Vanadium (v), Chromium (cr), Niobium (nb), Molybdenum (mo), Titanium (ti), Or Tungsten (w) Component Is Active Material Patents (Class 429/231.5)
  • Patent number: 9023527
    Abstract: A new electroactive material of formula H4V3O8 obtainable from H2V3O8 is described as well as a method for its production, an electroactive cathode coating material comprising this electroactive material, a method for its production and cathodes as well as aqueous and non aqueous, rechargeable and non rechargeable batteries comprising such cathodes.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 5, 2015
    Assignee: Belenos Clean Power Holding AG
    Inventors: Yoan Mettan, Reinhard Nesper
  • Patent number: 9023532
    Abstract: A positive active material composition for a rechargeable lithium battery that includes a positive active composite material including a compound being reversibly capable of intercalating and deintercalating lithium, WO3, and a binder; and an aqueous binder, a positive electrode for a rechargeable lithium battery including the positive active material composition, and a rechargeable lithium battery comprising the positive electrode including the positive active material composition.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chae-Woong Cho, Myung-Duk Lim, Seung-Hun Han
  • Publication number: 20150115896
    Abstract: A power storage device includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The negative electrode comprises a plurality of types of negative electrode active materials, wherein each of the plurality of types has different lithium-ion absorption potentials.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 30, 2015
    Inventors: Takeshi Shimomura, Touru Sumiya, Shigeki Kihara, Masao Suzuki, Masatoshi Ono
  • Patent number: 9017841
    Abstract: Disclosed is a method for preparing an electrochemical device, comprising the steps of: charging an electrochemical device using an electrode active material having a gas generation plateau potential in a charging period to an extent exceeding the plateau potential; and degassing the electrochemical device. An electrochemical device, which comprises an electrode active material having a gas generation plateau potential in a charging period, and is charged to an extent exceeding the plateau potential and then degassed, is also disclosed.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Eui Yong Bang, Min Chul Jang, Sang Hoon Choy, Ki Young Lee
  • Patent number: 9017874
    Abstract: Disclosed are an electrode active material for lithium secondary batteries, comprising at least one selected from compounds represented by the following formula 1, and a lithium secondary battery comprising the same. LixMo4-yMyO6-zAz??(1) wherein 0?x?2, 0?y?0.5, 0?z?0.5, M is a metal or transition metal cation having an oxidation number of +2 to +4, and A is a negative monovalent or negative bivalent anion.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Young Sun Choi, Seung-Tae Hong, Soojin Kim, YoungHwa Jung
  • Publication number: 20150111105
    Abstract: To provide an active material with high capacity, high initial charge-discharge efficiency, and high average discharge voltage. An active material according to the present invention includes a first active material and a second active material, wherein the ratio (?) of the second active material (B) to the total amount by mole of the first active material (A) and the second active material (B) satisfies 0.4 mol %???18 mol % [where ?=(B/(A+B))×100].
    Type: Application
    Filed: March 27, 2013
    Publication date: April 23, 2015
    Applicant: TDK CORPORATION
    Inventors: Tomohiko Kato, Atsushi Sano, Masaki Sobu, Akinobu Nojima
  • Publication number: 20150111104
    Abstract: A method is described for manufacturing a lithium-sulfur cell or lithium-sulfur battery, in particular a solid-state lithium-sulfur cell or lithium-sulfur battery. A nanowire network is provided in a method step a) composed of an electron- and lithium ion-conducting ceramic mixed conductor or a mixed conductor precursor for forming an electron- and lithium ion-conducting ceramic mixed conductor. The nanowire network is coated with a lithium ion-conducting solid-state electrolyte layer in a method step b). The nanowire network is optionally infiltrated with sulfur in a method step c). A cathode current arrester is applied to the uncoated side of the nanowire network in a method step d). Moreover, a lithium-sulfur cell, a lithium-sulfur battery, and a mobile or stationary system are described as well.
