Nickel Component Is Active Material Patents (Class 429/223)
  • Patent number: 11444280
    Abstract: Provided is a nickel-based active material precursor for a lithium secondary battery, including: a secondary particle including a plurality of particulate structures, wherein each of the particulate structures includes a porous core portion and a shell portion including primary particles radially arranged on the porous core portion, and in 50% or more of the primary particles constituting a surface of the secondary particle, a major axis of each of the primary particles is aligned along a normal direction of the surface of the secondary particle. When the nickel-based active material precursor for a lithium secondary battery is used, it is possible to obtain a nickel-based active material which intercalates and deintercalates lithium and has a short diffusion distance of lithium ions.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: September 13, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Doyu Kim, Wooyoung Yang
  • Patent number: 11430975
    Abstract: A lithium secondary battery comprises a cathode, an anode, a separator and a nonaqueous electrolyte solution. The cathode includes a first cathode active material in which at least one of metals included in the first cathode material has a concentration gradient region between a central portion and a surface portion, and a second cathode active material having a single particle structure. The lithium secondary battery has improved life-span and penetration stability.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 30, 2022
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Soo Ho Kim, Min Gu Kang, Young Hoon Do, Yong Hyun Cho
  • Patent number: 11430986
    Abstract: The positive electrode active material disclosed herein includes a base portion including a lithium transition metal complex oxide having a layered crystal structure, and a coating portion including an electroconductive oxide having a layered crystal structure. A smaller angle ? formed by a stacking plane direction of the lithium transition metal complex oxide and a stacking plane direction of the electroconductive oxide satisfies the following conditions: an average angle ?ave. obtained by arithmetically averaging the angle ? satisfies 0°??ave.?60°; and a ratio of points in which the angle ? is greater than 60° is 39% or less.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: August 30, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryuta Sugiura
  • Patent number: 11417879
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery, including a lithium composite metal oxide in a form of secondary particles formed by aggregation of primary particles, wherein the secondary particles have voids in interior thereof and a number of the voids with cross section thereof present per 1 ?m2 of cross section of the secondary particles is 0.3 or more and 15 or less.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 16, 2022
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Kenji Takamori, Takashi Arimura, Yasutaka Iida
  • Patent number: 11411214
    Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof that are able to improve the stability of positive electrode mixture material pastes used to produce nonaqueous electrolyte secondary batteries, as well as to improve the output characteristics and charge/discharge cycle characteristics of secondary batteries. A method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries includes mixing a fired powder formed of a lithium-metal composite oxide having a layered crystal structure, a first compound which is at least one selected from a group consisting of a lithium-free oxide, a hydrate of the oxide, and a lithium-free inorganic acid salt, and water and drying a mixture resulting from the mixing. The fired powder includes secondary particles formed by agglomeration of primary particles. The first compound reacts with lithium ions in the presence of water to form a second compound including lithium.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 9, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Jiro Okada, Tetsufumi Komukai, Koji Yamaji, Ryozo Ushio
  • Patent number: 11404693
    Abstract: The present disclosure relates to a cathode additive, a method for preparing the same, and a cathode and a lithium secondary battery including the same. More specifically, one embodiment of the present disclosure provides a cathode additive that can offset an irreversible capacity imbalance, and increase the initial charge capacity of a cathode.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: August 2, 2022
    Inventors: Ji Hye Kim, Byungchun Park, Jungmin Han, Wang Mo Jung
  • Patent number: 11394023
    Abstract: Provided are compositions, systems, and methods of making and using pre-lithiated cathodes for use in lithium ion secondary cells as the means of supplying extra lithium to the cell. The chemically or electrochemically pre-lithiated cathodes include cathode active material that is pre-lithiated prior to assembly into an electrochemical cell. The process of producing pre-lithiated cathodes includes contacting a cathode active material to an electrolyte, the electrolyte further contacting a counter electrode lithium source and applying an electric potential or current to the cathode active material and the lithium source thereby pre-lithiating the cathode active material with lithium. An electrochemical cell is also provided including the pre-lithiated cathode, an anode, a separator and an electrolyte.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: July 19, 2022
