Oxide-containing Component Patents (Class 428/632)
  • Publication number: 20130302638
    Abstract: Known protective layers with a high Cr content and additionally silicon form brittle phases which additionally embrittle during use under the influence of carbon. A protective layer including the composition of from 24% to 26% cobalt, from 10% to 12% aluminium, from 0.2% to 0.5T yttrium, from 12% to 14% chromium, remainder nickel is provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 14, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Patent number: 8580390
    Abstract: Provided is a rolled copper foil or electrolytic copper foil for an electronic circuit to be used for forming a circuit by etching, wherein the copper foil comprises a heat resistance layer composed of zinc or zinc alloy or its oxide formed on an etching side of the rolled copper foil or electrolytic copper foil, and a layer of nickel or nickel alloy, which is a metal or alloy with a lower etching rate than copper, formed on the heat resistance layer.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 12, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Keisuke Yamanishi, Kengo Kaminaga, Ryo Fukuchi
  • Publication number: 20130292816
    Abstract: A clad material 1A for insulating substrates is provided with a Ni layer 4 made of Ni or a Ni alloy, a Ti layer 6 made of Ti or a Ti alloy and arranged on one side of the Ni layer, and a first Al layer 7 made of Al or an Al alloy and arranged on one side of the Ti layer 6 that is opposite to a side of the Ti layer 6 on which the Ni layer 4 is arranged. The Ni layer 4 and the Ti layer 6 are joined by clad rolling. A Ni—Ti series superelastic alloy layer 5 formed by alloying at least Ni of constituent elements of the Ni layer 4 and at least Ti of constituent elements of the Ti layer 6 is interposed between the Ni layer 4 and the Ti layer 6. The Ti layer 6 and the first Al layer 7 are joined by clad rolling in an adjoining manner.
    Type: Application
    Filed: October 25, 2011
    Publication date: November 7, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Atsushi Otaki, Shigeru Oyama
  • Patent number: 8573814
    Abstract: An object with an internal cavity may serve as a cooling structure for a semiconductor package. The object includes a stack of form fitting bodies. The stack has a first form fitting body shaped according to the cavity with a first layer forming a partially form fitting surface, the first layer including a mixture of a first metal and an oxide of the first metal, and a second layer adjacent to the first layer. The second layer includes the first metal but less oxide of the first metal than the first layer. The stack has a second form fitting body shaped according to the cavity with a first layer forming a partially form fitting surface configured to conform to the partially form fitting surface of the first form fitting body.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 5, 2013
    Assignee: Excelitas Technologies GmbH & Co. KG
    Inventors: Ulrich Traupe, Pellegrino Ballacchino, Edgar Spandl
  • Publication number: 20130288072
    Abstract: An alloy to a protective layer for protecting a component against corrosion and/or oxidation, in particular at high temperatures is proposed. Known protective layers with a high Cr content and in addition silicon form brittle phases which additionally embrittle during use under the influence of carbon. The proposed protective layer has the composition of from 24% to 26% cobalt, from 10% to 12% aluminum, from 0.2% to 0.5% yttrium, from 12% to 14% chromium, from 0.3% to 5.0% tantalum, nickel.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 31, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Patent number: 8568857
    Abstract: A grain oriented electrical steel sheet has grooves on one surface of the steel sheet formed for magnetic domain refining, the steel sheet including a forsterite film and a tension coating on front and back surfaces of the steel sheet, wherein the tension coating is applied on a surface with the grooves in a coating amount A (g/m2) and is applied on a surface with no grooves in a coating amount B (g/m2), the coating amounts A and B satisfying (1) and (2): 3?A?8??(1); and 1.0<B/A?1.8??(2).