    Type: Application
    Filed: March 5, 2013
    Publication date: April 23, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Christine Engel, Ulrich Eisele, Andre Moc
  • Publication number: 20150104707
    Abstract: The present disclosure refers to a cathode material composite having improved conductivity, and a cathode and electrochemical device having the cathode material composite. In accordance with one embodiment of the present disclosure, a conductive polymer is positioned on the surface of a shell present in the form of a tetragonal structure in the lithium manganese oxide, thereby enhancing electrical conductivity to be highly involved in reaction around 3V, and providing a conductive path to improve the capacity, life and rate characteristics of an electrochemical device.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Ji-Hye Park, Song-Taek Oh, Hyeok-Moo Lee
  • Patent number: 9005814
    Abstract: Highly dispersed lithium titanate crystal structures having a thickness of few atomic layers level and the two-dimensional surface in a plate form are supported on carbon nanofiber (CNF). The lithium titanate crystal structure precursors and CNF that supports these are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The mass ratio between the lithium titanate crystal structure and carbon nanofiber is preferably between 75:25 and 85:15. The carbon nanofiber preferably has an external diameter of 10-30 nm and an external specific surface area of 150-350 cm2/g. This composite is mixed with a binder and then molded to obtain an electrode, and this electrode is employed for an electrochemical element.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 14, 2015
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Katsuhiko Naoi, Wako Naoi, Shuichi Ishimoto, Kenji Tamamitsu
  • Publication number: 20150099169
    Abstract: An electrode for a battery includes a plurality of electrochemically active conversion-based particles coated by multilayer graphene, a plurality of carbon fibers, and a carbonaceous binder. The carbonaceous binder binds the active particles coated with the multilayer graphene to the plurality of carbon fibers. A battery containing the electrode and a method of making an electrode and a battery containing the electrode are also disclosed.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Inventors: Nancy J. DUDNEY, Jagjit NANDA, Surendra Kumar MARTHA
  • Publication number: 20150099175
    Abstract: The present invention provides an electrode material in which unevenness in a supporting amount of a carbonaceous film is less when using an electrode-active material having a carbonaceous film on a surface thereof as the electrode material, and which is capable of improving conductivity, and a method for producing the electrode material. The electrode material includes an aggregate formed by aggregating an electrode-active material in which a carbonaceous film is formed on a surface. In the electrode material, an average particle size of the aggregate is 0.5 to 100 ?m, a volume density of the aggregate is 50 to 80 vol % of a volume density in a case in which the aggregate is a solid, and 80% or more of the surface of the electrode-active material is covered with the carbonaceous film. Alternatively, the electrode material includes an aggregate formed by aggregating electrode-active material particles in which a carbonaceous film is formed on a surface.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 9, 2015
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takao KITAGAWA, Hirofumi YASUMIISHI, Masaru UEHARA
  • Patent number: 8999575
    Abstract: Disclosed is a positive electrode and a lithium battery including the positive electrode. The positive electrode includes a current collector, a first layer irreversibly deintercalating lithium ions, and a second layer allowing reversible intercalation and deintercalation of lithium ions. In one embodiment, the first layer further comprises a first sublayer and a second sublayer, in which the first sublayer is interposed between the current collector and the second sublayer. The first sublayer comprises a first active material represented by Formula 1 Li2Mo1-nR1nO3, and the second sublayer comprises a second active material represented by Formula 2 Li2Ni1-mR2mO2. In Formula 1, 0?n<1; and R1 is selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), magnesium (Mg), nickel (Ni), and combinations of at least two of the foregoing elements.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 7, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soon-Rewl Lee, Ick-Kyu Choi, Young-Ki Kim, Jay-Hyok Song, Young-Hun Lee, Yu-Mi Song, Yoon-Chang Kim
  • Patent number: 8999579
    Abstract: An anode includes a collector; and an anode active material layer disposed on the collector comprises an anode active material, which is lithium oxide coated Li4Ti5O12, a conductive material, and a binder, wherein the lithium oxide intercalates and/or deintercalates lithium ions into and from the lattice structure of Li4Ti5O12. By coating the surface of the anode active material with lithium oxide, an anode including the surface-treated anode active material has a high capacity, high-rate properties, and a high initial efficiency.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: April 7, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Joung-won Park, Yoon-sok Kang, Han-su Kim, Jae-gu Yoon, Gue-sung Kim
  • Publication number: 20150093641
    Abstract: Provided is a lithium metal compound oxide having a layered structure, which is very excellent as a positive electrode active material of a battery that is mounted on, particularly, an electric vehicle or a hybrid vehicle. Suggested is a lithium metal compound oxide having a layered structure which is expressed by general formula of Li1+xM1?xO2 (M represents metal elements including three elements of Mn, Co, and Ni). In the lithium metal compound oxide having a layered structure, D50 is more than 4 ?m and less than 20 ?m, a ratio of a primary particle area to a secondary particle area of secondary particles having a size corresponding to the D50 (“primary particle area/secondary particle area”) is 0.004 to 0.035, and the minimum value of powder crushing strength that is obtained by crushing a powder using a microcompression tester is more than 70 MPa.
