Multilayer Patents (Class 428/811.2)
  • Patent number: 7351483
    Abstract: Magnetic tunnel junctions are constructed from a MgO or Mg—ZnO tunnel barrier and amorphous magnetic layers in proximity with, and on respective sides of, the tunnel barrier. The amorphous magnetic layer preferably includes Co and at least one additional element selected to make the layer amorphous, such as boron. Magnetic tunnel junctions formed from the amorphous magnetic layers and the tunnel barrier have tunneling magnetoresistance values of up to 200% or more.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 1, 2008
    Assignee: International Business Machines Corporation
    Inventor: Stuart Stephen Papwoth Parkin
  • Publication number: 20080062581
    Abstract: Magnetic tunneling devices are formed from a first body centered cubic (bcc) magnetic layer and a second bcc magnetic layer. At least one spacer layer of bcc material between these magnetic layers exchange couples the first and second bcc magnetic layers. A tunnel barrier in proximity with the second magnetic layer permits spin-polarized current to pass between the tunnel barrier and the second layer; the tunnel barrier may be either MgO and Mg—ZnO. The first magnetic layer, the spacer layer, the second magnetic layer, and the tunnel barrier are all preferably (100) oriented. The MgO and Mg—ZnO tunnel barriers are prepared by first depositing a metallic layer on the second magnetic layer (e.g., a Mg layer), thereby substantially reducing the oxygen content in this magnetic layer, which improves the performance of the tunnel barriers.
    Type: Application
    Filed: July 2, 2004
    Publication date: March 13, 2008
    Inventor: Stuart Stephen Papworth Parkin
  • Patent number: 7333306
    Abstract: A TMR sensor, a CPP GMR sensor and a CCP CPP GMR sensor all include a tri-layered free layer that is of the form CoFe/CoFeB/NiFe, where the atom percentage of Fe can vary between 5% and 90% and the atom percentage of B can vary between 5% and 30%. The sensors also include SyAP pinned layers which, in the case of the GMR sensors include at least one layer of CoFe laminated onto a thin layer of Cu. In the CCP CPP sensor, a layer of oxidized aluminum containing segregated particles of copper is formed between the spacer layer and the free layer. All three configurations exhibit extremely good values of coercivity, areal resistance, GMR ratio and magnetostriction.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: February 19, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Kunliang Zhang, Hui-Chuan Wang, Yu-Hsia Chen, Min Li
  • Patent number: 7313856
    Abstract: A manufacturing method for a spin valve sensor with a thin antiferromagnetic (AFM) layer exchange coupled to a self-pinned antiparallel coupled bias layer in the lead overlap regions is provided. The spin valve sensor comprises forming a ferromagnetic bias layer antiparallel coupled to a free layer in first and second passive regions where first and second lead layers overlap the spin valve sensor layers and forming a thin AFM layer exchange coupled to the bias layer to provide a pinning field to the bias layer. A cap layer is deposited over the thin AFM layer.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: January 1, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Hardayal Singh Gill
  • Publication number: 20070291422
    Abstract: A method for manufacturing a magnetic field detecting element has the steps of: forming stacked layers by sequentially depositing a pinned layer, a spacer layer, a spacer adjoining layer which is adjacent to the spacer layer, a metal layer, and a Heusler alloy layer in this order, such that the layers adjoin each other; and heat treating the stacked layers in order to form the free layer out of the spacer adjoining layer, the metal layer, and the Heusler alloy layer. The spacer adjoining layer is mainly formed of cobalt and iron, and has a body centered cubic structure, and the metal layer is formed of an element selected from the group consisting of silver, gold, copper, palladium, or platinum, or is formed of an alloy thereof.
    Type: Application
    Filed: February 21, 2007
    Publication date: December 20, 2007
    Applicant: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Tomohito Mizuno, Kei Hirata, Keita Kawamori, Koji Shimazawa
  • Publication number: 20070254188
    Abstract: To provide a highly-reliable, low-power-consumption nonvolatile memory. A magnetization reversal of a ferromagnetic free layer is accomplished with a spin transfer torque in a state where an appropriate magnetic field is applied in a direction orthogonal to the direction of the magnetic easy axis of the ferromagnetic free layer of the tunnel magnetoresistance device that the magnetic memory cell includes. Preferably, the magnetic field is applied in a direction forming an angle of 45° with the direction perpendicular to the film plane.