    Assignee: CAMX Power LLC
    Inventors: David Ofer, Jane Rempel, Suresh Sriramulu
  • Patent number: 11377367
    Abstract: Provided is a cobalt precursor for preparing a lithium cobalt oxide of a layered structure which is included in a positive electrode active material, wherein the cobalt precursor is cobalt oxyhydroxide (CoM?OOH) doped with, as dopants, magnesium (Mg) and M? different from the magnesium.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 5, 2022
    Inventors: Chi Ho Jo, Sungbin Park, Jiyoung Park, Bo Ram Lee, Hyuck Hur, Wang Mo Jung
  • Patent number: 11374220
    Abstract: A positive electrode active material for non-aqueous electrolyte secondary batteries that can achieve a high output characteristic and a high battery capacity when used in a positive electrode of a battery and that can achieve a high electrode density, and a non-aqueous electrolyte secondary battery that uses such a positive electrode active material and can achieve a high capacity and a high output. A lithium-manganese-cobalt composite oxide includes plate-shaped secondary particles each obtained by aggregation of a plurality of plate-shaped primary particles caused by overlapping of plate surfaces of the plate-shaped primary particles, wherein a shape of the primary particles is any one of a spherical, elliptical, oval, or a planar projected shape of a block-shaped object, and the secondary particles have an aspect ratio of 3 to 20 and a volume-average particle size (Mv) of 4 ?m to 20 ?m as measured by a laser diffraction scattering process.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: June 28, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi
  • Patent number: 11362320
    Abstract: A positive electrode active material which predominantly includes lithium transition metal composite oxide particles containing Ni and Al, and which has a low charge transfer resistance and thus allows the battery capacity to be increased. The composite oxide particles contain 5 mol % or more Al relative to the total molar amount of metal elements except Li, include a particle core portion and an Al rich region on or near the surface of the composite oxide particle wherein the Al concentration in the particle core portion is not less than 3 mol % and the Al concentration in the Al rich region is 1.3 times or more greater than the Al concentration in the particle core portion. The composite oxide particles contain 0.04 mol % or more sulfate ions relative to the total molar amount of the particles.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 14, 2022
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takaya Tochio, Takeshi Ogasawara
  • Patent number: 11362332
    Abstract: A method of preparing a positive electrode active material includes mixing a lithium raw material and a nickel-containing transition metal hydroxide precursor containing nickel in an amount of 65 mol % or more based on a total number of moles of transition metals and performing a first heat treatment to prepare a nickel-containing lithium transition metal oxide. The method also includes mixing a boron and carbon-containing raw material and a cobalt-containing raw material with the nickel-containing lithium transition metal oxide to form a mixture, and performing a second heat treatment on the mixture to form a coating material including B and Co on a surface of the lithium transition metal oxide. A positive electrode active material prepared by the preparation method is formed, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode active material.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 14, 2022
    Inventors: Won Tae Kim, Sun Sik Shin, Yeo June Yoon, Hong Kyu Park, Seong Hoon Kang, Jong Yeol Yu
  • Patent number: 11349121
    Abstract: This positive electrode active substance for a nonaqueous electrolyte secondary battery contains secondary particles that are aggregates of primary particles of a lithium transition metal oxide. The average particle diameter of the primary particles is within the range of 0.5 to 2 ?m, the compressive breaking strength of the primary particles is 1,000 MPa or greater, and the crystallite diameter of the primary particles is within the range of 100 to 280 nm.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 31, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Hidekazu Hiratsuka
  • Patent number: 11345609
    Abstract: A high voltage lithium nickel cobalt manganese oxide precursor is provided in the present disclosure. Primary particles of the lithium nickel cobalt manganese oxide precursor are in a clustered “petals” configuration. The “petal” has a sheet shape. A secondary particle of the lithium nickel cobalt manganese oxide precursor has a spherical structure with a loosened interior. A method for making the high voltage lithium nickel cobalt manganese oxide precursor is further provided in the present disclosure. In the method, through the unique design of the reaction atmosphere in combination with advantages of high-low pH phase separation as well as the appropriate matching between the output power and flow rates, the lithium nickel cobalt manganese oxide precursor having “petal-like” and sheet shaped primary particles and spherical and porous secondary particles is made.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 31, 2022
    Assignee: BASF SHANSHAN BATTERY MATERIALS CO., LTD.