    Type: Application
    Filed: April 16, 2013
    Publication date: April 2, 2015
    Inventors: Tetsuya Mitsumoto, Hitohiko Ide, Shinya Kagei, Yoshimi Hata
  • Patent number: 8993169
    Abstract: A positive electrode composition is presented. The composition includes at least one electroactive metal; at least one alkali metal halide; and at least one additive including a plurality of nanoparticles, wherein the plurality of nanoparticles includes tungsten carbide. An energy storage device, and a related method for the preparation of an energy storage device, are also presented.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, Jr.
  • Patent number: 8993171
    Abstract: To provide an active material from which a sufficient discharge capacity is obtained, an electrode containing the active material, a lithium secondary battery including the electrode, and a method for making an active material. A method for making an active material includes a temperature elevation step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and a reductant in a hermetically sealed container at a temperature elevation rate T1 from 25° C. to 110° C. and then at a temperature elevation rate T2 from 110° C. to a designated temperature of 200° C. or more, in which T1>T2; T1=0.5 to 10° C./min; and T2=0.1 to 2.2° C./min.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: March 31, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Kouji Tokita, Tomohiko Kato, Akiji Higuchi
  • Publication number: 20150086850
    Abstract: In this anode for a secondary battery, method for producing same, and secondary battery, an anode active material is laminated on a surface of a metal foil, the anode active material contains at least titanium dioxide, and the titanium dioxide contains a Brookite crystal phase and contains an amorphous phase in a ratio of 1 vol % to 20 vol %.
    Type: Application
    Filed: April 22, 2013
    Publication date: March 26, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Hitoshi Yokouchi, Masahiro Ohmori, Chiaki Sotowa, Masayuki Sanbayashi
  • Publication number: 20150086872
    Abstract: According to one embodiment, there is provided an active substance. The active substance includes particles of niobium titanium composite oxide and a phase including a carbon material. The niobium titanium composite oxide is represented by Ti1-xM1xNb2-yM2yO7. The phase is formed on at least a part of the surface of the particles. The carbon material shows, in a Raman chart obtained by Raman spectrometry, a G band observed at from 1530 to 1630 cm?1 and a D band observed at from 1280 to 1380 cm?1. A ratio IG/ID between a peak intensity IG of the G band and a peak intensity ID of the D band is from 0.8 to 1.2.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuki ISE, Yorikazu Yoshida, Yasuhiro Harada, Hiroki Inagaki, Norio Takami
  • Patent number: 8986889
    Abstract: A positive active material for a lithium secondary battery comprises a core comprising a compound that can reversibly intercalate and deintercalate lithium; and a compound attached to the surface of the core and represented by Chemical Formula 1: Li1+xM(I)xM(II)2?xSiyP3?yO12,??[Chemical Formula 1] wherein M(I) and M(II) are selected from the group consisting of Al, Zr, Hf, Ti, Ge, Sn, Cr, Nb, Ga, Fe, Sc, In, Y, La, Lu, and Mg, and 0<x?0.7, 0?y?1.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: March 24, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Joon-Hyung Lee, Andriy Kvasha, Oleg Levin
  • Patent number: 8986890
    Abstract: A cathodal material for lithium cells comprises a porous lithium oxide microparticle is provided. The porous lithium oxide microparticle comprises a plurality of porous lithium oxide nanoparticles formed with a first conductive layer therein, a pore defined by connecting the lithium oxide nanoparticles, a second conductive layer covering at least a surface of one of the lithium oxide nanoparticles contacting the first conductive layer and forming a three-dimensional conductive network between the lithium oxide nanoparticles, and a conductive fiber connecting with the second conductive layer.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 24, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chia-Haw Hsu, Yu-Run Lin, Mei-Hui Hsiao, Tu Chen
  • Publication number: 20150079438
    Abstract: In general, according to one embodiment, an active material for a battery includes a monoclinic ?-type titanium oxide or a monoclinic ?-type titanium complex oxide. In the active material for a battery, carbonate ions are disposed on at least a part of the surface thereof.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki INAGAKI, Wen ZHANG, Takuya IWASAKI, Norio TAKAMI
  • Publication number: 20150079472
    Abstract: A method for manufacturing silicon flakes includes steps as follows. A silicon material is contacted with a machining tool which includes at least one abrasive particle fixedly disposed thereon. The silicon material is scraped along a displacement path with respect to the machining tool to generate the silicon flakes having various particle sizes.