    Type: Application
    Filed: April 24, 2007
    Publication date: November 1, 2007
    Inventors: Jun Hayakawa, Hideo Ohno, Shoji Ikeda
  • Patent number: 7289303
    Abstract: Magnetoresistive (MR) sensors are disclosed having mechanisms for reducing edge effects such as Barkhausen noise. The sensors include a pinned layer and a free layer with an exchange coupling layer adjoining the free layer, and a ferromagnetic layer having a fixed magnetic moment adjoining the exchange coupling layer. The exchange coupling layer and ferromagnetic layer form a synthetic antiferromagnetic structure with part of the free layer, providing bias that reduces magnetic instabilities at edges of the free layer. Such synthetic antiferromagnetic structures can provide a stronger bias than conventional antiferromagnetic layers, as well as a more exactly defined track width than conventional hard magnetic bias layers. The synthetic antiferromagnetic structures can also provide protection for the free layer during processing, in contrast with the trimming of conventional antiferromagnetic layers that exposes if not removes part of the free layer.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: October 30, 2007
    Assignee: Western Digital (Fremont), LLC
    Inventors: Kyusik Sin, Ningjia Zhu, Yingjian Chen
  • Patent number: 7284315
    Abstract: A method of forming a magnetic tunnel junction memory element and the resulting structure are disclosed. A magnetic tunnel junction memory element comprising a thick nonmagnetic layer between two ferromagnetic layers. The thick nonmagnetic layer has an opening in which a thinner tunnel barrier layer is disposed. The resistance of a magnetic tunnel junction memory element may be controlled by adjusting the surface area and/or thickness of the tunnel barrier layer without regard to the surface area of the ferromagnetic layers.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 7270896
    Abstract: A magnetic tunneling element is constructed from a MgO or Mg—ZnO tunnel barrier and an amorphous magnetic layer in proximity with the tunnel baffler. The amorphous magnetic layer includes Co and at least one additional element selected to make the layer amorphous. Magnetic tunnel junctions formed from the amorphous magnetic layer, the tunnel barrier, and an additional ferromagnetic layer have tunneling magnetoresistance values of up to 200% or more.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventor: Stuart Stephen Papworth Parkin
  • Patent number: 7259940
    Abstract: A pair of domain control layers are disposed on both sides of the track width direction of the MR film so as to be separated from each other such that the MR film is held therebetween, and apply a longitudinal magnetic field to the MR film (free layer). The MR film is flanked by the domain control layers, each including a layer structure constituted by a base layer, a ferromagnetic layer, and a hard magnetic layer. The base layer causes the hard magnetic layer to have a magnetization direction aligning with an in-plane direction, so as to enhance the coercive force of the hard magnetic layer.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: August 21, 2007
    Assignee: TDK Corporation
    Inventors: Kosuke Tanaka, Koji Shimazawa, Koichi Terunuma, Tomoaki Shimizu
  • Patent number: 7248447
    Abstract: A self pinned magnetoresistive sensor having an anitparallel coupled pinned layer structure including a high coercivity (high Hc) layer of TbCo.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: July 24, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Hardayal Singh Gill
  • Patent number: 7248448
    Abstract: Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 24, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Yuzo Kamiguchi, Katsuhiko Koui, Shin-ichi Nakamura, Hitoshi Iwasaki, Kazuhiro Saito, Hiromi Fuke, Masatoshi Yoshikawa, Susumu Hashimoto, Masashi Sahashi
  • Patent number: 7241514
    Abstract: A magneto-resistive device is provided for contributing to a higher MR ratio and a reduced cleaning time for cleaning the surface of a cap layer. In the magneto-resistive device, a cap layer which serves as a protection layer is formed on a free layer which is the topmost layer of a magneto-resistive layer constituting a TMR devise. An upper electrode which is additionally used as an upper magnetic shield is electrically connected to the free layer through an upper metal layer. The cap layer comprised of a two-layer film made up of a conductive layer closer to the free layer and a topmost conductive layer. The conductive layer closer to the free layer is made of a material having higher oxygen bond energy than Ru, such as Zr, Hf, or the like. The topmost conductive layer is made of a material having lower oxygen bond energy, such as a noble metal or the like.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: July 10, 2007
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Takumi Uesugi, Satoshi Miura, Norio Takahashi
  • Patent number: 7234228
    Abstract: A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: June 26, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Hui-Chuan Wang, Ru-Ying Tong, Chyu-Jiuh Trong
  • Patent number: 7229706
    Abstract: The present invention provides a magnetic detecting element capable of increasing a difference between the ease of a conduction electron flow in a low-resistance state and the ease of a conduction electron flow in a high-resistance state to increase a resistance change ?R. In the magnetic detecting element, a free magnetic layer or a pinned magnetic layer has a synthetic ferromagnetic structure including a first free magnetic sub-layer or a first pinned magnetic sub-layer containing a magnetic material having a positive ? value, and a second magnetic sub-layer or a second pinned magnetic sub-layer containing a magnetic material having a negative ? value. The ? value is characteristics of a magnetic material satisfying the relationship ??/??=(1+?)/(1??)(?1???1)(wherein ?? represents resistivity for minority conduction electrons, and ?? represents resistivity for majority conduction electrons).
