Include Electrolyte Chemically Specified And Method Patents (Class 429/188)
  • Patent number: 11658279
    Abstract: Prelithiation methods and fast charging lithium ion cell are provided, which combine high energy density and high power density. Several structural and chemical modifications are disclosed to enable combination of features that achieve both goals simultaneously in fast charging cells having long cycling lifetime. The cells have anodes with high content of Si, Ge and/or Sn as principal anode material, and cathodes providing a relatively low C/A ratio, with the anodes being prelithiated to have a high lithium content, provided by a prelithiation algorithm. Disclosed algorithms determine lithium content achieved through prelithiation by optimizing the electrolyte to increase cycling lifetime, adjusting energy density with respect to other cell parameters, and possibly reducing the C/A ratio to maintain the required cycling lifetime.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: May 23, 2023
    Assignee: STOREDOT LTD.
    Inventors: Ivgeni Shterenberg, Eran Sella, Eynat Matzner, Shirel Cohen, Hadar Mazor Shafir, Daniel Aronov
  • Patent number: 11646457
    Abstract: A method for producing a lithium-sulfur battery with an improved lifetime. This method includes an activation step of forming a positive electrode active material-derived compound from a compound including elemental sulfur by charging and discharging the lithium-sulfur battery, where the battery includes the compound including elemental sulfur and an electrolyte liquid. Additionally, the positive electrode active material-derived compound has a solubility of 1% by weight or greater in the electrolyte liquid. The lithium-sulfur battery may be charged and discharged in a range of greater than 2.0 V and less than 2.4 V in the activation step. Further, the lithium-sulfur battery may be charged and discharged 3 times to 10 times in the activation step. This method avoids a complicated application process of and active material in preparing a lithium-sulfur battery.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: May 9, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Intae Park, Doo Kyung Yang
  • Patent number: 11637274
    Abstract: The present disclosure relates to a strip-like electrode for use in a cylindrical jelly roll which includes a strip-like electrode assembly wound cylindrically to form a hollow cavity at the core portion thereof, and a lithium secondary battery including the same. The strip-like electrode includes: a strip-like electrode current collector; a first electrode active material layer formed on at least one surface of the strip-like electrode current collector; and a second electrode active material layer formed on the first electrode active material layer, wherein the second electrode active material layer is formed to have a length smaller than the length of the first electrode active material layer so that a part of one longitudinal surface of the first electrode active material layer can be exposed to the outside.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 25, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Byoung-Hoon Ahn, Jung-Min Yang, Sang-Hoon Choy
  • Patent number: 11637319
    Abstract: The present application relates to an electrolytic solution and an electrochemical device comprising the electrolytic solution. The electrolytic solution comprises a carbonate compound having a silicon-containing functional group, so as to significantly improve the overcharge performance and high-temperature storage performance of an electrochemical device using the electrolytic solution.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: April 25, 2023
    Assignee: NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventors: Xiexue Peng, Jiqiong Liu, Junfei Liu, Chao Tang
  • Patent number: 11637324
    Abstract: An electrolyte for a lithium ion battery includes a nonaqueous aprotic organic solvent and a lithium salt dissolved in the organic solvent. The organic solvent includes a cyclic carbonate, an acyclic carbonate, and an acyclic fluorinated ether for improved low temperature and high voltage performance as well as enhanced thermostability. The ether group has a general formula of R1—O—[R3—O]n—R2, where n=0 or 1, R1 and R2 are each straight-chain C1-C6 fluoroalkyl groups, and, when n=1, R3 is a methylene group or a polyethylene group.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: April 25, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Meinan He, Mei Cai
  • Patent number: 11631895
    Abstract: The present invention provides an energy device having excellent properties. Also provided is a nonaqueous electrolyte solution containing a compound represented by the following Formula (1), wherein R11, R12 and R13 each independently represent an organic group having 1 to 3 carbon atoms; and R11 and R12, R11 and R13, or R12 and R13 are optionally bound with each other to form a 5-membered ring or a 6-membered ring, with a proviso that a total number of carbon atoms of R11, R12 and R13 is 7 or less.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 18, 2023