    Inventors: Jiuhua Chen, Min Huang, Wei Peng, Xinxin Tan, Xu Li, Hui Shi
  • Patent number: 11342556
    Abstract: Batteries, methods for recycling batteries, and methods of forming one or more electrodes for batteries are disclosed. The battery includes at least one of (i) a cathode including a nickel-rich material and a first sub-nanoscale metal oxide coating on the nickel-rich material; and (ii) an anode including an anode material and a second sub-nanoscale metal oxide coating disposed on the anode material.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: May 24, 2022
    Assignee: HUNT ENERGY ENTERPRISES, L.L.C.
    Inventors: Jin-Myoung Lim, Fantai Kong, Mark Griffin
  • Patent number: 11329284
    Abstract: A method of forming an improved calcined lithium metal oxide is provided wherein the metal comprises at least one of nickel, manganese and cobalt. The method comprises forming a first solution in a first reactor wherein the first solution comprises at least one first salt of at least one of lithium, nickel, manganese or cobalt in a first solvent. A second solution is formed wherein the second solution comprises a second salt of at least one of lithium, nickel, manganese or cobalt in a second solvent wherein the second salt is not present in the first solution. A gas in introduced into said first solution to form a gas saturated first solution. A second solution is added to the gas saturated first solution without bubbling to form a lithium metal salt. The lithium metal salt dried and calcined to form the calcined lithium metal oxide.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: May 10, 2022
    Assignee: Nano One Materials Corporation
    Inventors: Russell H. Barton, Yingzi Feng, Casey A. Larson, Majid Talebiesfandarani, Stephen A. Campbell, Daniel J. Blondal
  • Patent number: 11329313
    Abstract: A lithium secondary battery is disclosed herein. In some embodiments, a lithium secondary battery which includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution, wherein the positive electrode includes a positive electrode active material represented by Formula 1, and the non-aqueous electrolyte solution includes a non-aqueous organic solvent, a first lithium salt, lithium bis(fluorosulfonyl)imide as a second lithium salt, and an additive, wherein a molar ratio of the first lithium salt to the second lithium salt is in a range of 1:0.01 to 1:1, and the additive is a mixed additive which includes fluorobenzene, tetravinylsilane, and tertiary butylbenzene in a weight ratio of 1:0.05:0.1 to 1:1:1.5. Li(NiaCobMnc)O2??[Formula 1] (in Formula 1, 0.65<a?0.9, 0.05?b<0.2, 0.05?c<0.2, and a+b+c=1.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: May 10, 2022
    Inventors: Young Min Lim, Chul Haeng Lee
  • Patent number: 11329287
    Abstract: The present invention relates to a cathode additive, a method for preparing the same, and a cathode and a lithium secondary battery including the same. More specifically, one embodiment of the present invention provides a cathode additive that can offset an irreversible capacity imbalance, increase the initial charge capacity of a cathode, and simultaneously inhibit the generation of gas in a battery.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: May 10, 2022
    Inventors: Jungmin Han, Byungchun Park, Ji Hye Kim, Wang Mo Jung
  • Patent number: 11322742
    Abstract: According to one embodiment, provided is an active material including monoclinic niobium titanium composite oxide particles, and carbon fibers with which at least a part of surfaces of the monoclinic niobium titanium composite oxide particles is covered. The monoclinic niobium titanium composite oxide particles satisfy 1.5?(?/?)?2.5. The monoclinic niobium titanium composite oxide particles have an average primary particle size of 0.05 ?m to 2 ?m. The carbon fibers contain one or more metal elements selected from the group consisting of Fe, Co and Ni, and satisfy 1/10000?(?/?)? 1/100. The carbon fibers have an average fiber diameter in the range of 5 nm to 100 nm.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: May 3, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Keigo Hoshina, Mitsuru Ishibashi, Yoshihiko Nakano, Yasuhiro Harada
  • Patent number: 11316155
    Abstract: There is provided a cathode active material precursor for a non-aqueous electrolyte secondary battery that is a complex metal hydroxide with a flow factor of 10 or greater to 20 or smaller.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: April 26, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji Tashiro, Masanori Takagi
  • Patent number: 11316157
    Abstract: The present disclosure provides methods for producing cathode materials for lithium ion batteries. Cathode materials that contain manganese are emphasized. Representative materials include LixNi1-y-zMnyCozO2 (NMC) (where x is in the range from 0.80 to 1.3, y is in the range from 0.01 to 0.5, and z is in the range from 0.01 to 0.5), LixMn2O4(LM), and LixNi1-yMnyO2 (LMN) (where x is in the range from 0.8 to 1.3 and y is in the range from 0.0 to 0.8). The process includes reactions of carboxylate precursors of nickel, manganese, and/or cobalt and lithiation with a lithium precursor. The carboxylate precursors are made from reactions of pure metals or metal compounds with carboxylic acids. The manganese precursor contains bivalent manganese and the process controls the oxidation state of manganese to avoid formation of higher oxidation states of manganese.