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: June 12, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventors: Naoya Hasegawa, Masamichi Saito
  • Patent number: 7226796
    Abstract: A magnetic tunnel junction (MTJ), which is useful in magnetoresistive random access memories (MRAMs), has a free layer which is a synthetic antiferromagnet (SAF) structure. This SAF is composed of two ferromagnetic layers that are separated by a coupling layer. The coupling layer has a base material that is non-magnetic and also other materials that improve thermal endurance, control of the coupling strength of the SAF, and magnetoresistance ratio (MR). The preferred base material is ruthenium and the preferred other material is tantalum. Furthering these benefits, cobalt-iron is added at the interface between the tantalum and one of the ferromagnetic layers. Also the coupling layer can have even more layers and the materials used can vary. Also the coupling layer itself can be an alloy.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: June 5, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srinivas V. Pietambaram, Renu W. Dave, Jon M. Slaughter, Jijun Sun
  • Patent number: 7223485
    Abstract: A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a?75 at %, b?75 at %, and c?63 at %), or formed of an alloy having a body-centered cubic crystal structure.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: May 29, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Masatoshi Yoshikawa, Yuzo Kamiguchi, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 7220499
    Abstract: A CPP giant magnetoresistive head includes lower and upper shield layers with a predetermined distance therebetween, and a giant magnetoresistive element (GMR) including pinned and free magnetic layers disposed between the upper and lower shield layers with a nonmagnetic layer interposed between the pinned and free magnetic layers. A current flows perpendicularly to the film plane of the GMR. The magnetoresistive head further includes an antiferromagnetic layer (an insulating AF of Ni—O or ?-Fe2O3) provided in the rear of the GMR in a height direction to make contact with the upper or lower surface of a rear portion of the pinned magnetic layer which extends in the height direction, and an exchange coupling magnetic field is produced at the interface with the upper or lower surface, so that the magnetization direction of the pinned magnetic layer is pinned by the exchange coupling magnetic field in the height direction.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: May 22, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventors: Masamichi Saito, Yoshihiro Nishiyama, Yosuke Ide, Eiji Umetsu, Naoya Hasegawa, Yasuo Hayakawa
  • Patent number: 7141314
    Abstract: A current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type and its method of formation are disclosed, the sensor including a novel laminated free layer having ultra-thin (less than 3 angstroms thickness) laminas of Fe50 Co50 (or any iron rich alloy of the form CoxFe1?x with x between 0.25 and 0.75) interspersed with thicker layers of Co90Fe10 and Cu spacer layers to produce a free layer with good coercivity, a coefficient of magnetostriction that can be varied between positive and negative values and a high GMR ratio, due to enhancement of the bulk scattering coefficient by the laminas. The configuration of the lamina and layers in periodic groupings allow the coefficient of magnetostriction to be finely adjusted and the coercivity and GMR ratio to be optimized. The sensor performance can be further improved by including layers of Cu and Fe50Co50 in the synthetic antiferromagnetic pinned layer.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: November 28, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Rachid Sbiaa, Simon Liao, Yue Liu
  • Patent number: 7132175
    Abstract: The present invention provides a CPP-type spin-valve magnetic detecting element permitting a decrease in an effective element area even with a large optical element area. A current limiting layer having an insulating portion and a conductive portion is formed in a free magnetic layer to narrow a sensing current and decrease diffusion of the sensing current. Also, the current density of the sensing current flowing through the free magnetic layer can be securely locally increased. Therefore, even when the optical element area of the free magnetic layer in parallel to the film plane is 0.01 ?m2 or more, the effective element area can be securely decreased, and a CPP-type magnetic detecting element producing large ?R and high reproduction output can easily be formed.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: November 7, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventors: Naoya Hasegawa, Masamichi Saito
  • Patent number: 7094480
