the protein-binding material. More specifically, the present invention relates to a method of preparing a magnetic mesoporous silica responding to a magnetic field by adsorbing a precursor of a transition metal or its ion, such as an iron (Fe) precursor, onto a mesoporous silica, and to a protein-binding material prepared by coating the surface of the magnetic mesoporous silica with a transition Metal or its ion so as to be capable of binding to a specific protein labeled with histidine, and also to a method of selectively separating and purifying a specific protein using the protein-binding material.
    Type: Application
    Filed: August 11, 2011
    Publication date: October 18, 2012
    Applicant: KOREA INSTITUTE OF CERAMIC ENGINEERING AND TECHNOLOGY
    Inventors: Jeong Ho CHANG, Jiho LEE, Soo Youn LEE
  • Publication number: 20120237697
    Abstract: A method for the surface coating of CuBTC (Cu3(BTC)2, (BTC=1,3,5-benzenetricarboxylate; HKUST-1) Metal-Organic Framework (“MOF”) nanostructures on natural fibers is disclosed. The surface coating of CuBTC MOF nanostructures is achieved by sequential coating of the natural fibers with a copper precursor solution and a BTC precursor solution under ultrasound irradiation at ambient pressure and temperature. The results indicate a homogeneous coating of the CuBTC MOF nanostructures on the surface of the natural fibers with a narrow size distribution, which impart new properties on the final textile product, such as antimicrobial activity.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicants: TARBIAT MODARES UNIVERSITY
    Inventors: Amir Reza Abbasi, Ali Morsali
  • Publication number: 20120231352
    Abstract: A lithium- or lithium-ion electrochemical cell of the present invention comprises a lithium-containing cathode, an anode, and a non-aqueous lithium-containing electrolyte therebetween; wherein one or more of the anode and/or the cathode comprises at least one particulate carbon material comprising nanoparticles of the surface of individual carbon particles, wherein the nanoparticles are selected from one or more of (a) a metal oxide or sulfide comprising one or more metal ions selected from the group consisting of Ti, Fe, Mn, Co, Ni, Mo, W, In, and Sn; (b) one or more metals selected from the group consisting of Ti, Fe, Co, Mg, Al, Ga, In, and Sn; and (c) one or more metaloid selected from the group consisting of B, Si, Ge, and Sb.
    Type: Application
    Filed: April 24, 2012
    Publication date: September 13, 2012
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Vilas POL, Swati V. POL, Michael M. THACKERAY
  • Publication number: 20120183799
    Abstract: A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes: (1) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (2) maintaining the suspension by agitation; (3) transferring the suspension to an ultrasonic spray nozzle; (4) applying a first coating of the suspension to the substrate; and (5) sintering the sinterable particles to the substrate.
    Type: Application
    Filed: February 2, 2012
    Publication date: July 19, 2012
    Applicant: MOTT CORPORATION
    Inventors: James K. Steele, Wayne F. White, Alfred M. Romano, Kenneth L. Rubow
  • Publication number: 20120165454
    Abstract: Disclosed is a resin-coated metal pigment comprising 100 parts by weight of a metal pigment and 0.1 to 50 parts by weight of a resin, wherein the resin is attached on the surface of the metal pigment. The resin-coated metal pigment is produced by circulating a portion of a slurry solution containing the metal pigment in an external-circulation type vessel during the resin coating treatment in a reaction vessel and applying a vibration to the external-circulation type vessel with an ultrasonic wave.
    Type: Application
    Filed: September 18, 2009
    Publication date: June 28, 2012
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Fahmi Yunazar, Shigeki Katsuta
  • Patent number: 8202582
    Abstract: A micro structure which is preferred as an original plate of an antireflection, a mold of nano imprint or injection molding is obtained by a single particle film etching mask on which each particle is precisely aligned and closest packed in two dimensions. A single particle film etching mask is produced by a drip step wherein a dispersed liquid in which particles dispersed in a solvent are dripped onto a liquid surface of a water tank, a single particle film formation step in which a single particle film which consists of the particles by volatizing a solvent is formed, and a transfer step in which the single particle film is transferred to a substrate. The single particle film etching mask on which particles are closest packed in two dimensions, has a misalignment D(%) of an array of the particles that is defined by D(%)=|B?A|×100/A being less than or equal to 10%. However, A is the average diameter of the particles, and B is the average pitch between the particles in the single particle film.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: June 19, 2012
    Assignee: Oji Paper Co., Ltd.
