Having Inorganic Binder Or Conductive Filler Patents (Class 429/232)
  • Patent number: 8906554
    Abstract: A composite anode active material includes a composite of a carbon-based anode active material, a metal-based anode active material and polymer particles. By increasing the conductivity of the composite anode active material, a lithium battery having a large capacity, high initial efficiency, high rate capability and improved cycle life performance can be obtained. An anode includes the composite anode active material and a lithium battery includes the anode.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seung-sik Hwang, Han-su Kim
  • Patent number: 8906118
    Abstract: A method for manufacturing a lithium secondary battery includes a first step of dispersing a conductive material in a solvent to prepare a conductive slurry; and a second step of mixing the prepared conductive slurry, a positive electrode active material and a binder to prepare a positive electrode mixture layer-forming slurry; wherein the first step is conducted so that a ratio of a particle size at 10% accumulation to a particle size at 90% accumulation, which are based on a particle size distribution measurement of the conductive material, is 10 or more and 200 or less.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoyuki Uezono
  • Patent number: 8906552
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 9, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Su-min Park, Ji Eun Lee, Cheol-Hee Park
  • Patent number: 8906557
    Abstract: Anode active materials and methods of preparing the same are provided. One anode active material includes a carbonaceous material capable of improving battery cycle characteristics. The carbonaceous material bonds to and coats metal active material particles and fibrous metallic particles to suppress volumetric changes.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gue-sung Kim, Yong-nam Ham, Han-su Kim, Dong-min Im
  • Publication number: 20140356716
    Abstract: Provided are an electrode material and an electrode which, when an electrode active material having a carbonaceous coat formed on the surface is used as an electrode material, have a small variation in an amount of the carbonaceous coat being supported and, furthermore, can improve electron conductivity, and a method of manufacturing the electrode material. The electrode material is made of an agglomerate formed by agglomerating particles of an electrode active material having a carbonaceous coat formed on a surface, the average particle diameter of the agglomerate is in a range of 1.0 ?m to 100 ?m, the volume density of the agglomerate is in a range of 50% by volume to 80% by volume of the volume density of a solid form of the agglomerate, the pore size distribution of pores in the agglomerate is mono-modal, and the average pore diameter in the pore size distribution is 0.3 ?m or less.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 4, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takao Kitagawa, Masaru Uehara
  • Patent number: 8900753
    Abstract: A cathode material with excellent capacity and output characteristics and safety, and a lithium ion secondary battery using the same is provided. The invention relates to a cathode material which includes a mixture of a cathode active material having a large primary particle size with excellent capacity characteristics and represented by the composition formula: Lix1Nia1Mnb1Coc1O2, where 0.2?x1?1.2, 0.6?a1, 0.05?b1?0.3, 0.05?c1?0.3, and another cathode active material having a small primary particle size with excellent output characteristics and represented by the composition formula: Lix2Nia2Mnb2Coc2O2, where 0.2?x2?1.2, a2?0.5, 0.05?b2?0.5, 0.05?c2?0.5. The invention also relates to a lithium ion secondary battery using the cathode material.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 2, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroaki Konishi, Toyotaka Yuasa, Mitsuru Kobayashi
  • Publication number: 20140349162
    Abstract: A thermally managed Li-ion battery assembly including an anode and a cathode, wherein at least one of the anode and the cathode includes a thermocrystal metamaterial structure.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Applicant: The Boeing Company
    Inventors: Nicholas Koumvakalis, Jeffrey H. Hunt
  • Patent number: 8895184
    Abstract: In regards with the porous film provided on the surface of the electrode used for the secondary battery or so, the present invention provides the porous film which can contribute to reduce the adhered material to the roll during the roll winding of the electrode. The secondary battery electrode formed by adhering; the porous film comprising the inorganic filler and the binder, and styrene and the polymer having the glass transition temperature of 15° C. or less as said binder, the porous film slurry comprising the inorganic filler, the polymer having the glass transition temperature of 15° C. or less and the solvent, and the electrode composite layer comprising the binder and the electrode active material, to the current collector, and said porous film is provided on the surface of the electrode composite layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 25, 2014
    Assignee: Zeon Corporation
    Inventors: Yasuhiro Wakizaka, Mayumi Fukumine
  • Patent number: 8895101
    Abstract: The present invention relates to a method for manufacturing a cable-type secondary battery comprising an electrode that extends longitudinally in a parallel arrangement and that includes a current collector having a horizontal cross section of a predetermined shape and an active material layer formed on the current collector, and the electrode is formed by putting an electrode slurry including an active material, a polymer binder, and a solvent into an extruder, by extrusion-coating the electrode slurry on the current collector while continuously providing the current collector to the extruder, and by drying the current collector coated with the electrode slurry to form an active material layer.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Joo-Sung Lee, Je-Young Kim, Jong-Hun Kim
  • Patent number: 8889290
    Abstract: An electrode for a lithium-ion secondary battery includes a collector of copper or the like, an electrode material layer being form on one surface and both surfaces of the collector and including an active material and a binder, and a binder-rich layer being formed in a dot shape or a stripe shape with a predetermined interval in the interface between the collector and the electrode material layer and having a binder concentration higher than that of the electrode material layer. Accordingly, a concentration gradient of the binder is provided to the surface of the collector. By arranging the binder-rich layer at a predetermined interval, it is possible to improve the adhesiveness between the collector and the electrode material layer due to an anchor effect and to guarantee conductivity between the collector and the electrode material layer.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takaaki Suzuki, Etsuko Nishimura, Toshio Abe, Chieko Araki
  • Publication number: 20140335415
    Abstract: The battery includes one or more electrodes that each has an active layer on a current collector. The active layer including active particles. The active particles include elongated particles embedded in an active medium such that at least a portion of the elongated particles each extends from within the active medium past a surface of the active medium.