    Type: Grant
    Filed: May 19, 2019
    Date of Patent: April 26, 2022
    Assignee: Ge Solartech, LLC
    Inventor: Baoquan Huang
  • Patent number: 11289695
    Abstract: A positive electrode active material includes a lithium-rich lithium manganese-based oxide, wherein the lithium-rich lithium manganese-based oxide is represented by the following chemical formula (1), Li1+aNixCoyMnzMvO2-bAb??(1) wherein, 0<a?0.2, 0<x?0.4, 0<y?0.4, 0.5?z?0.9, 0?v?0.2, a+x+y+z+v=1, and 0?b?0.5; M is one or more elements selected from the group consisting of Al, Zr, Zn, Ti, Mg, Ga, In, Ru, Nb, and Sn; and A is one or more elements selected from the group consisting of P, N, F, S and Cl; wherein (i) lithium tungsten (W) compound, or the (i) lithium tungsten (W) compound and (ii) tungsten (W) compound are contained on the lithium-rich lithium manganese-based oxide; in an amount of 0.1% to 7% by weight based on the total weight of the positive electrode active material, wherein the (i) lithium tungsten (W) compound includes a composite of the (ii) tungsten (W) compound and a lithium.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: March 29, 2022
    Inventors: Gi Beom Han, Jintae Hwang, Sungbin Park, Wang Mo Jung
  • Patent number: 11283059
    Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries includes secondary particles of lithium transition metal oxide including aggregates of primary particles of the oxide. The primary particles have an average particle size of not less than 1 ?m, and the secondary particles have a void content of more than 30%.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: March 22, 2022
    Assignee: PANASONIC CORPORATION
    Inventor: Hidekazu Hiratsuka
  • Patent number: 11271215
    Abstract: A metal porous body is a metal porous body mainly composed of nickel and having a framework of a three-dimensional network structure, Ni(OH)2 being present in a surface of the framework, when the metal porous body is subjected to at least 30 potential scans between a lower limit potential of ?0.10 V and an upper limit potential of +0.65 V with respect to a hydrogen standard potential in not less than 10% by mass and not more than 35% by mass of a potassium hydroxide aqueous solution, at least oxygen being detected within a depth of 5 nm from the surface, and hydrogen being detected at least in the surface.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 8, 2022
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., PRIMEARTH EV ENERGY CO., LTD.
    Inventors: Kazuki Okuno, Masatoshi Majima, Hitoshi Tsuchida, Junichi Nishimura, Koutarou Kimura, Yusuke Shimizu
  • Patent number: 11271194
    Abstract: A lithium secondary battery includes a cathode formed from a cathode active material including a first cathode active material particle and a second cathode active material particle, an anode and a separation layer interposed between the cathode and the anode. The first cathode active material particle includes a lithium metal oxide including a concentration gradient and has a secondary particle structure formed from an assembly of primary particles. The second cathode active material particle includes a lithium metal oxide having a single particle structure. The first and second cathode active material particles each includes at least two metals except from lithium, and an amount of nickel is the largest among those of the metals in each of the first and second cathode active material particles.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 8, 2022
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Soo Ho Kim, Min Gu Kang, Young Hoon Do, Yong Hyun Cho
  • Patent number: 11264616
    Abstract: Provided is a conductive composition for electrodes, the conductive composition having excellent electrical conductivity and dispersibility. Also provided are: a positive electrode for non-aqueous batteries, the positive electrode using the conductive composition and having low electrode plate resistance and excellent binding properties; and a non-aqueous battery having high energy density, high output characteristics, and high cycle characteristics. The conductive composition for electrodes contains a conductive material, an active material, a binder, and a dispersant, wherein the conductive material contains carbon black and a multi-walled carbon nanotube having a powder resistivity of 0.035 ?·cm or less as measured under a load of 9.8 MPa, and a median volumetric diameter D50 value, which is as a measure of dispersibility, in the range of 0.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: March 1, 2022
    Assignee: Denka Company Limited
    Inventors: Tatsuya Nagai, Yoko Horikoshi, Hitoshi Kaneko, Hiroshi Yokota
  • Patent number: 11239463