    Inventor: Kei Shinotsuka
  • Publication number: 20120055628
    Abstract: Disclosed herein is a doping apparatus for manufacturing an electrode of an energy storage device. The doping apparatus according to the exemplary embodiment of the present invention includes: a doping chamber body providing a doping space where a process of doping lithium ions onto an electrode plate is performed; a plurality of doping plates laminated vertically in the doping chamber body and containing lithium; and an electrode plate feeder feeding the electrode plate so that the electrode plate passes through gaps among the doping plates.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 8, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hong Seok Min, Bae Kyun Kim, Hyun Chul Jung, Dong Hyeok Choi, Hak Kwan Kim
  • Publication number: 20120034396
    Abstract: A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic “cross-talk” between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.
    Type: Application
    Filed: March 14, 2011
    Publication date: February 9, 2012
    Applicant: Los Alamos National Security, LLC
    Inventors: Bart Raeymaekers, Dipen N. Sinha
  • Publication number: 20120027944
    Abstract: Processes for producing carbon fibre, the filament thereof and pre-oxidized fibre are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fibre obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fibre produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fibre is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fibre is manufactured by using polymer thickening agent.
    Type: Application
    Filed: January 11, 2010
    Publication date: February 2, 2012
    Inventors: Muhuo Yu, Huaiping Rong, Keqing Han, Zhaohua Wang, Yiwei Zhang, Yincai Tian, Qinli Dong, Xi Zhao, Hui Zhang
  • Publication number: 20110300767
    Abstract: The present invention discloses a novel system for preparing fabrics with antibacterial properties by sonochemically impregnating the fabrics with proteinaceous microspheres loaded with antibiotic. Antibacterial fabrics are widely used for production of outdoor clothes, under-wear, bed-linen, bandages, etc.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 8, 2011
    Applicant: BAR-ILAN UNIVERSITY
    Inventors: Aharon GEDANKEN, Ulyana Shimanovich, Ilana Perelshtein
  • Publication number: 20110281071
    Abstract: The invention relates to a method for introducing electrically conductive carbon particles into a surface layer comprising polyurethane. These carbon particles can in particular be carbon nanotubes. In the method according to the invention, a solution of non-aggregated carbon particles having a mean particle diameter of from 0.3 nm to 3000 nm acts in a solvent upon a surface layer comprising polyurethane. The solvent is able to cause the maceration of a surface layer comprising polyurethane. The dwell time is measured such that it is not sufficient to carry the polyurethane over into the solution. The invention furthermore relates to a polyurethane layer that comprises electrically conductive carbon particles and can be obtained by means of a method according to the invention. The invention likewise relates to a polyurethane object having surface layer comprising electrically conductive carbon particles, obtainable by a method according to the invention.
    Type: Application
    Filed: January 16, 2010
    Publication date: November 17, 2011
    Applicant: Bayer MaterialScience AG
    Inventor: Stephanie Vogel
  • Publication number: 20110177339
    Abstract: This invention provides nanometer-sized fluorescent magnetic particles and processes of making them. The nanoparticle has a core particle comprising a magnetic material and a fluorescent material, and the particle size is less than about 1 micrometer. The nanoparticles can be coated with an inorganic or organic layer and can be surface-modified. The nanoparticles can be used in many biological assays.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 21, 2011
    Inventors: Huachang Lu, Guangshun Yi, Depu Chen, Lianghong Guo, Jing Cheng
  • Publication number: 20110097957
    Abstract: We disclose a system for preparing antimicrobial fabrics, coated with metal oxide nanoparticles by means of a novel sonochemical method. These antibacterial fabrics are widely used for production of outdoor clothes, under-wear, bed-linen, bandages, etc. The deposition of metal oxides known to possess antimicrobial activity, namely ZnO, MgO and CuO, can significantly extent the applications of textile fabrics and prolong the period of their use. By means of the novel sonochemical method disclosed here, uniform deposition of metal oxide nanoparticles is achieved simply.