    Type: Application
    Filed: April 18, 2011
    Publication date: November 13, 2014
    Inventors: Ryo Tamaki, Mikito Nagata, Hisashi Tsukamoto
  • Publication number: 20140329140
    Abstract: The invention provides a material for a lithium ion secondary battery, containing an aluminum silicate having an element molar ratio (Si/Al) of silicon (Si) to aluminum (Al) of 0.3 or more and less than 1.0, as well as an anode for a lithium ion secondary battery, a cathode material for a lithium ion secondary battery, a cathode mix for a lithium ion secondary battery, a cathode for a lithium ion secondary battery, an electrolyte solution for a lithium ion secondary battery, a separator for a lithium ion secondary battery, a binder for a lithium ion secondary battery, and a lithium ion secondary battery, which contain the material for a lithium ion secondary battery.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 6, 2014
    Inventors: Hiroki Mikuni, Kiyoshi Kawai, Katsunori Kodato
  • Patent number: 8877386
    Abstract: The electrode production method provided by the present invention includes a step of mixing microbubbles 52 into a binder solution 50 containing a binder, a step of forming a binder solution layer 56 by imparting the bubble-containing binder solution 50 to a current collector 10, a step of depositing the binder solution layer 56 and a paste layer 36 on the current collector 10 by imparting an active material layer-forming paste containing an active material 32 over the binder solution layer 56, and a step of obtaining an electrode in which a binder layer and an active material layer are formed on the current collector 10 by drying both the deposited binder solution layer 56 and the paste layer 36.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nobuyuki Yamasaki
  • Patent number: 8877376
    Abstract: A secondary battery electrode which suppresses decrease in capacity and lithium deposition at low temperatures is provided. An electrode for a secondary battery includes an electrode active material layer containing a polymer having a cationic group, an anion corresponding to the cationic group, and an electrode active material, and the cation density in the polymer is 0.1 to 15 meq/g.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 4, 2014
    Assignee: ZEON Corporation
    Inventors: Yasuhiro Wakizaka, Kei Kobayashi, Toshiyuki Sekine
  • Patent number: 8877373
    Abstract: An embodiment of the present invention provides an electrode for a rechargeable lithium battery, including: a current collector; and an active material layer on the current collector, wherein the active material layer includes an active material adapted to reversibly intercalate and deintercalate lithium ions, a binder, and a pore-forming polymer.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 4, 2014
    Assignees: Samsung SDI Co., Ltd., 3M Innovative Properties Company
    Inventors: Sang-Min Lee, Goo-Jin Jeong, Nam-Soon Choi, Min-Seok Sung, Yong-Mook Kang, Sung-Soo Kim, Leif Christensen
  • Patent number: 8877385
    Abstract: The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator. The positive electrode includes a positive electrode mixture layer containing a positive electrode active material, a conductive polymer, an organic silane compound, a conductive assistant and a binder, the conductive polymer is polythiophene or a derivative thereof, and the content of the conductive polymer is 0.05 to 0.5 mass % with respect to the total mass of the positive electrode mixture layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: November 4, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hirokazu Kamine, Mitsuhiro Kishimi, Fusaji Kita
  • Publication number: 20140322613
    Abstract: An electrode material is provided in which a carbon coating film containing an ion-conductive material is formed on surfaces of electrode-active material particles, and at least a portion of a surface of the ion-conductive material is exposed without being coated with the carbon coating film or the ion-conductive material is surrounded by the carbon coating film.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Inventors: Takao KITAGAWA, Tetsuya NAKABEPPU
  • Publication number: 20140315092
    Abstract: The disclosure describes an exemplary binding layer formed on Aluminum (Al) substrate that binds the substrate with a coated material. Additionally, an extended form of the binding layer is described. By making a solution containing Al-transition metal elements-P—O, the solution can be used in slurry making (the slurry contains active materials) in certain embodiments. The slurry can be coated on Al substrate followed by heat treatment to form a novel electrode. Alternatively, in certain embodiments, the solution containing Al-transition metal elements-P—O can be mixed with active material powder, after heat treatment, to form new powder particles bound by the binder.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Inventors: Chun-Chieh Chang, Tsun Yu Chang
  • Publication number: 20140315084
    Abstract: In accordance with an example embodiment of the present invention, apparatus is provided comprising first and second electrodes, first and second current collectors, an electrolyte, and a first contact layer; wherein the electrolyte is configured to separate the first and second electrodes; and wherein the first contact layer is configured to form an electrical contact between the first current collector and the first electrode.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: Nokia Corporation
    Inventors: Yinglin LIU, Mark Allen, Piers Andrew
  • Publication number: 20140315091