    Abstract: To provide a process for producing a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and a high initial efficiency, a cathode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A process for producing a cathode active material, which comprises a mixing step of mixing a lithium compound, an alkali metal compound other than Li, and a transition metal-containing compound containing at least Ni and Mn to obtain a mixture, a step of firing the mixture at a temperature of from 900 to 1,100° C. to obtain a first lithium-containing composite oxide containing the alkali metal other than Li, and a step of removing the alkali metal other than Li from the first lithium-containing composite oxide to obtain a second lithium-containing composite oxide represented by the following formula: aLi(Li1/3Mn2/3)O2·(1?a)LiMO2 wherein 0<a<1, and M is an element containing at least Ni and Mn.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 1, 2022
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Sakai
  • Patent number: 11233237
    Abstract: A positive electrode active material contains a lithium composite oxide containing fluorine and oxygen. The lithium composite oxide satisfies 1<Zs/Za<8, where Zs represents a first ratio of a molar quantity of fluorine to a total molar quantity of fluorine and oxygen in XPS of the lithium composite oxide, and Za represents a second ratio of a molar quantity of fluorine to a total molar quantity of fluorine and oxygen in an average composition of the lithium composite oxide. An XRD pattern of the lithium composite oxide includes a first maximum peak within a first range of 18° to 20° at a diffraction angle 2? and a second maximum peak within a second range of 43° to 46° at the diffraction angle 2?. The ratio I(18°-20°)/I(43°-46°) of a first integrated intensity I(18°-20°) of the first maximum peak to a second integrated intensity I(43°-46°) of the second maximum peak satisfies 0.05?I(18°-20°)/I(43°-46°)?0.90.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 25, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takanori Omae, Ryuichi Natsui, Takayuki Ishikawa, Kensuke Nakura
  • Patent number: 11233239
    Abstract: Described herein are low or no-cobalt materials useful as electrode active materials in a cathode for lithium or lithium-ion batteries. For example, compositions of matter are described herein, such as electrode active materials that can be incorporated into an electrode, such as a cathode. The disclosed electrode active materials exhibit high specific energy and voltage, and can also exhibit high rate capability and/or long operational lifetime.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: January 25, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arumugam Manthiram, Wangda Li, Steven Lee
  • Patent number: 11228023
    Abstract: A lithium secondary battery includes a cathode formed from a cathode active material including a first cathode active material particle and a second cathode active material particle, an anode and a separation layer interposed between the cathode and the anode. The first cathode active material particle includes a lithium metal oxide in which at least one metal forms a concentration gradient. The second cathode active material particle includes primary particles having different shapes or crystalline structures from each other.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 18, 2022
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Min Gu Kang, Soo Ho Kim, Young Hoon Do, Yong Hyun Cho
  • Patent number: 11220438
    Abstract: A method for producing a nickel cobalt complex hydroxide includes first crystallization of supplying a solution containing Ni, Co and Mn, a complex ion forming agent and a basic solution separately and simultaneously to one reaction vessel to obtain nickel cobalt complex hydroxide particles, and a second crystallization of, after the first crystallization, further supplying a solution containing nickel, cobalt, and manganese, a solution of a complex ion forming agent, a basic solution, and a solution containing said element M separately and simultaneously to the reaction vessel to crystallize a complex hydroxide particles containing nickel, cobalt, manganese and said element M on the nickel cobalt complex hydroxide particles crystallizing a complex hydroxide particles comprising Ni, Co, Mn and the element M on the nickel cobalt complex hydroxide particles.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 11, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Hideki Yoshida, Masato Sonoo, Takahiro Kitagawa
  • Patent number: 11211605
    Abstract: A lithium secondary battery includes a cathode formed from a cathode active material including a cathode active material particle having a specific concentration ratio, an anode; and a separation layer interposed between the cathode and the anode. The lithium secondary battery has improved formation discharge amount, formation discharge efficiency and power output.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: December 28, 2021
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Kyung Bin Yoo, Kook Hyun Han, Duck Chul Hwang
  • Patent number: 11205799