    Assignees: MITSUBISHI CHEMICAL CORPORATION, MU IONIC SOLUTIONS CORPORATION
    Inventors: Atsushi Watarai, Hiroyuki Tokuda, Akiko Yabe
  • Patent number: 11611106
    Abstract: The invention provides an electrolyte solution capable of providing an electrochemical device having low resistance and excellent high-temperature storage characteristics and cycle characteristics. The electrolyte solution contains lithium fluorosulfonate and a solvent containing a compound (1) represented by the following formula (1): CF2HCOOCH3.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 21, 2023
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Yoshiko Kuwajima, Kenzou Takahashi, Shigeaki Yamazaki, Hiroyuki Arima, Tomoya Hidaka, Masakazu Kinoshita, Hisako Nakamura, Takaya Yamada, Toshiharu Shimooka, Yuuki Suzuki, Tatsuya Ohtsuka
  • Patent number: 11605814
    Abstract: A positive-electrode active material contains a lithium composite oxide containing manganese. The crystal structure of the lithium composite oxide belongs to a space group Fd-3m. The integrated intensity ratio I(111)/I(400) of a first peak I(111) on the (111) plane to a second peak I(400) on the (400) plane in an XRD pattern of the lithium composite oxide satisfies 0.05?I(111)/I(400)?0.90.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: March 14, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Ryuichi Natsui, Kensuke Nakura, Junko Matsushita, Issei Ikeuchi
  • Patent number: 11600820
    Abstract: A positive electrode active material contains a lithium-rich lithium manganese-based oxide, wherein the lithium manganese-based oxide has a composition of the following chemical formula (1), and wherein a lithium ion conductive glass-ceramic solid electrolyte layer containing at least one selected from the group consisting of thio-LISICON(thio-lithium super ionic conductor), LISICON(lithium super ionic conductor), Li2S—SiS2—Li4SiO4, and Li2S—SiS2—P2S5—Lil is formed on the surface of the lithium manganese-based oxide particle: Li1?xMyMn1?x?yO2?zQz??(1) wherein, 0<x?0.2, 0<y?0.2, and 0?z?0.5; M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Ga, In, Ru, Zn, Zr, Nb, Sn, Mo, Sr, Sb, W, Ti and Bi; and Q is at least one element selected from the group consisting of P, N, F, S and Cl.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: March 7, 2023
    Inventors: Gi Beom Han, Jintae Hwang, Wang Mo Jung, Min Kyu You, Chi Ho Jo, Sungbin Park, Inseong Ju, Hyuck Hur, Younguk Park, Tae Gu Yoo
  • Patent number: 11600860
    Abstract: A lithium secondary battery is disclosed herein. In some embodiment, a lithium secondary battery which includes a positive electrode including a positive electrode material mixture layer, wherein the positive electrode material mixture layer has a loading capacity of 3.7 mAh/cm2 to 10 mAh/cm2, a negative electrode including a negative electrode material mixture layer, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution including a lithium salt, an organic solvent, and a compound represented by Formula 1, the concentration of the lithium salt in the non-aqueous electrolyte solution is 1.5 M to 3 M, the organic solvent is a mixed solvent including a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent, and the compound represented by Formula 1 is included in an amount of 0.1 wt % to 5 wt % based on a total weight of the non-aqueous electrolyte solution.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 7, 2023
    Inventors: Gwang Yeon Kim, Jeong Woo Oh, Chui Haeng Lee, Kyoung Ho Ahn, Won Kyung Shin
  • Patent number: 11600868
    Abstract: Provided is a method for producing a nonaqueous electrolyte secondary battery, and a production system therefor, that allow forming a good SEI film in a shorter time. The production method includes an assembly step, an initial charging step and a high-temperature aging step.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: March 7, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takashi Miura
  • Patent number: 11600861
    Abstract: An additive, an electrolyte for a rechargeable lithium battery, and a rechargeable lithium battery, the additive being represented by Chemical Formula 1:
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 7, 2023
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Wonseok Cho, Younghye Kang, Dongyoung Kim, Soojin Kim, Aeran Kim, Suyeol Ryu, Jeongmin Shin, Junyong Lee, Tae Jin Lee, Jin-Hyeok Lim, Myunghwan Jeong, Hyunbong Choi, Jungmin Han
  • Patent number: 11577468