    Abstract: The adhesion between metal foil serving as a current collector and a negative electrode active material is increased to enable long-term reliability. An electrode active material layer (including a negative electrode active material or a positive electrode active material) is formed over a base, a metal film is formed over the electrode active material layer by sputtering, and then the base and the electrode active material layer are separated at the interface therebetween; thus, an electrode is formed. The electrode active material particles in contact with the metal film are bonded by being covered with the metal film formed by the sputtering. The electrode active material is used for at least one of a pair of electrodes (a negative electrode or a positive electrode) in a lithium-ion secondary battery.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 23, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Minoru Takahashi
  • Publication number: 20140315083
    Abstract: The present invention provides a graphene coating-modified electrode plate for lithium secondary battery, characterized in that, the electrode plate comprises a current collector foil, graphene layers coated on both surfaces of the current collector foil, and electrode active material layers coated on the graphene layers. A graphene coating-modified electrode plate for lithium secondary battery according to the present invention comprises a current collector foil, graphene layers coated on both surfaces of the current collector foil, and electrode active material layers coated on the graphene layers. The graphene-modified electrode plate for lithium secondary battery thus obtained increases the electrical conductivity and dissipation functions of the electrode plate due to the better electrical conductivity and thermal conductivity of graphene. The present invention further provides a method for producing a graphene coating-modified electrode plate for lithium secondary battery.
    Type: Application
    Filed: November 2, 2011
    Publication date: October 23, 2014
    Applicant: NINGBO INSTITUTE OF MATERIAL TECHNOLOGY AND ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhaoping Liu, Changlin Tang, Jiangang Zhang, Xufeng Zhou, Huasheng Hu
  • Patent number: 8859149
    Abstract: A lithium secondary battery that has high capacity and excellent cycle characteristics is provided. The lithium ion secondary battery includes a cathode, an anode, and an electrolyte. The anode has, on an anode current collector, an anode active material layer including LixSiFy (1?x?2 and 5?y?6) as an anode active material.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Sony Corporation
    Inventor: Toshikazu Nakamura
  • Patent number: 8852807
    Abstract: A compound comprising a composition Ax(M?1?aM?a)y(XD4)z, Ax(M?1?aM?a)y(DXD4)z, or Ax(M?1?aM?a)y(X2D7)z, (A1?aM?a)xM?y(XD4)z, (A1?aM?a)xM?y(DXD4)z, or (A1?aM?a)xM?y(X2D7)z. In the compound, A is at least one of an alkali metal and hydrogen, M? is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M? any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001<a?0.1, and x, y, and z are greater than zero. The compound can be used in an electrochemical device including electrodes and storage batteries.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 7, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Sung-Yoon Chung, Jason T. Bloking, Anna M. Andersson
  • Patent number: 8852809
    Abstract: A positive electrode for a rechargeable lithium battery capable of providing a high voltage and a high voltage rechargeable lithium battery including the same, wherein the positive electrode includes a positive active material and a capacitor-reactive carbonaceous material having a specific surface area at or between 10 m2/g and 100 m2/g.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyeu-Yoon Sheem, Bok-Hyun Ka, Sumihito Ishida, Da-Woon Han, Eui-Hwan Song
  • Publication number: 20140295290
    Abstract: Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Benjamin Yong Park, Ian R. Browne, Stephen W. Schank, Steve Pierce
  • Publication number: 20140287310
    Abstract: An electrode material which can improve the mobility of electrons and the mobility of ions at the same time, and, furthermore, does not have a problem of the impairment of the diffusion of lithium ions in a thin layer containing a carbonaceous electron-conductive substance so as to be excellent in terms of load characteristics and energy density, and an electrode and a lithium ion battery are provided. The electrode material of the invention is produced by forming a thin layer made of a carbonaceous electron-conductive substance on surfaces of primary particles made of an electrode active material, in which the carbonaceous electron-conductive substance contains nitrogen atoms.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Koji OONO, Takao KITAGAWA, Tatsuya NAKABEPPU, Kazuyo YAMAMOTO
  • Patent number: 8841024
    Abstract: A secondary battery electrode which suppresses decrease in capacity and lithium deposition at low temperatures is provided. An electrode for a secondary battery includes an electrode active material layer containing a polymer having a cationic group, an anion corresponding to the cationic group, and an electrode active material, and the cation density in the polymer is 0.1 to 15 meq/g.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 23, 2014
    Assignee: ZEON Corporation
    Inventors: Yasuhiro Wakizaka, Kei Kobayashi, Toshiyuki Sekine
  • Publication number: 20140272596
    Abstract: Provided is composite carbon fibers comprising multi-walled carbon nanotubes wherein 99% by number or more of the multi-walled carbon nanotubes have a fiber diameter of not less than 5 nm and not more than 40 nm, carbon particles having a primary particle diameter of not less than 20 nm and not more than 100 nm and graphitized carbon nanofibers wherein 99% by number or more of the graphitized carbon nanofibers have a fiber diameter of not less than 50 nm and not more than 300 nm, wherein the multi-walled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and the carbon particles.