    Abstract: The present invention provides a nonaqueous electrolyte secondary battery in which a decrease in discharge capacity after a charge-discharge cycle is reduced. The nonaqueous electrolyte secondary battery in accordance with an aspect of the present invention includes (i) a positive electrode plate and a negative electrode plate whose results of a scratch test carried out in the TD and the MD fall within predetermined ranges, (ii) a nonaqueous electrolyte secondary battery separator that includes a porous film whose temperature rise ending period with respect to a resin amount per unit area at irradiation with microwave falls within a predetermined range, and (iii) a porous layer that contains an ?-form polyvinylidene fluoride-based resin of a polyvinylidene fluoride-based resin at a predetermined proportion. The porous layer is arranged between the nonaqueous electrolyte secondary battery separator and at least one of the positive electrode plate and the negative electrode plate.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: December 21, 2021
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kosuke Kurakane, Toshihiko Ogata, Chikae Yoshimaru, Chikara Murakami
  • Patent number: 11205774
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery achieves high output characteristics and battery capacity, and allows a high electrode density to be achieved in the case of using the material for a positive electrode of a battery; and a non-aqueous electrolyte secondary battery uses the positive electrode active material, thereby achieving a high output with a high capacity. Prepared is a nickel composite hydroxide including plate-shaped secondary particles aggregated with overlaps between plate surfaces of multiple plate-shaped primary particles, where shapes projected from directions perpendicular to the plate surfaces of the plate-shaped primary particles are any plane projection shape of spherical, elliptical, oblong, and massive shapes, and the secondary particles have an aspect ratio of 3 to 20, and a volume average particle size (Mv) of 4 ?m to 20 ?m measured by a laser diffraction scattering method.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: December 21, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
  • Patent number: 11201328
    Abstract: Provided are a nickel-based active material precursor for a lithium secondary battery including a porous core and a porous shell, wherein a porosity of the porous shell may be greater than a porosity of the porous core, and a dense intermediate layer may be disposed between the porous core and the porous shell, wherein a porosity of the dense intermediate layer may be lower than the porosity of the porous core and the porosity of the porous shell; a method of preparing the same; a nickel-based active material for a lithium secondary battery formed therefrom; and a lithium secondary battery containing a positive electrode including the same.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: December 14, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Pilsang Yun, Jiyoon Kim, Wooyoung Yang, Donggyu Chang, Minah Cha
  • Patent number: 11196047
    Abstract: A positive electrode active material containing a lithium metal composite oxide composed of secondary particles formed by aggregated primary particles, comprising lithium, at least one metal element and at least one additive element, the lithium metal composite oxide having a crystal structure of layered rock salt structure and the metal element including nickel in a content of 60 to 90 atomic percent and the additive element including boron in content of more than 1.0 atomic percent and 6.0 atomic percent or less, the nickel content and the boron content each with respect to the sum of the metal element and the additive element, the porosity of the secondary particles being 8% or more and 20% or less; a non-aqueous electrolyte secondary battery containing the positive electrode active material; and a process for producing the positive electrode active material.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: December 7, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Jun Suzuki, Koji Yamaji
  • Patent number: 11177475
    Abstract: The present disclosure relates to a ternary positive electrode material and a battery using the ternary positive electrode material. The ternary positive electrode material includes secondary particles composed of primary particles. The secondary particles have an average particle diameter D50 of 6 ?m-20 ?m, BET of 0.2 m2/g-1 m2/g, and the number ? of primary particles per unit area of the secondary particles is 5 particles/?m2-100 particles/?m2. The ternary positive electrode material has a formula of Li1+a[NixCoyMnzM1bM2c]O2?dNd, where element M1 and element M2 are each independently selected from at least one of Al, Zr, Ti, Mg, Zn, B, Ca, Ce, Te and Fe, element N is selected from at least one of F, Cl and S, and 0<x<1, 0<y?0.3, 0?z?0.3, ?0.1<a<0.2, 0?b<0.3, 0?c<0.3, 0?d<0.2, 0?b+c?0.3, x+y+z+b=1. The formed secondary particles have high compactness, thereby effectively improving the structural stability and the cycling performance at high or low temperature.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 16, 2021
    Inventors: Qi Wu, Jinhua He, Changyin Ji, Tao Qiao, Kelun Wang