    Abstract: Disclosed is a 3-D printing apparatus. The apparatus includes an ink output module including an ink supply unit having an ink for forming an electrode portion, electrolyte or packaging portion received therein and an ink discharge unit coupled to the ink supply unit; a driving unit having the ink output module mounted thereon to move the ink output module in an X, Y, Z axis direction with respect to a substrate where a supercapacitor or secondary battery will be formed; a dispenser connected to the ink supply unit to supply gas having controlled pressure to the ink supply unit through a gas supply tube and to supply the ink within the ink supply unit through the ink discharge unit; and a controller controlling the output of the ink by transmitting a control command for fabricating the supercapacitor or the secondary battery to the dispenser and the driving unit.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: February 14, 2023
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jung Joon Yoo, Jeong Hun Baek, Yong Il Kim, Ha Na Yoon, Bo Yun Jang, Jong Huy Kim
  • Patent number: 11569532
    Abstract: An aqueous secondary battery including: a positive electrode; a negative electrode; a separator; and an aqueous electrolytic solution including water and a metal salt represented by Chemical Formula 1 AxDy and having molality of about 5 M to about 40 M wherein in Chemical Formula 1, A is at least one metal ion selected from a sodium ion, a potassium ion, a magnesium ion, a calcium ion, a strontium ion, a zinc ion, or a barium ion, D is at least one type of atomic group ion selected from Cl?, SO42?, NO3?, ClO4?, SCN?, CF3SO3?, C4F3SO3?, (CF3SO2)2N?, AlO2?, AlCl4?, AsF6?, SbF6?, BR4?, and PO2F2?, and 0<x?2, and 0<y?2.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: January 31, 2023
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Kisuk Kang, Myeong Hwan Lee, Sung Joo Kim
  • Patent number: 11551880
    Abstract: A poly(vinylphosphonic acid) (PVPA)-(NH4)2MoO4), gel polymer electrolyte can be prepared by incorporating redox-mediated Mo, or similar metal, into a PVPA, or similar polymer, matrix. Gel polymer electrolytes including PVPA/MoX, x representing the percent fraction Mo in PVPA, can be used to make supercapacitors including active carbon electrodes. The electrolytes can be in gel form, bendable and stretchable in a device. Devices including this gel electrolyte can have a specific capacitance (Cs) of 1276 F/g, i.e., a more than 50-fold increase relative to a PVPA system without Mo. A PVPA/Mo10 supercapacitor can have an energy density of 180.2 Wh/kg at power density of 500 W/kg, and devices with this hydrogel structure may maintain 85+% of their initial capacitance performance after 2300 charge-discharge cycles.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: January 10, 2023
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Ayhan Bozkurt, Emre Cevik
  • Patent number: 11539075
    Abstract: Disclosed are an electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same. The electrolyte for a lithium secondary battery, according to an embodiment, can comprise: a nonaqueous organic solvent; a lithium salt; a first additive comprising a compound represented by a specific chemical formula; and a second additive including at least one of lithium difluorophosphate (LiPO2F2), a cyclic carbonate including a fluorine atom, and a dinitrile compound.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: December 27, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyunbong Choi, Pavel Shatunov, Olga Tsay, Aeran Kim, Woo Cheol Shin, Jeongmin Shin
  • Patent number: 11527777
    Abstract: The present disclosure provides a non-aqueous electrolyte for a lithium-ion battery and a lithium-ion battery using the non-aqueous electrolyte. The non-aqueous electrolyte includes (a) a lithium, (b) a non-aqueous organic solvent, and (c) at least one compound represented by formula 1; where the non-aqueous electrolyte further includes at least one of the following components (d) and (e): (d) a nitrile compound including at least one of 1,3,6-hexane trinitrile, glycerol trinitrile, and 3-methoxypropionitrile, and (e) vinyl sulfate. Through the synergy effect between them, the positive electrode is protected and meanwhile the negative electrode is also be protected to a certain extent, and an impedance of a film is lowered. The battery has an excellent high temperature storage performance, high temperature cycle performance and low temperature charge and discharge performance.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: December 13, 2022
    Inventors: Changan Zeng, Suli Li
  • Patent number: 11527752
    Abstract: This application provides a positive active material and a preparation method thereof, an electrochemical battery, a battery module, a battery pack, and an apparatus. The positive active material includes an inner core and a coating layer, where the coating layer coats a surface of the inner core. The inner core is selected from a ternary material with a molecular formula of Li1+a[NixCoyMnzMbM?c]O2?dYd, where distribution of each of the doping elements M, M?, and Y in the inner core meets the following condition: there is a reduced mass concentration gradient from an outer side of the inner core to a center of the inner core. The positive active material herein features high gram capacity, high structural stability, and high thermal stability, so that the electrochemical battery has excellent cycle performance and storage performance and high initial discharge gram capacity.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 13, 2022