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 29, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Hirotaka Inoue, Seiji Okabe
  • Patent number: 8563142
    Abstract: A dual brazing alloy element for a materially integral connection of a ceramic surface to a metallic surface includes a first layer having a Ni-based brazing alloy with a Ni content of at least 50% by weight and having at least one component configured to lower a melting point of the Ni-based brazing alloy selected from the group consisting of Si, B, Mn, Sn and Ge. A second layer includes an active brazing alloy material having a total content of 1-15% by weight of at least one active element selected from the group consisting of Ti, Hf, Zr and V.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 22, 2013
    Assignee: Alstom Technology Ltd
    Inventors: Hans-Peter Bossmann, Alexander Schnell
  • Patent number: 8540936
    Abstract: An erosion sensor that can separately monitor erosion and corrosion of a substrate, such as a wind turbine blade or a turbine blade used in devices such as gas turbines, aircraft engines, microturbines, steam turbines, and the like is disclosed. The sensor can include a first element or “erosion part” that is made of a corrosion resistant material. The first element of the sensor has similar erosion properties to the substrate being monitored. The sensor can further include a second element or a “corrosion part” that is made of a material having similar erosion and corrosion properties to the substrate. The sensor can provide an erosion indicator based on the erosion of the first element and a corrosion indicator based on the erosion and corrosion of the second element.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: September 24, 2013
    Assignee: General Electric Company
    Inventors: Rebecca Evelyn Hefner, Paul Stephen DiMascio
  • Patent number: 8535783
    Abstract: An article has a metallic substrate. The substrate has a first surface region and a plurality of blind recesses along the first surface region. The substrate has perimeter lips at the openings of the plurality of recesses and extending partially over the respective associated recesses. A ceramic coating is along the first surface region.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: September 17, 2013
    Assignee: United Technologies Corporation
    Inventors: Paul M. Lutjen, Christopher W. Strock
  • Publication number: 20130236738
    Abstract: It is possible to obtain a laminate having high adhesion strength between ceramic and a metal coating by providing the following: an insulating ceramic substrate; an intermediate layer formed on the surface of the ceramic substrate and having a metal-containing principal component metal layer and an active ingredient layer including metal, a metal oxide, or a metal hydride; and a metal coating formed on the surface of the intermediate layer by accelerating a metal-containing powder with gas, and depositing the same on the surface thereof by spraying while in a solid state.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 12, 2013
    Applicant: NHK SPRING CO., LTD.
    Inventors: Yuichiro Yamauchi, Shinji Saito, Masaru Akabayashi, Satoshi Hirano
  • Patent number: 8512808
    Abstract: An integrated composite structure with a graded coefficient of thermal expansion (CTE) is formed by selecting a plurality of layers of materials with a graded CTE and using build-up (bottom-up) fabrication approaches such as metal deposition or powder metallurgy to produce a CTE-graded layered composite preform, which is then consolidated and heat treated to create the CTE graded integrated composite billet or near net shape. The integrated composite billet or near net shape is then processed to produce a first surface for attachment of a first structural member having a first CTE and to produce a second surface of for attachment of a second structural member having a second CTE.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: August 20, 2013
    Assignee: The Boeing Company
    Inventors: Ali Yousefiani, John M. Comfort, John G. Vollmer, Michael L. Hand
  • Patent number: 8512874
    Abstract: A coating and process for depositing the coating on a substrate. The coating is a nickel aluminide overlay coating of predominantly the beta (NiAl) and gamma-prime (Ni3Al) intermetallic phases, and is suitable for use as an environmental coating and as a bond coat for a thermal barrier coating (TBC). The coating can be formed by depositing nickel and aluminum in appropriate amounts to yield the desired beta+gamma prime phase content. Alternatively, nickel and aluminum can be deposited so that the aluminum content of the coating exceeds the appropriate amount to yield the desired beta+gamma prime phase content, after which the coating is heat treated to diffuse the excess aluminum from the coating into the substrate to yield the desired beta+gamma prime phase content.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, Gillion Herman Marijnissen, Eric Richard Irma Carolus Vergeldt, Annejan Bernard Kloosterman