    Type: Application
    Filed: June 29, 2009
    Publication date: April 28, 2011
    Applicant: BAR ILAN UNIVERSITY
    Inventors: Aharon Gedanken, Yeshayahu Nitzan, Ilana Perelshtein, Nina Perkas, Guy Applerot
  • Publication number: 20110003155
    Abstract: The present invention relates to a surface chemically modified organic high polymer nanometer powder and its preparation method. The phosphoric acid modified nanometer powdery material of the present invention is polyether polyurethane or polyester polyurethane nanometer powder. The surface of the powder has self-assembled phosphate groups. It is prepared by the following method: phosphate groups are introduced into polyether polyurethane or polyester polyurethane nanometer powder in a phosphoric acid buffer solution by means of physical adsorption. This method can improve the stability and dispersibility of the powder and change its physical, chemical and biological properties and hopefully will realize intensive and extensive application in biomedical field. The surface modified nanometer powder of the present invention is in a controllable size of 50 nm˜500 nm and its surface Zeta potential in physiological environment is negative.
    Type: Application
    Filed: June 21, 2010
    Publication date: January 6, 2011
    Inventors: Jian Shen, Xiaohua Huang, Hongke Liu, Dan Zhu, Jianchun Bao, Chun Mao
  • Patent number: 7820249
    Abstract: An acoustic system for applying vibratory energy including a horn connected to an ultrasonic energy source. The horn defines an overall length and wavelength, and at least a leading section thereof is comprised of a ceramic material. The leading section has a length of at least ? the horn wavelength. In one preferred embodiment, an entirety of the horn is a ceramic material, and is mounted to a separate component, such as a waveguide, via an interference fit. Regardless, by utilizing a ceramic material for at least a significant portion of the horn, the ultrasonic system of the present invention facilitates long-term operation in extreme environments such as high temperature and/or corrosive fluid mediums. The present invention is useful for fabrication of metal matrix composite wires.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: October 26, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Satinder K. Nayar, Ronald W. Gerdes, Michael W. Carpenter, Kamal E. Amin
  • Publication number: 20100062186
    Abstract: A ultra-thin polymeric membrane is made by coating a porous substrate, such as a ceramic monolith, with a solution of a polymer colloid, then drying the solution to form the film. The polymer is an associating polymer. The resulting membrane may be used for separating hydrocarbon species, for example.
    Type: Application
    Filed: June 23, 2009
    Publication date: March 11, 2010
    Inventors: Dennis G. Peiffer, Randall D. Partridge, Walter Weissman, David C. Dalrymple
  • Publication number: 20100028633
    Abstract: A flexible, transparent electrode structure and a method of fabrication thereof are provided comprising a transparent electrode which may maintain electrical connectivity across a surface of a flexible substrate so that the substrate may flex without affecting the integrity of an electrical contact. The transparent electrode includes conductive nanowires that are coupled to the substrate through a conducting oxide layer. The conducting oxide layer effectively provides a template onto which the nanowires are deposited and serves to anchor the nanowires to the substrate surface.
    Type: Application
    Filed: January 18, 2008
    Publication date: February 4, 2010
    Applicant: Arizona Board of Regents, a bodycorporate acting f
    Inventors: Shawn O'Rourke, Pete Smith
  • Publication number: 20090311773
    Abstract: The invention relates to several embodiments of equipment for coating substrates for detecting one or more analytes by way of an affinity assay method, comprising: a receptacle receiving a liquid to be atomized (“liquid receptacle”) with substances (compounds) to be deposited onto at least one surface of said substrates and an atomized volume produced by the liquid in the operating state; an actuator for triggering the atomization process and; a fixture for receiving and storing the substrates during the coating process. The invention is characterized in that the substrates are not in contact with the surface of the liquid to be atomized. The invention also relates to several embodiments of methods for coating substrates with coupler and/or passivation layers for use in the detection of one or more analytes by way of an affinity assay method.
    Type: Application
    Filed: April 22, 2006
    Publication date: December 17, 2009
    Inventors: Eginhard Schick, Dominic Utinger, Claudio Calonder
  • Publication number: 20090130339
    Abstract: The present invention relates to a method of producing electroconductive electroless plating powder having excellent dispersibility and adherence, and, more particularly, to a method of producing electroconductive electroless plating powder having excellent dispersibility and adherence, using an electroless plating method of forming a metal plating layer on the surface of a base material made of resin powder in an electroless plating solution, wherein an ultrasonic treatment is performed at the time of forming the plating layer. The present invention has advantages in that an aggregation phenomenon, which is generated when the base material made of the resin powder is plated using an electroless plating method, does not occur and a plating reaction can be performed at low temperature, so that it is possible to obtain a compact plating layer and plating powder having improved uniformity and adherence with respect to resin powder.