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Qi Wu, Jinhua He, Changyin Ji
  • Patent number: 11512390
    Abstract: The system and method includes the suspension of a free-standing carbon article within a reaction chamber, the introduction of the chemical precursor in a reaction environment within the chamber, and heating of the carbon article in the presence of the chemical precursor leading to deposition in a site-specific manner.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: November 29, 2022
    Assignees: Rochester Institute of Technology
    Inventors: Brian J. Landi, Cory D. Cress, Anthony P. Leggiero
  • Patent number: 11508991
    Abstract: The invention relates to the simultaneous use of a first salt comprising a nitrate anion (NO3?) and a second salt comprising an anion other than nitrate, at least one of the first and second salts being a lithium salt, as ionic conductivity promoters in a rechargeable lithium-metal-gel battery. The invention also relates to a lithium-gel battery comprising a mixture of said first salt and said second salt, to a non-aqueous gel electrolyte comprising such mixture and to a lithium battery positive electrode comprising said mixture.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: November 22, 2022
    Assignee: BLUE SOLUTIONS
    Inventors: Marc Deschamps, Renaud Bouchet, Margaud Lecuyer, Julien Rolland
  • Patent number: 11502301
    Abstract: The presently disclosed and/or claimed inventive process(es), procedure(s), method(s), product(s), result(s), and/or concept(s) (collectively hereinafter referred to as the “presently disclosed and/or claimed inventive concept(s)”) relates generally to the composition of a binder for use in battery electrodes and methods of preparing such. More particularly, but not by way of limitation, the presently disclosed and/or claimed inventive concept(s) relates to a binder composition containing an ionizable water soluble polymer and a redispersible powder containing a latex, a protective colloid, and an anticaking agent for use in the production and manufacture of electrodes of a lithium ion battery. Additionally, the presently disclosed and/or claimed inventive concept(s) relates generally to the compositions and methods of making electrodes, both anodes and cathodes, with a binder composition containing an ionizable water soluble polymer and a redispersible powder.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: November 15, 2022
    Assignee: Hercules LLC
    Inventors: Sung Gun Chu, Alan E Goliaszewski
  • Patent number: 11502336
    Abstract: A system and method for a liquid electrolyte used in secondary electrochemical cells having at least one electrode including a TMCCC material, the liquid electrolyte enabling an increased lifetime while allowing for fast discharge to extremely high depth of discharge. The addition of dinitriles to liquid electrolytes in electrochemical cells in which energy storage is achieved by ion intercalation in transition metal cyanide coordination compounds (TMCCC) has the advantage of increasing device lifetime by inhibiting common chemical and electrochemical degradation mechanisms.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: November 15, 2022
    Assignee: Natron Energy, Inc.
    Inventors: Majid Keshavarz, Daniel Friebel, Peter Benjamin Herman, Grace Marjorie Yee, Alex J. Klevay
  • Patent number: 11495831
    Abstract: A system and method for a liquid electrolyte used in secondary electrochemical cells having at least one electrode including a TMCCC material, the liquid electrolyte enabling an increased lifetime while allowing for fast discharge to extremely high depth of discharge. The addition of dinitriles to liquid electrolytes in electrochemical cells in which energy storage is achieved by ion intercalation in transition metal cyanide coordination compounds (TMCCC) has the advantage of increasing device lifetime by inhibiting common chemical and electrochemical degradation mechanisms.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: November 8, 2022
    Assignee: Natron Energy, Inc.
    Inventors: Majid Keshavarz, Daniel Friebel, Peter Benjamin Herman, Grace Marjorie Yee, Alex J. Klevay
  • Patent number: 11495830
    Abstract: A system and method for a liquid electrolyte used in secondary electrochemical cells having at least one electrode including a TMCCC material, the liquid electrolyte enabling an increased lifetime while allowing for fast discharge to extremely high depth of discharge. The addition of dinitriles to liquid electrolytes in electrochemical cells in which energy storage is achieved by ion intercalation in transition metal cyanide coordination compounds (TMCCC) has the advantage of increasing device lifetime by inhibiting common chemical and electrochemical degradation mechanisms.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: November 8, 2022
    Assignee: Natron Energy, Inc.