  • Patent number: 11171322
    Abstract: Provided herein are a positive electrode for a secondary battery and a secondary battery including the same. The positive electrode includes a positive electrode active material layer including a positive electrode active material, a conductive material, and a dispersant, wherein the conductive material includes bundle-type carbon nanotubes, units of which have an average strand diameter of 15 nm or less, and the positive electrode active material layer has a packing density of 3.0 g/cc or more, and has an average pore diameter of 0.1 ?m to 0.5 ?m at the packing density when a pore size distribution is measured by mercury intrusion porosimetry, and thus may exhibit excellent electrolyte wetting properties. As a result, when the positive electrode is applied to a battery, wetting time of the positive electrode is shortened, and an area of the positive electrode that is not filled with an electrolyte is reduced, resulting in enhanced battery performance.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: November 9, 2021
    Inventors: Jong Heon Seol, Min Hee Lee, Dong Kyu Kim, Jae Woong Kim, Ye Lin Kim, Sang Hoon Choy, Je Young Kim, Sun Kyu Kim
  • Patent number: 11152618
    Abstract: Provided are a nickel-based active material precursor for a lithium secondary battery including a porous core and a shell on the porous core, the shell having a radial arrangement structure with a higher density than that of the porous core, wherein the nickel-based active material precursor have a size of 9 ?m to 14 ?m, and the porous core has a volume of about 5% by volume to about 20% by volume based on the total volume of the nickel-based active material precursor; a method of preparing the nickel-based active material precursor; a nickel-based active material produced from the nickel-based active material; and a lithium secondary battery including a cathode containing the nickel-based active material.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 19, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Pilsang Yun, Jongmin Kim, Hyunbeom Kim, Wooyoung Yang, Jangsuk Hyun
  • Patent number: 11152610
    Abstract: Provided are a cathode active material for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery including a cathode including the cathode active material. The cathode active material includes: a secondary particle of a nickel-based active material, wherein the secondary particle including a plurality of primary particles, wherein the secondary particle includes a radial arrangement structure and an irregular porous structure, the radial arrangement structure is located closer to a surface of the secondary particle than the irregular porous structure, and a lithium fluoride-based compound is present on a surface of the nickel-based active material.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: October 19, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Donggyu Chang, Jongmin Kim
  • Patent number: 11139461
    Abstract: A method for manufacturing a nickel-metal hydride battery includes: a first step of preparing a first nickel-metal hydride battery having a positive electrode including nickel hydroxide (Ni(OH)2); and a second step of manufacturing the second nickel-metal hydride battery by performing 600% overcharging to the prepared first nickel-metal hydride battery. The 600% overcharging is a process for supplying the first nickel-metal hydride battery with an amount of electric power of 600% of the rated capacity of the first nickel-metal hydride battery.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 5, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiko Mitsui, Junta Izumi, Kenji Takahashi, Hiroyuki Kaiya
  • Patent number: 11127949
    Abstract: A negative electrode including a lithium metal layer, a lithium nitride thin film layer formed on at least one surface of the lithium metal layer, and a carbon-based thin film layer formed on the lithium nitride thin film layer, a method for preparing the same, and a lithium secondary battery including the same. A lithium nitride thin film layer and a carbon-based thin film layer formed on a lithium metal layer obtains current density distribution uniformly by blocking side reactions caused by a direct contact between the lithium metal layer and an electrolyte as well as increasing a specific surface area of a negative electrode, and enhances cycle performance and reduces an overvoltage by suppressing lithium dendrite formation to improve electrochemical performance of a lithium secondary battery.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 21, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Heewon Choi, Eun Kyung Kim, Ki Hwan Kim, Sangwook Woo, Jeong Woo Shon, Ohbyong Chae
  • Patent number: 11121368