    Type: Application
    Filed: June 13, 2014
    Publication date: March 19, 2015
    Inventors: Kun-Fung LIN, Rong-Ruey JENG, Han-Tu LIN, Chih-Hung CHAN
  • Patent number: 8980476
    Abstract: An active material for a battery contains a Y2Ti2O5S2 crystalline phase, and has an IB/IA value of 0.3 or smaller and an IC/IA value of 0.15 or smaller, wherein IA, IB and IC are the peak intensity of the Y2Ti2O5S2 crystalline phase at 2?=34.5°, the peak intensity of a Y2T2O7 crystalline phase at 2?35.6°, and the peak intensity of TiS2 at 2?=34.1°, respectively, that are measured by X-ray diffraction using CuK? radiation. The active material is synthesized by preparing a raw material composition containing TiS2, TiO2 and Y2O3 and having a molar ratio of TiS2 to Y2O3 of higher than 1 or containing TiS2, TiO2 and Y2O3 and having a molar ratio of TiO2 to Y2O3 of lower than 1, and heating the raw material composition. A positive or negative-electrode active material layer included in the battery may be contain the active material.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Tojigamori, Hideki Oki
  • Publication number: 20150072238
    Abstract: Provided is an anode active material including a transition metal-pyrophosphate of Chemical Formula 1 below: M2P2O7??<Chemical Formula 1> where M is any one selected from the group consisting of titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), palladium (Pd), and silver (Ag), or two or more elements thereof. Since the anode active material of the present invention is stable and has excellent conversion reactivity while including only transition metal and phosphate without using lithium in which the price thereof is continuously increased, the anode active material of the present invention may improve capacity characteristics.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sang Wook Woo, Ji Heon Ryu, Eun Kyung Kim, Je Young Kim, Sang Jo An, Min Young Hong
  • Publication number: 20150072237
    Abstract: Provided is an anode active material including a transition metal-metaphosphate of Chemical Formula 1: M(PO3)2??<Chemical Formula 1> where M is any one selected from the group consisting of titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), palladium (Pd), and silver (Ag), or two or more elements thereof. Since the anode active material of the present invention is stable and has excellent conversion reactivity while including only transition metal and phosphate without using lithium in which the price thereof is continuously increased, the anode active material of the present invention may improve capacity characteristics.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Woo, Ji Heon Ryu, Eun Kyung Kim, Je Young Kim, Sang Jo An, Min Young Hong
  • Publication number: 20150064556
    Abstract: An electrode for a rechargeable battery and a rechargeable battery, the electrode including a current collector; an electrode active material layer; and an electrolyte solution impregnation layer, wherein the electrolyte solution impregnation layer includes a metal oxide and a conductive material.
    Type: Application
    Filed: January 17, 2014
    Publication date: March 5, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jin-Hyon LEE, Ju-Hee SOHN, Jung-Yeon WON, Eun-Young GOH, Jong-Ki LEE, Sang-In PARK
  • Publication number: 20150064560
    Abstract: An electrode active material including an ordered mesoporous metal oxide; and at least one conductive carbon material disposed in a pore of the ordered mesoporous metal oxide. Also, an electrode including the electrode active material, and a lithium battery including the electrode.