    Inventors: Majid Keshavarz, Daniel Friebel, Peter Benjamin Herman, Grace Marjorie Yee, Alex J. Klevay
  • Patent number: 11485931
    Abstract: A fragrance composition comprising a compound represented by Formula (1) as an active ingredient: wherein, in Formula (1), R1 represents a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 1, 2022
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Atsushi Okamoto, Eriko Kushida, Umi Yokobori
  • Patent number: 11479473
    Abstract: A method is provided for manufacturing a nanoparticle material having an ionic conductivity as a battery material for Fluoride ion Batteries, thus, being capable for overcoming high resistances at the surfaces, grain-boundaries of nanoparticles or compartments of the nanoparticles by a material treatment selected from: (i) a ball-mill procedure under aerosol and/or vapour-pressure atmosphere, (ii) excess-synthesis, (iii) ball-milling with surface stabilizing and conductivity enhancing solid or/and gel/liquid additives or (iv) functionalizing the material to obtain functionalized nanoparticles (GSNP) comprising a dispersion of graphene, nanotubes and/or a further additive selected from carbon-black, graphite, Si and/or CFX, Herein, fluorides (EmmFh), fluorides composites (Em1m1Em2m2 . . .
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 25, 2022
    Assignee: AMBERCON TECHNOLOGY (UK) LIMITED
    Inventors: Raiker Witter, Irshad Mohammad, Palanivel Molaiyan, Suresh Kumar
  • Patent number: 11482701
    Abstract: A method of operating a battery comprises discharging a cathode comprising manganese dioxide to within a 2nd electron capacity of the manganese dioxide at a C-rate of equal to or slower than C/10, recharging the battery, and cycling the battery during use a plurality of times. The cathode is in a battery, and the battery comprises the cathode, an anode, a separator disposed between the anode and the cathode, and an electrolyte. The cathode comprises the manganese dioxide and a conductive carbon. The anode comprises: a metal component and a conductive carbon. The metal component can be a metal, metal oxide, or metal hydroxide, and the metal of the metal component can be zinc, lithium, aluminum, magnesium, iron, cadmium and a combination thereof.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: October 25, 2022
    Assignee: RESEARCH FOUNDATION OF THE CITY UNIVERSITY OF NEW YORK
    Inventors: Snehal Kolhekar, Gautam G. Yadav, Jinchao Huang, Sanjoy Banerjee, Michael Nyce
  • Patent number: 11476505
    Abstract: An electrochemical cell, including a first electrode, a first volume of electrolyte in contact with the first electrode, a second volume of electrolyte, a first separator positioned between the first volume and the second volume, a second electrode in contact with the second volume, and a third volume of electrolyte. A second separator is positioned between the second volume and the third volume. A lithium reservoir electrode is in contact with the third volume.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 18, 2022
    Inventors: Manikandan Palanisamy, Mihit Hitendra Parekh, Vilas Ganpat Pol
  • Patent number: 11450881
    Abstract: An all-solid secondary battery including: an anode layer including a first anode active material layer; a cathode layer including a cathode active material layer; a solid electrolyte layer between the anode layer and the cathode layer; and an anode current collector on the anode layer and opposite the solid electrolyte layer, wherein a maximum roughness depth Rmax of a surface of the first anode active material layer is about 3.5 micrometers or less.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: September 20, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Junhwan Ku, Minsuk Lee, Hyorang Kang
  • Patent number: 11450887
    Abstract: Disclosed herein are an electrolyte for a lithium secondary battery and a lithium secondary battery including the same. The disclosed lithium secondary battery includes: a cathode; an anode; a separator interposed between the cathode and the anode; and an electrolyte, wherein the electrolyte includes: a lithium salt; and a solvent including a perfluorinated ether-based solvent, fluoroethylene carbonate (FEC), and ethylmethyl carbonate (EMC).