  • Patent number: 8512858
    Abstract: A housing includes a substrate and a nano-composite layer deposited on the substrate. The nano-composite layer includes a number of metal oxide nitride layers and a number of Ce layers. Each metal oxide nitride layer alternates with a Ce layer, and the outermost nano-composite layer is a metal oxide nitride layer. The metal in the metal oxide nitride layer aluminum, titanium, silicon, chromium, or zirconium.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 20, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Zhi-Jie Hu
  • Publication number: 20130202911
    Abstract: A method of improving corrosion resistance of a metal substrate comprising a zinc surface coated with zirconium oxide conversion coating by, prior to conversion coating, contacting the zinc surface with a composition comprising: a) iron(III) ions, b) a source of hydroxide ion; c) at least one complexing agent selected from organic compounds which have at least one functional group —COOX, wherein X represents either a H or an alkali and/or alkaline earth metal; d) 0.0 to about 4 g/l cobalt (II) ions; and optionally e) a source of silicate: wherein the composition has a pH of at least 10.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 8, 2013
    Applicant: HENKEL AG & CO. KGAA
    Inventor: HENKEL AG & CO. KGAA
  • Patent number: 8497028
    Abstract: A coating system for a turbine engine component having a substrate includes a multi-layer bond coat applied to the substrate. The multi-layer bond coat has an oxidation resistant layer and a spallation resistant layer deposited over the oxidation resistant layer. Processes for forming the coating system are described.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 30, 2013
    Assignee: United Technologies Corporation
    Inventors: Brian S. Tryon, David A. Litton, Benjamin Joseph Zimmerman, Russell A. Beers
  • Patent number: 8460799
    Abstract: A high-temperature resistant component for, e.g., a gas turbine hot part, includes an alloy substrate containing Ni, Co, or Fe as the principal component, and a thermal barrier coating formed over the surface of the substrate via a bond coat. The thermal barrier coating includes a porous thermal-barrier layer made of ceramic and an environmental barrier layer with corrosion resistance. An impregnated layer is provided between the environmental barrier layer and the thermal barrier layer. In the impregnated layer, the thermal barrier layer is impregnated with a part of the environmental barrier layer. The thermal barrier layer is made of a porous zirconia layer, and the environmental barrier layer includes silica as the principal component. The porous zirconia layer has pores impregnated with the part of the environmental barrier layer. As a result, the high-temperature resistant component has excellent corrosion resistance and excellent heat resistance.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: June 11, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Arikawa, Akira Mebata, Yoshitaka Kojima, Kunihiro Ichikawa, Hiroshi Haruyama
  • Publication number: 20130143066
    Abstract: The present invention provides a steel sheet for a can exhibiting excellent corrosion resistance, adhesive properties, and weldability, including a steel sheet, an Ni—Cu alloy plating layer formed on at least one surface of the steel sheet; and a chromate film layer formed on a surface of the Ni—Cu alloy plating layer, in which the Ni—Cu alloy plating layer has Ni attached thereto in an amount of from 0.30 g/m2 to 3.0 g/m2, and Cu contained therein in an amount of from 0.5 mass % to 20 mass %; and the chromate film layer has Cr attached thereto in an amount of from 1.0 mg/m2 to 40 mg/m2 in equivalent units of Cr.
    Type: Application
    Filed: August 15, 2011
    Publication date: June 6, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shigeru Hirano, Makoto Kawabata
  • Patent number: 8455095
    Abstract: An article includes a substrate; and a color layer deposited on the substrate, wherein the color layer has an L* value between about 28 to about 32, an a* value between about ?1 to about 1, and a b* value between about ?1 to about 1 in the CIE L*a*b* color space.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: June 4, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang
  • Publication number: 20130134858
    Abstract: A spark plug superior in salt corrosion resistance and stress corrosion cracking resistance is provided. The park plug includes a metallic shell coated with a composite layer which includes a nickel plating layer and a chromate layer formed on the nickel plating layer. The spark plug is characterized in that the nickel plating layer has a thickness A which satisfies a relational expression 3 ?m?A?15 ?m and that the chromate layer has a thickness B which satisfies a relational expression 2 nm?B?45 nm.