    Type: Application
    Filed: August 25, 2014
    Publication date: March 5, 2015
    Inventors: Jeongkuk SHON, Jaeman CHOI, Junhwan KU, Kuntae KWON, Moonseok KWON, Minsang SONG, Seungsik HWANG, Jiman KIM, Gwiok PARK
  • Publication number: 20150056511
    Abstract: To provide a cathode active material for a lithium ion secondary battery, which has high packing properties and high volume capacity density, and a method for its production.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Applicant: AGC SEIMI CHEMICAL CO., LTD.
    Inventors: Satoshi TAKAMATSU, Yukimitsu WAKASUGI, Megumi UCHIDA
  • Publication number: 20150056515
    Abstract: An electrode active material including a vanadium oxide represented by Formula 1, VOx??Formula 1 wherein vanadium in the vanadium oxide has a mixed oxidation state of a plurality of oxidation numbers, and the oxidation numbers include an oxidation number of +3, and wherein, in Formula 1 above, 1.5<x<2.5.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Inventors: Ryounghee Kim, Seoksoo Lee, Dongwook Han, Anass BENAYAD, Jusik Kim, Wonseok Chang
  • Publication number: 20150056508
    Abstract: Disclosed is a cathode active material in which lithium cobalt oxide particles and manganese (Mn) or titanium (Ti)-containing lithium transition metal oxide particles co-exist and a method of preparing the same.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sun Sik Shin, Hye Lim Jeon, Bo Ram Lee, Hong Kyu Park
  • Publication number: 20150056514
    Abstract: Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb2-x TaxOy (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti2Nb10-vTavOw (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventors: Sheng Dai, Bingkun Guo, Xiao-Guang Sun, Zhenan Qiao
  • Patent number: 8962191
    Abstract: An electrochemical cell is presented. The electrochemical cell includes an elongated ion-conducting separator defining at least a portion of a first compartment; a positive electrode composition disposed in the first compartment, the positive electrode composition comprising at least one electroactive metal, at least one alkali metal halide, and at least one electrolyte. A positive current collector is further disposed in the first compartment such that a portion of the positive current collector extends into the positive electrode composition, and a primary dimension of the extended portion of the positive current collector is less than about 20% of a primary dimension of the first compartment. A related method for the preparation of an electrochemical cell is also presented.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Michael Alan Vallance, Brandon Alan Bartling
  • Patent number: 8956761
    Abstract: The present invention provides an electrochemical cell comprising an anodic current collector in contact with an anode. A cathodic current collector is in contact with a cathode. A solid electrolyte thin-film separates the anode and the cathode.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Oerlikon Advanced Technologies AG
    Inventors: Glyn Jeremy Reynolds, Robert Mamazza, Jr.
  • Publication number: 20150044565
    Abstract: The present invention provides a process for producing a graphene-enhanced anode active material for use in a lithium battery. The process comprises (a) providing a continuous film of a graphene material into a deposition zone; (b) introducing vapor or atoms of a precursor anode active material into the deposition zone, allowing the vapor or atoms to deposit onto a surface of the graphene material film to form a sheet of an anode active material-coated graphene material; and (c) mechanically breaking this sheet into multiple pieces of anode active material-coated graphene; wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight, all based on the total weight of the graphene material and the anode active material combined.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
  • Publication number: 20150044556
    Abstract: The present invention provides a cathode (positive electrode) of a lithium battery and a process for producing this cathode. The electrode comprises a cathode active material-coated graphene sheet and the graphene sheet has two opposed parallel surfaces, wherein at least 50% area (preferably >80%) of one of the two surfaces is coated with a cathode active material coating. The graphene material is in an amount of from 0.1% to 99.5% by weight and the cathode active material is in an amount of at least 0.5% by weight (preferably >80% and more preferably >90%), all based on the total weight of the graphene material and the cathode active material combined. The cathode active material is preferably an inorganic material, an organic or polymeric material, a metal oxide/phosphate/sulfide, or a combination thereof. The invention also provides a lithium battery, including a lithium-ion, lithium-metal, or lithium-sulfur battery.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