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: September 20, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation, UNIST (Ulsan National Institute of Science and Technology)
    Inventors: KyoMin Shin, DongHui Kim, SangJoon Lee, Seung Ho Ahn, SungHoon Lim, Nam-Soon Choi, Sung You Hong, Choonki Kim, Koeun Kim, Yeonkyoung Kim
  • Patent number: 11444324
    Abstract: A secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution where (A) the electrolytic solution contains a solvent and an electrolyte salt, the solvent containing ethylene carbonate, (B) a content of the electrolyte salt is from 0.8 mol/kg to 2.0 mol/kg both inclusive, (C) a content of the ethylene carbonate in the solvent is from 10 wt % to 30 wt % both inclusive, (D) a ratio M2/M1 of a number M2 of moles of the ethylene carbonate to a number M1 of moles of the electrolyte salt is from 0.4 to 2.4 both inclusive, and (E) the electrolytic solution contains at least one of sulfone compounds.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: September 13, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yusuke Morino, Izaya Okae, Nobuhiro Inoue, Kazumasa Takeshi
  • Patent number: 11434148
    Abstract: A hydrogen-containing transition metal oxide is provided. The hydrogen-containing transition metal oxide has a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5. The present disclosure further provides a primary battery by using the hydrogen-containing transition metal oxide as electrodes and a method for making the hydrogen-containing transition metal oxide.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: September 6, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pu Yu, Nian-Peng Lu, Jian Wu, Shu-Yun Zhou
  • Patent number: 11431036
    Abstract: Provided is a lithium-ion assembled battery including a plurality of lithium-ion unit cells connected to each other in series, and Zener diodes connected to the respective unit cells in parallel, and the Zener diode is characterized in that a current of 1/200 or less of a capacity of the unit cell flows at a mean voltage of the unit cell.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 30, 2022
    Assignee: NGK Insulators, Ltd.
    Inventor: Yukinobu Yura
  • Patent number: 11418640
    Abstract: Aluminum-air battery units and stacks are provided with frames configured to mechanically support the anode of each unit, within a housing configured to support the frame and the air cathode(s) mechanically, sealably hold the electrolyte within the housing and in fluid communication with openings in the housing—forming one or two sided electrochemical cell in each unit. The frame comprises a protective strap configured to protect edges of the rectangular anode against corrosion by the electrolyte during operation, and also an external trapezoid shape that is configured to press the protective strap against the edges of the rectangular anode upon insertion of the frame with the anode into the housing. Various embodiments comprise, spacers between the anode and cathodes and grids supporting airways to the cathodes. In disclosed configurations, anode may be replaced after electrolyte evacuation while maintaining the stack sealed and quickly ready for renewed operation.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 16, 2022
    Assignee: PHINERGY LTD.
    Inventors: Yisrael Miller, Dekel Tzidon, Avraham Yadgar
  • Patent number: 11374287
    Abstract: An energy storage device in which a micro-short circuit at the time of heat generation is suppressed is provided. The energy storage device includes: a positive electrode; a negative electrode containing a negative composite layer; and a separator disposed between the positive electrode and the negative electrode. The separator contains a base material layer containing a thermoplastic resin and an inorganic layer formed on the base material layer, the inorganic layer opposes to the positive electrode, the base material layer opposes to the negative electrode, and a ratio of a mass of the base material layer per unit area to a spatial volume of the negative composite layer is 0.26 or more.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: June 28, 2022
    Assignee: GS Yuasa International Ltd.
    Inventor: Tomoya Tsuchikawa
  • Patent number: 11349141
    Abstract: Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: May 31, 2022
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Desiree Amadeo
  • Patent number: 11342584
    Abstract: A solvent-free polymer electrolyte having a polymer matrix which is conductive for lithium ions and a lithium salt, wherein the polymer matrix has at least one pseudo-polyrotaxane which includes at least one linear polymer and at least one ring-shaped molecule, and wherein the lithium salt is arranged in the polymer matrix and is at least partially chemically bonded to the polymer matrix, wherein the polymer matrix includes at least one pseudo-polyrotaxane with at least one completely or partially chemically modified cyclodextrin or at least one completely or partially chemically modified crown ether, in which the present hydroxyl groups of the cyclodextrin, or the scaffold of the crown ether, are/is partly or completely modified by functional groups, wherein the functional groups comprise alkyl, aryl, alkenyl, alkynyl groups (Cn, with n?5), or other short-chain polymer groups having up to 20 repeating units.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 24, 2022
    Assignee: FORSCHUNGSZENTRUM JUELICH GMBH
    Inventors: Laura Boskamp, Gunther Brunklaus, Isidora Cekic-Laskovic, Martin Winter