    Type: Application
    Filed: April 12, 2011
    Publication date: May 30, 2013
    Inventors: Hiroaki Nasu, Kazuhiro Kodama
  • Publication number: 20130130053
    Abstract: A seed film and methods incorporating the seed film in semiconductor applications is provided. The seed film includes one or more noble metal layers, where each layer of the one or more noble metal layers is no greater than a monolayer. The seed film also includes either one or more conductive metal oxide layers or one or more silicon oxide layers, where either layer is no greater than a monolayer. The seed film can be used in plating, including electroplating, conductive layers, over at least a portion of the seed film. Conductive layers formed with the seed film can be used in fabricating an integrated circuit, including fabricating capacitor structures in the integrated circuit.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 23, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Publication number: 20130122323
    Abstract: The present invention provides a display device which is provided with a Cu alloy film having high adhesion to an oxygen-containing insulator layer and a low electrical resistivity. The present invention relates to a Cu alloy film for a display device, said film having a stacked structure including a first layer (Y) composed of a Cu alloy containing, in total, 1.2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb and Mn, and a second layer (X) composed of pure Cu or a Cu alloy having Cu as a main component and an electrical resistivity lower than that of the first layer (Y). A part of or the whole first layer (Y) is directly in contact with an oxygen-containing insulator layer (27), and in the case where the first layer (Y) contains Zn or Ni, the thickness of the first layer (Y) is 10-100 nm, and in the case where the first layer (Y) does not contain Zn and Ni, the thickness of the first layer (Y) is 5-100 nm.
    Type: Application
    Filed: July 21, 2011
    Publication date: May 16, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel Ltd)
    Inventors: Aya Miki, Toshihiro Kugimiya, Yasuaki Terao
  • Patent number: 8431239
    Abstract: A article made by vacuum deposition, includes a substrate; and a color layer deposited on the substrate, wherein the color layer has an L* value between about 75 to about 80, an a* value between about ?5 to about ?10, and a b* value between about 15 to about 20 in the CIE LAB color space.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 30, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Publication number: 20130065076
    Abstract: A method for applying a protective coating to gas turbine engine components using a saturated solution of nickel acetate tetrahydrate, applying a uniform thickness of the coating onto the thermal barrier coating of selected components, and heat treating the coated component in air at a temperature sufficient to form a protective layer of NiO. The saturated NiO solution has sufficient solubility to penetrate into the microscopic cracks of the thermal barrier coating to form a “sacrificial mitigation layer” of NiO that substantially inhibits the reaction between vanadium pentoxide and yttria-stabilized compounds present in the thermal barrier coating.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Inventor: Richard Todd Everhart
  • Publication number: 20130065077
    Abstract: A process is disclosed for applying a heat shielding coating system on a metallic substrate. The coating system comprises at least three individual layers selected from the group of barrier layer, hot gas corrosion protection layer, protection layer, heat barrier layer, and smoothing layer. The coating system is applied to the metallic substrate by low pressure plasma spraying in a single operation cycle. This process enables the layers to be applied in an arbitrary sequence. The process is preferably used in applying a coating system to a turbine blade, particularly a stator or a rotor blade of a stationary gas turbine or of an aircraft engine, or to another component in a stationary or aircraft turbine that is subjected to hot gas.
    Type: Application
    Filed: April 9, 2012
    Publication date: March 14, 2013
    Applicant: SULZER METCO AG
    Inventors: Michael Loch, Gérard Barbezat
  • Patent number: 8383248
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of titanium dioxide layers and a plurality of copper-zinc alloy layers formed on the combining layer. The combining layer is a titanium layer. Each titanium dioxide layer interleaves with one copper-zinc alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: February 26, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZehen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20130029174
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The anti-corrosion layer is an amorphous alloy layer containing elements of iron, chromium, boron and M, wherein M is one or more selected from the group consisting of phosphorus, carbon and silicon. A method for making the coated article is also described.