  • Publication number: 20150044564
    Abstract: The present invention provides an anode electrode of a lithium-ion battery, comprising an anode active material-coated graphene sheet, wherein the graphene sheet has two opposed parallel surfaces and at least 50% area of one of the surfaces is coated with an anode active material and wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight (preferably at least 60%), all based on the total weight of the graphene material and the anode active material combined.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
  • Publication number: 20150044566
    Abstract: An electronically active glass has the composition (TxOy)z-(MuOv)w—(Na/LiBO2)t wherein T is a transition metal selected from V and Mo, M is a metal selected from Ni, Co, Na, Al, Mn, Cr, Cu, Fe, Ti and mixtures thereof, x, y, u, and v are the stoichiometric coefficients resulting in a neutral compound, i.e. x=2y/(oxidation state of T) and u=2v/(oxidation state of M), z, w and t are weight-%, wherein z is 70-80, w is 0-20 t is 10-30, and the sum of z, w and t is 100 weight-%, in particular V2O5—LiBO2 and V2O5—NiO—LiBO2.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 12, 2015
    Inventors: Semih Afyon, Reinhard Nesper
  • Patent number: 8951672
    Abstract: A battery capable of improving the cycle characteristics and the swollenness characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The node has an anode current collector and an anode active material layer provided thereon, and the anode active material layer contains a plurality of anode active material particles having silicon, and a metal material having a metal element not being alloyed with an electrode reactant in a gap between the anode active material particles.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: February 10, 2015
    Assignee: Sony Corporation
    Inventors: Takakazu Hirose, Kenichi Kawase, Hideki Nakai, Rikako Imoto, Nozomu Morita
  • Patent number: 8945773
    Abstract: According to one embodiment, a negative electrode active material for nonaqueous electrolyte battery includes a titanium oxide compound having a crystal structure of monoclinic titanium dioxide. When a monoclinic titanium dioxide is used as the active material, the effective capacity is significantly lower than the theoretical capacity though the theoretical capacity was about 330 mAh/g. The invention comprises a titanium oxide compound which has a crystal structure of monoclinic titanium dioxide and a (001) plane spacing of 6.22 ? or more in the powder X-ray diffraction method using a Cu—K? radiation source, thereby making an attempt to improve effective capacity.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Harada, Norio Takami, Hiroki Inagaki, Keigo Hoshina
  • Patent number: 8940439
    Abstract: A secondary battery capable of suppressing resistance rise even after repeated charge and discharge is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode contains titanium-containing lithium composite as an anode active material, and the electrolytic solution contains cyclic disulfonic acid anhydride.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 27, 2015
    Assignee: Sony Corporation
    Inventors: Atsumichi Kawashima, Hiroshi Imoto, Tomoyuki Shiratsuchi, Takuma Sakamoto, Naoto Ueda, Atsushi Nishimoto, Tadahiko Kubota, Masayuki Ihara
  • Publication number: 20150024280
    Abstract: In a battery production process, a positive electrode active material having a reaction-suppressing layer that does not easily peel off formed on the surface thereof, and a positive electrode and an all-solid-state battery that use said material are provided. The present invention involves positive electrode active material particles for an all-solid-state battery containing sulfide-based solid electrolyte. The positive electrode active material particles are an aggregate containing two or more particles. The surface of the aggregate is coated with a reaction-suppressing layer for suppressing reactions with the sulfide-based solid electrolyte.
    Type: Application
    Filed: May 23, 2011
    Publication date: January 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takayuki Uchiyama
  • Publication number: 20150017540
    Abstract: Provided is a non-aqueous electrolyte battery excellent in initial static characteristics and continuous charge characteristics. The non-aqueous electrolyte battery includes a pellet-shaped positive electrode, a pellet-shaped negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte. The positive electrode includes a positive electrode active material, aluminum powder, a conductive agent, and a binder. The positive electrode active material contains vanadium pentoxide. The positive electrode has a porosity of 35.6 to 45.4 vol %. The negative electrode includes a negative electrode active material containing silicon, a conductive agent, and a binder.