  • Patent number: 11312818
    Abstract: This is to provide a non-halogen containing compound excellent in proton conductivity and capable of suitably being used for a polymer electrolytic fuel cell The compound of the present invention has a structure represented by the following general formula (I). (In the above-mentioned general formula (I), “l” and “n” are molar fractions when l+n=1.0, and 0?l<1.0 and 0<n?1.0, A represents a structure represented by the following general formula (II) or (III), B represents a structure represented by the following general formula (VII), the respective structural units are random copolymerized, and at least one benzene ring in the formula (I) has at least one sulfo group.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 26, 2022
    Assignee: NISSAN CHEMICAL CORPORATION
    Inventors: Taichi Nakazawa, Shoichi Kondo
  • Patent number: 11309583
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same are disclosed herein. In an embodiment, a non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt, an organic solvent, and an additive, wherein the additive is a mixed additive which includes lithium difluorophosphate, fluorobenzene, tetravinylsilane, and a compound containing one sulfonate group or sulfate group in a weight ratio of 1:2:0.05:0.5 to 1:8:0.3:2.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 19, 2022
    Inventors: Ha Eun Kim, Young Min Lim, Gwang Yeon Kim, Chul Haeng Lee
  • Patent number: 11309544
    Abstract: Provided are electrochemical secondary cells that exhibit excellent abuse tolerance, deep discharge and overcharge conditions including at extreme temperatures and remain robust and possess excellent performance. Cells as provided herein include: a cathode a polycrystalline cathode electrochemically active material including the formula Li1+xMO2+y, wherein ?0.9?x?0.3, ?0.3?y?0.3, and wherein M includes Ni at 80 atomic percent or higher relative to total M, the cathode electrochemically active material comprising a non-uniform distribution of Co; an anode including an anode electrochemically active material of the formula Li4+aTi5O12+b wherein ?0.3?a?3.3, ?0.3?b?0.3; and wherein the anode and the cathode each independently include a current collector substrate comprising aluminium.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: April 19, 2022
    Assignee: CAMX Power LLC
    Inventors: Kenan Sahin, David Ofer, Daniel Kaplan, Suresh Sriramulu
  • Patent number: 11302964
    Abstract: An electrolytic solution for a nonaqueous electrolyte battery according to the present invention includes: (I) at least one kind of silane compound represented by the following general formula (1); (II) at least one kind selected from the group consisting of a cyclic sulfonic acid compound and a cyclic sulfuric ester compound; (III) a nonaqueous organic solvent; and (IV) a solute. The nonaqueous electrolyte battery with this electrolytic solution achieves a good balance between improvement of high-temperature storage characteristics under high-temperature conditions of 70° C. or higher and reduction of gas generation during high-temperature storage. Si(R1)x(R2)4-x??(1) In the general formula (1), R1 is each independently a carbon-carbon unsaturated bond-containing group; R2 is each independently selected from a fluorine group and a C1-C10 linear or C3-C10 branched alkyl group which may have a fluorine atom and/or an oxygen atom; and x is an integer of 2 to 4.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 12, 2022
    Assignee: Central Glass Company, Limited
    Inventors: Wataru Kawabata, Mikihiro Takahashi, Takayoshi Morinaka, Makoto Kubo
  • Patent number: 11302928
    Abstract: The present invention is a carbon material for a catalyst carrier of a polymer electrolyte fuel cell, which has a three-dimensional dendritic structure, and simultaneously satisfies the following (A), (B), and (C). (A) By a laser Raman spectroscopic analysis with a wavelength of 532 nm, a standard deviation ?(R) of an intensity ratio (R value) of an intensity of a D-band (near 1360 cm?1) to an intensity of a G-band (near 1580 cm?1) measured with a beam diameter of 1 ?m at 50 measurement points is from 0.01 to 0.07. (B) A BET specific surface area SBET is from 400 to 1520 m2/g. (C) A nitrogen gas adsorption amount VN:0.4-0.8 during a relative pressure (p/p0) from 0.4 to 0.8 is from 100 to 300 cc(STP)/g. A method of producing such a carbon material for a catalyst carrier is also included.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 12, 2022
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Iijima, Kenichiro Tadokoro, Masataka Hiyoshi, Shinya Furukawa, Tomoko Komura, Kazuyoshi Masaki, Hiroyuki Hayashida, Wakana Tada
  • Patent number: 11289733
    Abstract: A rechargeable lithium battery includes a positive electrode including a positive current collector and a positive active mass layer on the positive current collector, the positive active mass layer including a positive active material; a negative electrode including a negative current collector and a negative active mass layer on the negative current collector, the negative active mass layer including a negative active material; and an electrolyte, wherein Equation 1 is satisfied: 0.3?A/B?2.5??Equation 1 wherein, in Equation 1, A satisfies Equation 2, and B satisfies Equation 3: 0.01?active mass density (g/cc) of the positive active mass layer/thickness (?m) of the positive electrode?0.1??Equation 2 0.01?active mass density (g/cc) of the negative active mass layer/thickness (?m) of the negative electrode?0.05??Equation 3.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: March 29, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jin-Man Jeoung