    Type: Application
    Filed: October 13, 2006
    Publication date: May 21, 2009
    Inventors: Won Il Son, Dong Ok Kim, Jeong Hee Jin, Seok Heon Oh
  • Publication number: 20080299374
    Abstract: Disclosed is a method of manufacturing a transparent electrode having a carbon nanotube. The carbon nanotube powder is dispersed in a solvent to form a carbon nanotube ink. The carbon nanotube ink is coated on a substrate to prepare a carbon nanotube film. The carbon nanotube has a defect formed on a surface thereof. The defect is formed through an acid treatment process of immersing the carbon nanotube powder or the carbon nanotube film in a nitric acid, a sulfuric acid, a hydrochloric acid, a phosphoric acid, or a mixture thereof. The defect can be formed through an ultrasonic treatment process of exposing the carbon nanotube powder or the carbon nanotube film to an ultrasonic wave having a predetermined frequency and intensity.
    Type: Application
    Filed: March 10, 2008
    Publication date: December 4, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-young CHOI, Seong-jae CHOI, Hyeon-jin SHIN, Seon-mi YOON, Ki-kang KIM, Young-hee LEE
  • Patent number: 7448931
    Abstract: A carbon nanotube field emission device (100) includes a substrate (10), and a carbon nanotube array (30) formed on and secured to the substrate. This avoids separation of the carbon nanotubes from the substrate by electric field force in a strong electric field. Tips of the carbon nanotubes are exposed. A method for manufacturing the carbon nanotube field emission device includes the steps of: (a) depositing a catalyst film (20) on a substrate; (b) forming a carbon nanotube array on the substrate; (c) injecting an adhesive into the carbon nanotube array, and drying the adhesive; and (d) treating surfaces of the carbon nanotube array by laser. The carbon nanotube field emission device has reduced shielding between adjacent carbon nanotubes, reduced threshold voltage, and increased field emission current.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: November 11, 2008
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yu-Ming Liu, Liang Liu, Shou-Shan Fan
  • Publication number: 20080176071
    Abstract: Disclosed are a process for preparing single wall carbon nanotubes with surfactant-coated surface which comprises coating a surface of the carbon nanotubes with a surfactant by adding water to a mixture of the carbon nanotubes and the surfactant, ultrasonically treating the mixture, treating the ultrasonically treated mixture with a initiator, and applying a surfactant to the surface of the resultant carbon nanotubes and, in addition, the carbon nanotubes with surfactant-coated surface prepared by the above process. The formed carbon nanotubes of the present invention can maintain a stable dispersion condition regardless of change of an external environment and be stably dispersed in water even when putting the carbon nanotubes into the water after completely drying the same, so that the carbon nanotubes can be widely used in developing and manufacturing various products.
    Type: Application
    Filed: November 2, 2007
    Publication date: July 24, 2008
    Inventors: Sung-Min Choi, Changwoo Doe, Tae-Hwan Kim
  • Publication number: 20080145570
    Abstract: A method of preparing a carbon nanotube/polymer composite material is provided. The method includes (a) providing a carbon nanotube-based film and a pre-polymer solution; (b) placing the carbon nanotube-based film at a bottom of a container, and pouring the pre-polymer solution in the container; and (c) polymerizing the pre-polymer solution and simultaneously integrating the pre-polymer solution with the carbon nanotube-based film. As such, a carbon nanotube/polymer composite material, including the polymer-impregnated nanotube layer and an upper polymer layer, is obtained. A multi-layer composite can be produced by essentially repeating this process, using the upper polymer layer as the base layer for the formation of the next layer set thereon.