    Type: Application
    Filed: November 2, 2011
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO. LTD., HONG FU JIN PRECISION INDUSTRY(ShenZhen) CO., LTD.
    Inventors: HUANN-WU CHIANG, CHENG-SHI CHEN, CONG LI
  • Publication number: 20130029176
    Abstract: Disclosed is a method for the cathodic electrocoating of a tin-coated steel sheet in a treatment solution that does not contain any Cr compound, F or nitrite nitrogen. In the method, a tin oxide layer that is not subjected to a cathodic electrocoating treatment yet and is arranged on a tin-coated steel sheet is thinned to a specified thickness or less by a cathodic electrocoating treatment in an aqueous solution containing sodium carbonate or sodium hydrogen carbonate or a aqueous sulfuric acid solution immersion treatment, and the tin oxide layer is subjected to a cathodic electrocoating treatment in an aqueous solution of an alkaline metal sulfate containing a zirconium compound having a specified composition. In this manner, a coating film is formed on the tin oxide layer at a specific adhered amount in terms of Zr content.
    Type: Application
    Filed: April 6, 2011
    Publication date: January 31, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Nobuo Kadowaki, Hironori Nakayama, Yuji Abe
  • Patent number: 8361630
    Abstract: An article of manufacture and a process for making the article by the anodization of aluminum and aluminum alloy workpieces to provide corrosion-, heat- and abrasion-resistant ceramic coatings comprising titanium and/or zirconium oxides, and the subsequent coating of the anodized workpiece with polytetrafluoroethylene (“PTFE”) or silicone containing coatings. The invention is especially useful for forming longer life PTFE coatings on aluminum substrates by pre-coating the substrate with an anodized layer of titanium and/or zirconium oxide that provides excellent corrosion-, heat- and abrasion-resistance in a hard yet flexible film.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 29, 2013
    Assignee: Henkel AG & Co. KGaA
    Inventor: Shawn E. Dolan
  • Publication number: 20130002120
    Abstract: Provided is a spark plug that is excellent not only in salt resistance but also in stress corrosion cracking resistance. The spark plug includes a metal shell covered by a composite layer including a nickel plating layer and a chromate layer formed on the nickel plating layer. The chromate layer has a film thickness of 2 to 45 nm and Cr element concentration of not more than 60 at % and contains Ni in addition to Cr.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 3, 2013
    Applicant: NGK Spark Plug Co., LTD
    Inventors: Hiroaki Nasu, Akito Sato, Kazuhiro Kodama
  • Patent number: 8330320
    Abstract: [Problem to be Solved] There is provided a highly wear-resistant and durable sliding contact material applicable to a commutator of a motor used for high-capacity applications in which the initial starting current (IS) is 1 ampere or higher. [Solution] The present invention provides a sliding contact material in which metal oxide particles are dispersed in an Ag alloy matrix, wherein the Ag alloy matrix is an Ag alloy containing 0.01 to 10.0 wt % of at least one kind of Fe, Co, Ni and Cu in Ag, and 0.1 to 3.0 wt % of a Ta oxide is dispersed as the metal oxide. In the present invention, 0.1 to 10.0 wt % of metal oxide particles of one kind or two or more kinds of Mg, Fe, Co, Ni and Zn may further be dispersed. The sliding contact material is used in a mode of clad composite material formed by embedding the sliding contact material in a part of a base material consisting of Cu or Cu alloy.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: December 11, 2012
    Assignees: Mabuchi Motor Co., Ltd., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Keiji Nakamura, Makoto Takabatake, Hideyuki Uzawa, Masahiro Takahashi, Yoshinori Horiuchi, Takao Asada, Osamu Sakaguchi
  • Patent number: 8329314
    Abstract: A component assembly for use in living tissue comprises: a ceramic part; a metal part, e.g., a titanium metal; and a palladium (Pd) interlayer for bonding said ceramic part to the metal part. By applying sufficient heat to liquify a palladium-titanium interface, the Pd interlayer is used to braze the ceramic part to the titanium part to yield a hermetic seal.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 11, 2012
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tom Xiaohai, Michael S Colvin
  • Publication number: 20120306040
    Abstract: An insulating metal substrate is used for a semiconductor device such as a solar cell. The substrate includes a metal base made of steel, iron-based alloy steel or titanium, an aluminum layer and an insulating layer obtained by anodizing aluminum. An alloy layer primarily made of an alloy of a composition expressed by Al3X (where X is at least one kind of element selected from Fe, Cr, and Ti) exists in an interface between the metal base and the aluminum layer, and has a thickness of 0.01 to 10 micrometers. The aluminum layer has a thickness of 1 micrometer or more and equal to or less than a thickness of the metal base.