  • Patent number: 11283108
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery including a non-aqueous organic solvent, a lithium salt, and an additive, wherein the additive is a compound represented by Chemical Formula 1. In Chemical Formula 1, each substituent is the same as in the detailed description. A rechargeable lithium battery includes: a positive electrode; a negative electrode; and the electrolyte.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 22, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Harim Lee, Hyejin Park, Myungheui Woo, Jin-Hyeok Lim, Hyunbong Choi
  • Patent number: 11271248
    Abstract: An all-inorganic electrolyte formulation for use in a lithium ion battery system comprising at least one of each a phosphoranimine, a phosphazene, a monomeric organophosphate and a supporting lithium salt. The electrolyte preferably has a melting point below 0° C., and a vapor pressure of combustible components at 60.6° C. sufficiently low to not produce a combustible mixture in air, e.g., less than 40 mmHg at 30° C. The phosphoranimine, phosphazene, and monomeric phosphorus compound preferably do not have any direct halogen-phosphorus bonds. A solid electrolyte interface layer formed by the electrolyte with an electrode is preferably thermally stable ?80° C.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: March 8, 2022
    Assignee: New Dominion Enterprises, Inc.
    Inventor: Mason K. Harrup
  • Patent number: 11271207
    Abstract: An electrical or electrochemical cell, c a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid. The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: March 8, 2022
    Assignee: Imprint Energy, Inc.
    Inventors: John Devin MacKenzie, Christine Chihfan Ho, Karthik Yogeeswaran, Po-Jen Cheng
  • Patent number: 11264610
    Abstract: This application relates to a battery comprising a positive electrode plate, a separator, and a negative electrode plate, wherein the positive electrode plate comprises a positive electrode current collector and at least two layers of positive active material coated on at least one surface of the positive electrode current collector, and wherein the underlying positive active material layer in contact with the positive electrode current collector comprises a first positive active material, a first polymer material and a first conductive material, and the first polymer material comprises fluorinated polyolefin and/or chlorinated polyolefin polymer material. The battery has good safety and improved electrical properties.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: March 1, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Fenggang Zhao, Yongshou Lin, Zhenhua Li, Haizu Jin, Xiaowen Zhang
  • Patent number: 11251436
    Abstract: According to one embodiment, there is provided a secondary battery including a positive electrode, a negative electrode, and an aqueous electrolyte. The positive electrode includes a positive electrode active material. The negative electrode includes a negative electrode active material and an additive resin containing a hydroxyl group unit and a first unit. The first unit consists of at least one of a butyral unit and an acetal unit. A content ratio of a content of the first unit contained in the additive resin to a content of the hydroxyl group unit contained in the additive resin is in a range of 1.2 to 18.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: February 15, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuyuki Hotta, Shinsuke Matsuno, Norio Takami
  • Patent number: 11223035
    Abstract: A graphene-enabled hybrid particulate for use as a lithium-ion battery anode active material, wherein the hybrid particulate is formed of a single or a plurality of graphene sheets and a single or a plurality of fine primary particles of a niobium-containing composite metal oxide, having a size from 1 nm to 10 ?m, and the graphene sheets and the primary particles are mutually bonded or agglomerated into the hybrid particulate containing an exterior graphene sheet or multiple exterior graphene sheets embracing the primary particles, and wherein the hybrid particulate has an electrical conductivity no less than 10?4 S/cm and said graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the niobium-containing composite metal oxide combined.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 11, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang
  • Patent number: 11209843
    Abstract: A control method, system and device for a flexible carbon cantilever beam actuated by a smart material is provided. The new control method, system and device aims to solve the problems of control overflow and instability that are likely to occur in the distributed parameter system constructed in the prior art. The method includes: acquiring an elastic displacement of the flexible carbon cantilever beam in real time as input data; and obtaining, based on the input data, a control torque through a distributed parameter model constructed in advance, and performing vibration control on the flexible carbon cantilever beam. The new control method, system and device improves the control accuracy and stability of the distributed parameter system.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: December 28, 2021
    Assignee: INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES
    Inventors: Hongjun Yang, Min Tan, Zengguang Hou, Junzhi Yu, Long Cheng, Zhengxing Wu, Wei He, Zhijie Liu, Tairen Sun