    Abstract: An object of the present invention is to provide a positive electrode material for a nonaqueous electrolyte secondary battery, which is capable of inhibiting the gelation of a positive electrode composite material paste without decreasing the charge and discharge capacity and the output characteristics, when used as a positive electrode material for batteries. The positive electrode active material for a nonaqueous electrolyte secondary battery comprises a mixture containing a lithium metal composite oxide represented by a general formula LiaNi1-x-y-zCoxMnyMzO2 (wherein, 0.03?x?0.35, 0?y?0.35, 0?z?0.05, 0.97?a?1.30, and M is at least one type of element selected from V, Fe, Cu, Mg, Mo, Nb, Ti, Zr, W and Al) and an ammonium tungstate powder, wherein when 5 g of the positive electrode material is mixed with 100 ml of pure water, the mixture is stirred for 10 minutes and then left to stand for 30 minutes, and then the pH of a supernatant fluid at 25° C. was measured, the pH ranges from 11.2 to 11.8.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 14, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji Yamaji, Taira Aida, Ryozo Ushio
  • Patent number: 11101459
    Abstract: Disclosed is a zinc ion secondary battery. More particularly, the zinc ion secondary battery includes a first electrode; a second electrode; and an electrolyte disposed between the first electrode and the second electrode, wherein an active material included in the first electrode is an alkali metal-vanadium oxide/graphene oxide composite, wherein the alkali metal-vanadium oxide has a layered structure in which alkali metal layers and vanadium oxide layers are alternately stacked. Accordingly, a zinc ion battery system including the K2V3O8/a graphene oxide composite as an electrode active material can exhibit excellent rechargeability and have a high discharge capacity and an excellent capacity retention rate.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 24, 2021
    Assignee: INDUSTRY-ACADEMIA COOPERATION GROUP OF SEJONG UNIVERSITY
    Inventors: Seung Taek Myung, Jae Hyeon Jo, Hee Jae Kim
  • Patent number: 11088392
    Abstract: Composites comprising anode and cathode active materials conformally coupled to few-layered graphene, corresponding electrodes and related methods of preparation.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: August 10, 2021
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Mark C. Hersam, Kan-Sheng Chen, Ethan B. Secor
  • Patent number: 11081694
    Abstract: The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material being a primary particle having a monolithic structure that includes a lithium composite metal oxide of Formula 1 below, wherein the primary particle has an average particle size (D50) of 2 ?m to 20 ?m and a Brunauer-Emmett-Teller (BET) specific surface area of 0.15 m2/g to 1.9 m2/g, and a secondary battery including the same.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 3, 2021
    Inventors: Byung Chun Park, Wang Mo Jung, Seong Hoon Kang, Ju Kyung Shin, Sang Min Park, Sang Wook Lee
  • Patent number: 11059012
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: July 13, 2021
    Inventor: Liang-Yuh Chen
  • Patent number: 11050049
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 29, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Robert L. Sacci, Nancy J. Dudney, Lance W. Gill, Edward W. Hagaman, Gabriel M. Veith
  • Patent number: 11050053
    Abstract: The present invention relates to a battery, comprising a positive electrode plate, a separator and a negative electrode plate, wherein the positive electrode plate comprises a positive electrode current collector and at least two layers of positive active materials on at least one surface of the positive electrode current collector in which the underlying positive active material layer in contact with the positive electrode current collector comprises a first positive active material, a first polymer material, and a first conductive material and in which the upper positive active material layer comprises a second positive active material, a second polymer material, and a second conductive material and the first polymer material comprises an oil-dispersible polymer material having a solubility in NMP at 130° C. for 5 minutes, which is 30% or less of the solubility of PVDF under the same conditions. The battery exhibits good safety performance and improved electrical performance.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 29, 2021
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Wei Li, Haihao Shi, Huihui Liu, Chao Jin, Tianyi Gao, Jianbao Xu, Shisong Li, Chao Guo
  • Patent number: 11038361
    Abstract: In one aspect, a battery includes at least one anode, at least one cathode, and electrolyte between the at least one anode and at least one cathode. The at least one cathode comprises at least a first charging material and at least a second charging material different from the first material.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: June 15, 2021
    Assignee: Lenovo (Singapore) Pte. Ltd.
    Inventors: Bouziane Yebka, Joseph Anthony Holung, Tin-Lup Wong, Philip John Jakes
  • Patent number: 11038168
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 15, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi Fukui, Katsuya Inoue, Shuhei Oda, Hiroyuki Toya