    Type: Application
    Filed: January 26, 2011
    Publication date: December 6, 2012
    Applicant: FUJIFILM CORPORATION
    Inventor: Shigenori Yuya
  • Publication number: 20120282485
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases maybe: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 8, 2012
    Applicant: General Electric Company
    Inventors: Benard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard Didomizio, Voramon Supatarawanich Dheeradhada
  • Publication number: 20120270060
    Abstract: A formed component of an automobile and a method for its manufacture are disclosed. The formed component has a base body made of a metal sheet and a smaller, locally arranged reinforcement sheet. The gap between the base body and the reinforcement sheet is sealed in certain areas with a sealing mass made of enamel on an alkali-vanadium-silicate basis. The sealing mass may be applied by screen printing. The sealing mass is dried on the base sheet and/or on the reinforcement sheet, whereafter the reinforcement sheet is attached by welding in a region that is not covered by the sealing mass. The composite sheet formed from the base sheet and the reinforcement sheet is then heated to a forming temperature and hot-formed in a forming tool to the formed component and at least partially hardened.
    Type: Application
    Filed: September 30, 2011
    Publication date: October 25, 2012
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: MICHAEL WIBBEKE, CHRISTIAN HANDING, MARTIN KOYRO, CARSTEN TRIPPE
  • Publication number: 20120251839
    Abstract: A housing having a coating is disclosed. The housing comprises a base substrate made of metallic material; a micro-arc oxide layer formed on the base substrate; and a protection outer film formed on the micro-arc oxide layer and comprising a coating layer and a metallic layer, wherein the metallic layer is formed on the micro-arc oxide layer and covers a portion of the micro-arc oxide layer; and the coating layer is formed on a remaining portion of the micro-arc oxide layer so that the micro-arc oxide layer is covered by the metallic layer and the coating layer.
    Type: Application
    Filed: December 6, 2011
    Publication date: October 4, 2012
    Applicants: FOXCONN TECHNOLOGY CO., LTD., FU ZHUN PRECISION INDUSTRY (SHEN ZHEN) CO., LTD.
    Inventors: ZHE-XUAN ZHANG, SHIH-PIN WANG, YAN XIONG, CHE-CHAO CHU
  • Patent number: 8277951
    Abstract: A device housing is provided. The device housing includes a substrate, a barrier layer formed on the substrate, an illuminating layer formed on the barrier layer, and a protective layer formed on the illuminating layer. The barrier layer is made of titanium. The illuminating layer is made of rare-earth aluminates. The protective layer is made of silica dioxide. A method for making the device housing is also described there.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 2, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20120244383
    Abstract: A coating system on a superalloy or silicon-containing substrate of an article exposed to high temperatures. The coating system includes a coating layer that overlies the substrate and is susceptible to hot corrosion promoted by molten salt impurities. A corrosion barrier coating overlies the coating layer and contains at least one rare-earth oxide-containing compound that reacts with the molten salt impurities to form a dense, protective byproduct barrier layer.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter Joel Meschter, Raymond Grant Rowe
  • Publication number: 20120237790
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O—N layer. Then, Nd ions is implanted in the Al—O—N layer by ion implantation process. The atomic percentages of N and O in the Al—O—N gradient layer gradually increase from nearing the aluminum or aluminum alloy substrate to far away from it. The housing has a higher corrosion resistant. A method for making the housing is also provided.