    Type: Application
    Filed: July 31, 2007
    Publication date: June 19, 2008
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Qiu- Cen Zhang, Peng-Cheng Song, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 7172785
    Abstract: The invention relates to a process for depositing a metal on a material. The process comprises the steps of: immersing the material in deposition solution comprising the metal; inducing a material vibration in the deposition solution having a frequency corresponding to a resonance frequency of the material; including a solution vibration in the deposition solution in a direction non-parallel to the material vibration, said solution vibration having a frequency corresponding to the a resonance frequency of the deposition solution, whereby said metal is deposited onto the material. This process results in deposition of metal from the plating bath on the material in a controlled and substantially uniform thickness.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: February 6, 2007
    Inventors: G. Alan Thompson, Theresa M Anderson, David E. Marx
  • Patent number: 7071006
    Abstract: Carriers hold remote-acting bodies which can be manipulated by a remote force, and also hold a micro-substance which is a target substance of an assay. The remote-acting bodies are manipulated in order to control the positions of the micro-substances, so as to execute assays for various target substances efficiently, at low cost, easily, and reliably. Various aspects of interest include the carriers which hold the micro-substances, a system suspending the carriers, an apparatus for manipulating the carriers, and a method of controlling the position of the carriers.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: July 4, 2006
    Assignee: Precision System Science Co., Ltd.
    Inventors: Hideji Tajima, Yoshiro Okami
  • Patent number: 6919569
    Abstract: A solid-state imaging element 2 having a light-receiving portion where a plurality of photoelectric conversion elements 21 are arranged, and electrode pads 22 electrically connected to the photoelectric conversion elements 21 is mounted on a substrate 1. A scintillator 3 is formed on the surface of the light-receiving portion of the solid-state imaging element. Around a support surface 10 where the solid-state imaging element 2 of the substrate 1 is mounted, holding portions 14 and 15 are formed on opposing side walls to hold and project the surface of the light-receiving portion from a vapor deposition holder toward a vapor deposition chamber in forming the scintillator 3.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: July 19, 2005
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takuya Homme, Kazuhisa Miyaguchi, Toshio Takabayashi
  • Patent number: 6881437
    Abstract: Methods and systems are provided which are adapted to process a microelectronic topography, particularly in association with an electroless deposition process. In general, the methods may include loading the topography into a chamber, closing the chamber to form an enclosed area, and supplying fluids to the enclosed area. In some embodiments, the fluids may fill the enclosed area. In addition or alternatively, a second enclosed area may be formed about the topography. As such, the provided system may be adapted to form different enclosed areas about a substrate holder. In some cases, the method may include agitating a solution to minimize the accumulation of bubbles upon a wafer during an electroless deposition process. As such, the system provided herein may include a means for agitating a solution in some embodiments. Such a means for agitation may be distinct from the inlet/s used to supply the solution to the chamber.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: April 19, 2005
    Assignee: Blue29 LLC
    Inventors: Igor C. Ivanov, Weiguo Zhang
  • Patent number: 6858248
    Abstract: This invention provides a method for efficiently applying a coating to each of a plurality of objects selected from the group consisting of ophthalmic lenses, molds for making ophthalmic lenses, and other medical devices, the method comprising dipping the plurality of objects into a coating bath containing a coating solution having a coating material; and creating with a means a convective current flow and thereby forcing a coating solution flowing over and under each of the plurality of ophthalmic lenses. In a preferred embodiment, the plurality of objects are held in baskets which are pre-conditioned to have a first layer of polyelectrolytes and a second layer of aqueous solution or have a mixed layer of polyelectrolytes and aqueous solution on the surfaces of the baskets.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: February 22, 2005
    Assignee: Novartis AG
    Inventors: Yongxing Qiu, Lynn Cook Winterton, John Martin Lally, Yasuo Matsuzawa, Rafael Victor Andino, Allen Gilliard
  • Patent number: 6804882
    Abstract: A coil device includes terminal electrodes each including a bottom-surface electrode provided on a bottom surface of a flange, side-surface electrodes provided on side surfaces of the flange, and an end-surface electrode provided on an end surface of the flange at the lower part of the end surface. The end-surface electrode is arranged on the end surface of the flange so that the upper edge of the end-surface electrode is disposed at a first level that is substantially the same as that of the upper edges of the side-surface electrodes in the vicinity of boundaries between the end surface and each side surface of the flange and is disposed at a second level lower than the first level at an approximate central portion of the end surface of the flange.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: October 19, 2004
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takaomi Toi, Koki Sasaki