    Abstract: The invention relates to magnetic field sensors in which magnetoresistance is used as the physical phenomenon for detecting and measuring the magnetic field. It consists in producing a stack comprising a first ferromagnetic layer (101), an insulating layer (103), a second ferromagnetic layer (102) and an antiferromagnetic layer (104). The two ferromagnetic layers exhibit crossed magnetic anisotropies and form with the insulating layer a tunnel junction. The anisotropy of the first layer is obtained from the shape energy of the substrate on which this first layer rests and which is slightly misoriented with respect thereto. The anisotropy of the second layer is obtained by the action of the antiferromagnetic layer.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 22, 2006
    Assignee: Thales
    Inventors: Frederic Nguyen Van Dau, Henri Jaffres, Daniel Lacour
  • Patent number: 7087324
    Abstract: A magnetoresistive spin-valve sensor is constructed to include a magnetic layer, a specular layer made of a metal oxide, a back layer made of Au, Cu, AuCu, AgCu, AuAgCu or an alloy thereof and interposed between the magnetic layer and the specular layer, and a metal layer disposed adjacent to the specular layer, opposite to the back layer, and made of a metal which improves GMR performance of the magnetoresistive spin-valve sensor.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: August 8, 2006
    Assignee: Fujitsu Limited
    Inventors: Jongill Hong, Hitoshi Kanai, Junichi Kane, Kenji Noma
  • Patent number: 7008703
    Abstract: A magnetic detecting element has a multilayer laminate including a first free magnetic layer. A second antiferromagnetic layer is disposed on each side surface of the multilayer laminate in the track width direction. A second free magnetic layer is disposed from the upper surface of the second antiferromagnetic layer to the upper surface of the first free magnetic layer. Thus, the shield distance in the central portion of the element can be prevented from increasing, and the insulation between a shield layer and an electrode layer is enhanced.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: March 7, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventors: Naoya Hasegawa, Eiji Umetsu
  • Patent number: 7008702
    Abstract: A magnetoresistance effect element includes a nonmagnetic spacer layer, first and second ferromagnetic layer separated by the nonmagnetic spacer layer, and a nonmagnetic conductivity layer. The first ferromagnetic layer has a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field. The second ferromagnetic layer has first and second ferromagnetic films antiferromagnetically coupled to one another and an antiferromagnetically coupling film located between and in contact with the first and second ferromagnetic films. The magnetization of the first ferromagnetic layer freely rotates in a magnetic field signal. The nonmagnetic conductivity layer is disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic high-conductivity layer and the nonmagnetic spacer layer. The first ferromagnetic layer has a film thickness between 0.5 nanometers and 4.5 nanometers.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: March 7, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Yuzo Kamiguchi, Katsuhiko Koui, Shin-ichi Nakamura, Hitoshi Iwasaki, Kazuhiro Saito, Hiromi Fuke, Masatoshi Yoshikawa, Susumu Hashimoto, Masashi Sahashi
  • Patent number: 6979500
    Abstract: A magnetic sensing element is provided, in which magnetization of a free magnetic layer is likely to fluctuate when the track width is further reduced, and thereby, the magnetic field detection sensitivity can be improved. A second free magnetic layer having a dimension W2 in the track-width direction is laminated on a first free magnetic layer having a dimension W1 in the track-width direction while the dimension W2 is larger than the dimension W1. The film thickness ta of the free magnetic layer in the track-width region A is made larger than the film thickness tb of the free magnetic layer in both side regions B and B. Consequently, the magnetic flux density in the track-width region A of the free magnetic layer resulting from the static magnetic fields generated from both the side regions B and B of the free magnetic layer can be reduced, a dead zone which occurs in the track-width region A of the free magnetic layer can be reduced, and therefore, the magnetic field detection sensitivity is improved.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: December 27, 2005
    Assignee: Alps Electric Co., Ltd.
    Inventors: Naoya Hasegawa, Eiji Umetsu
  • Patent number: 6967055
    Abstract: In a thin-film magnetic head having a multilayered film developing a magnetoresistive effect, which is present between an upper shielding layer and a lower shielding layer both formed above an AlTiC substrate, a recess for defining the lower shielding layer is formed in an underlayer present on a surface of the AlTiC substrate, and a lower shielding layer made of NiFe is provided in the recess. A SiO2 film is interposed between the underlayer and the lower shielding layer.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: November 22, 2005
    Assignee: Alps Electric Co., Ltd.
    Inventor: Kiyoshi Sato