    Type: Application
    Filed: July 27, 2011
    Publication date: September 20, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY(ShenZhen) CO., LTD.
    Inventors: Hsin-Pei CHANG, Wen-Rong CHEN, Huann-Wu CHIANG, Cheng-Shi CHEN, Yi-Chi CHAN, Xiao-Qiang CHEN
  • Patent number: 8268454
    Abstract: A process for joining a stainless steel part and a zirconia ceramic part comprising: providing a SUS part, a ZrO2 ceramic part, a Mo foil and a Cu foil; depositing a nickel coating on a surface of the ZrO2 ceramic part; placing the ZrO2 ceramic part, the Mo foil, the Cu foil, and the SUS part into a mold, the Mo foil and the Cu foil located between the ZrO2 ceramic part and the SUS part; placing the mold into a chamber of a hot press sintering device, heating the chamber and pressing the SUS part with the nickel coating, the ZrO2 ceramic part, the Mo foil, and the Cu foil at least until the SUS part, the ZrO2 ceramic part, the Mo foil and the Cu foil form a integral composite article.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 18, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Publication number: 20120219822
    Abstract: A housing is provided which includes an aluminum or aluminum alloys substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloys substrate in that order. The corrosion resistant layer is an Al—O—N layer. Then, La ions is implanted in the Al—O—N layer by ion implantation process. The atomic percentages of N and O in the Al—O—N gradient layer gradually increase from the bottom of the layer near the aluminum or aluminum alloys substrate to the top of the layer away from aluminum or aluminum alloys substrate by physical vapor deposition. The housing has a higher corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 30, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Patent number: 8252429
    Abstract: A process for joining a stainless steel part and a zirconia ceramic part comprising: providing a SUS part, a ZrO ceramic part, a Mo foil and a Ni foil; placing the ZrO ceramic part, the Mo foil, the Ni foil, and the SUS part into a mold, the Mo foil and the Ni foil located between the ZrO ceramic part and the SUS part, the Mo foil abutting against the ZrO ceramic part, the Ni foil abutting against the SUS part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the ZrO ceramic part, the Mo foil, and the Ni foil at least until the SUS part, the ZrO ceramic part, the Mo foil and the Ni foil form a integral composite article.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 28, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Publication number: 20120183805
    Abstract: A coated article includes a substrate and a color layer formed on the substrate. The substrate is made of aluminum or aluminum alloy. The color layer includes an aluminum layer formed on the substrate and an aluminum oxide layer formed on the aluminum layer. In the CIE LAB color system, L* coordinate of the color layer is between 75 and 100, a* coordinate of the color layer is between ?1 and 1, b* coordinate of the color layer is between ?1 and 1. The coated article has a white color.
    Type: Application
    Filed: September 15, 2011
    Publication date: July 19, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD .
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, ZI-CHENG WAN
  • Publication number: 20120182692
    Abstract: A double-sided substrate includes a ceramic substrate, a first metal layer formed on one surface of the ceramic substrate and having a plurality of subsidiary metal layers which are laminated on the surface of the ceramic substrate and whose purities differ from each other and a second metal layer formed on the other surface of the ceramic substrate, wherein the closer to the ceramic substrate any subsidiary metal layer is located, the lower purity the subsidiary metal layer has. Additionally, a semiconductor includes the above double-sided substrate, a power element and a heat sink.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 19, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shogo MORI, Yoshitaka IWATA
  • Patent number: 8221900
    Abstract: A zinc-based metal plated steel sheet is excellent in tribological properties during press forming. An oxide layer containing crystalline 3Zn(OH)2·ZnSO4·xH2O is formed on a plated surface. The oxide layer has a thickness of 10 nm or more. The crystalline oxide layer is composed of 3Zn(OH)2·ZnSO4·3-5H2O.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: July 17, 2012
    Assignee: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino, Hiroshi Kajiyama, Masayasu Nagoshi, Wataru Tanimoto, Kyoko Fujimoto
  • Patent number: 8216694
    Abstract: A coating composition for zinc- and zinc alloy-coated steel sheets includes: 1 to 30% by weight of hypophosphorous acid, 0.1 to 10% by weight of manganese, 0.01 to 5% by weight of a polyvinyl compound, zinc oxide and the balance of water, and further comprises 20% by weight or less of alcohol, when necessary, wherein the zinc oxide is included in such a content that, when 50 Ml (milliliters) of the coating composition is neutralized and titrated with 0.1N NaOH, the NaOH used for the neutralization titration is present in an amount of 10.0 Ml (milliliters) or less, and a content of free acid in the coating composition is adjusted to such an amount that, when 50 Ml (milliliters) of the coating composition is neutralized and titrated with 0.1N NaOH, the NaOH used for the neutralization titration is present in an amount of 10.0 Ml (milliliters) or less.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 10, 2012
    Assignee: Posco
    Inventors: Young Geun Kim, Ha Sun Park, Sang Min Lee, Si Youl Choun, Yong Woon Kim, Jae Ryung Lee
  • Publication number: 20120164478
    Abstract: A process is described for coating parts (1) made of an aluminium alloy, in particular made of a die-cast aluminium alloy, comprising the steps of; pre-treating the parts (1); washing the pre-treated parts (1); and depositing the parts on at least one first layer (3) and at least one second layer (5), each one of the first and the second layer (3, 5) being composed of a mixture of two constituents with variable relative molar fractions: 1) a metallic material, and 2) an oxide-based material of an element of Group IVA of the Periodic Table. A part (1) made of an aluminium alloy is further described, made through the above process.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 28, 2012
    Inventors: Daniele Ugues, Daniel Milanese, Diego Chiaretta, Luciana Doglione
  • Publication number: 20120164473
    Abstract: Coated products are described comprising a metallic substrate, an aluminium-rich layer, a chromia-forming layer and a thermally insulating top coat. The chromia-forming layer is located between the substrate and the thermally-insulating top coat. The aluminium-rich layer is located between the substrate and the chromia-forming layer. The coating may be used to provide protection of parts exposed to conditions of relatively high temperatures, heat flux, and/or corrosive environments, such as the conditions in industrial gas turbines using poorer-quality fuels (such as bio-fuels).
    Type: Application
    Filed: February 24, 2010
    Publication date: June 28, 2012
    Inventors: Mary Taylor, Hugh Evans, Simon Gray, John Nicholls
  • Publication number: 20120156518
    Abstract: A process for joining a stainless steel part and a zirconia ceramic part comprising: providing a SUS part, a ZrO ceramic part, a Mo foil and a Ni foil; placing the ZrO ceramic part, the Mo foil, the Ni foil, and the SUS part into a mold, the Mo foil and the Ni foil located between the ZrO ceramic part and the SUS part, the Mo foil abutting against the ZrO ceramic part, the Ni foil abutting against the SUS part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the ZrO ceramic part, the Mo foil, and the Ni foil at least until the SUS part, the ZrO ceramic part, the Mo foil and the Ni foil form a integral composite article.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 21, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120141828
    Abstract: A film structure includes a metal substrate, a metal film formed on the metal substrate, an insulating transparent optical film formed on the metal film. The metal film eliminates an interference color of the optical film so that the color of the film structure is substantially the same as the metal substrate.
    Type: Application
    Filed: February 13, 2011
    Publication date: June 7, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHAO-TSANG WEI, GA-LANE CHEN
  • Patent number: 8187717
    Abstract: The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: May 29, 2012
    Assignee: Sulzer Metco (US) Inc.
    Inventors: Liangde Xie, Mitchell Dorfman, Richard Schmid, Jacobus C. Doesburg, Matthew Gold