    Type: Application
    Filed: March 19, 2013
    Publication date: January 15, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Toshie Wata, Tadayoshi Takahashi
  • Publication number: 20150017500
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a conductive layer formed on the electrode active material layer and comprising a conductive material and a binder; and a first porous supporting layer formed on the conductive layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Application
    Filed: September 4, 2014
    Publication date: January 15, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Patent number: 8932762
    Abstract: A method for manufacturing an active material containing a triclinic LiVOPO4 crystal particle that has a spherical form and an average particle size of 20 to 200 nm. The method includes a step of manufacturing the crystal particle by hydrothermal synthesis.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: January 13, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Akiji Higuchi
  • Patent number: 8932765
    Abstract: An object is to provide an electrode assembly for an electric storage device, such as a nonaqueous electrolyte cell, and an electric storage device that are capable of preventing increase of a short-circuit current at the time of occurrence of a short-circuit within a cell and have high safety. In order to achieve the object, provided is an electrode assembly for an electric storage device including a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode, in which at least one of the positive electrode and the negative electrode includes a current collector, an active material layer formed on at least one face of the current collector, and an undercoat layer formed between the current collector and the active material layer and including an organic binder that evaporates and decomposes when heated to a predetermined temperature or more.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: January 13, 2015
    Assignee: GS Yuasa International Ltd.
    Inventors: Akihiko Miyazaki, Sumio Mori, Taro Yamafuku, Minoru Teshima
  • Publication number: 20150010820
    Abstract: According to one embodiment, there is provided an active material including monoclinic niobium titanium composite oxide particles and a carbon material layer. The monoclinic niobium titanium composite oxide particles can absorb and release Li ions or Na ions and satisfy Formula (1) below. The carbon material layer covers at least a part of surfaces of the niobium titanium composite oxide particles and satisfies Formula (2) below: 0.5?(?/?)?2??(1) 0?(?/?)?0.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Yasuhiro Harada, Kazuki Ise, Yorikazu Yoshida
  • Patent number: 8927102
    Abstract: A metal suboxide having a specific surface area of greater than or equal to about 1.5 m2/g is prepared by preparing a metal suboxide precursor, and heat-treating the metal suboxide precursor.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: January 6, 2015
    Assignees: Samsung Electronics Co., Ltd., Postech Academy-Industry Foundation
    Inventors: Dong Jin Ham, Bok Soon Kwon, Hyun Seok Kim, Joon Seon Jeong, Hyo Rang Kang, Jae Sung Lee, Sueng Hoon Han, Gang Hong Bae
  • Patent number: 8927154
    Abstract: A spherical primary particle of a lithium titanium oxide of which average diameter is in the range of about 1 to about 20 ?m, a method of preparing the spherical primary particle of the lithium titanium oxide, and a lithium rechargeable battery including the spherical primary particle of the lithium titanium oxide.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 6, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Hee Lee, Young-Su Kim, Jae-Myung Kim, Kyu-Nam Joo, So-Ra Lee, Deok-Hyun Kim, Gu-Hyun Chung, Beom-Kwon Kim, Yong-Mi Yu
  • Patent number: 8920976
    Abstract: A nonaqueous electrolyte secondary battery disclosed in the present application includes: a positive electrode capable of absorbing and releasing lithium, containing a positive electrode active material composed of a lithium-containing transition metal oxide having a layered crystalline structure; and a negative electrode capable of absorbing and releasing lithium, containing a negative electrode active material composed of a lithium-containing transition metal oxide obtained by substituting some of Ti element of a lithium-containing titanium oxide having a spinel crystalline structure with one or more element different from Ti, wherein a retention of the negative electrode is set to be greater than a retention of the positive electrode, and an irreversible capacity rate of the negative electrode is set to be greater than an irreversible capacity rate of the positive electrode, whereby a discharge ends by negative electrode limitation.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Natsumi Goto, Takashi Takeuchi, Masaki Hasegawa
  • Publication number: 20140377662
    Abstract: Disclosed are compositions containing a formula of LixTiyV1Bz wherein x, y, and z are real numbers greater than zero. In certain embodiments, x is not greater than 7, and y is not greater than 6, or a combination thereof. The composition may be a microporous aerogel, a mesoporous aerogel, a crystalline structure, or a combination thereof. In certain embodiments, the composition may be an aerogel, and a surface of the aerogel comprises microcrystals, nanocrystals or a combination thereof. The compositions have very low densities. Also disclosed are methods to produce the composition and use of the composition in energy storage devices.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventor: Nilanjan DEB