    Type: Application
    Filed: October 7, 2013
    Publication date: September 18, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji YAMAMOTO, Takeshi NAKAMURA, Nobuaki ISHII, Yuta HIRANO
  • Patent number: 8835056
    Abstract: A method of forming an electrode of a lithium ion secondary battery includes combining a binder and active particles to form a mixture, coating a surface with the mixture to form a coated article, translating the article along a first plane, cutting a first plurality of carbon fibers, each having a first average length, to form a second plurality of carbon fibers, each having a longitudinal axis and a second average length that is shorter than the first average length, inserting the second plurality of fibers into the mixture layer so that the longitudinal axis of each of at least a portion of the second plurality of fibers is not parallel to the first plane to form a preform, wherein the second plurality of fibers forms a truss structure disposed in three dimensions within the mixture layer, and heating the preform to form the electrode. An electrode is also disclosed.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Xinran Xiao, Adam T. Timmons, Stephen J. Harris
  • Publication number: 20140255785
    Abstract: A nanographitic composite for use as an anode in a lithium ion battery includes nanoscale particles of an electroactive material; and a plurality of graphene nanoplatelets having a thickness of 0.34 nm to 5 nm and lateral dimensions of less than 900 nm, wherein the electroactive particle has an average particle size that is larger than the average lateral dimension of the graphene nanoplatelets, and the graphene nanoplatelets coat at least a portion of the nanoscale particles to form a porous nanographitic layer made up of overlapping graphene nanoplatelets.
    Type: Application
    Filed: November 13, 2013
    Publication date: September 11, 2014
    Applicant: XG SCIENCE, INC.
    Inventors: Inhwan DO, Hong WANG, Harshal Manubhai BAMBHANIA, Liya WANG
  • Patent number: 8822074
    Abstract: Disclosed is an electrode for a lithium-ion secondary battery which includes a porous membrane layer that is inhibited from decreasing in flexibility. The electrode for lithium-ion secondary battery comprises a current collector and, formed thereon in the following order, an electrode active-material layer comprising an electrode active material, a thickener, and a binder and a porous membrane layer containing an inorganic filler, wherein the binder is one which, when used to form a composite film comprising the binder and the thickener, forms a spherical island phase in a cross section of the composite film, the island phase having an average diameter of 0.5 ?m or larger. The binder preferably is an unsaturated carboxylic acid ester polymer having a content of alkyl acrylate monomer units of 85 mass % or higher.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 2, 2014
    Assignee: Zeon Corporation
    Inventors: Yasuhiro Wakizaka, Takumi Sugimoto
  • Patent number: 8822076
    Abstract: A nonaqueous electrolytic secondary battery and a positive electrode for a nonaqueous electrolytic secondary battery are provided. The positive electrode includes a positive electrode active material layer containing a positive electrode active material and a coupling agent represented by a general formula (1). The positive electrode active material includes lithium transition metal oxide particles. At least one rare-earth compound selected from the rare-earth compound group consisting of specific rare-earth hydroxides and specific rare-earth oxyhydroxides is fixed on the surfaces of the lithium transition metal oxide particles in a dispersed form.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 2, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Takeshi Ogasawara, Kentaro Takahashi, Naoki Imachi
  • Patent number: 8815445
    Abstract: Provided is a cathode active material for a lithium secondary battery, which can achieve both of excellent rate characteristic and practically sufficient durability (cycle characteristic) in the lithium secondary battery. The cathode active material for a lithium secondary battery includes therein pores. A particle or film of the cathode active material for a lithium secondary battery has formed therein a large number of pores. The inner wall of each of such pores is coated with a conductive film.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 26, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Ryuta Sugiura, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Publication number: 20140234724
    Abstract: A battery electrode is obtained by a method comprising: mixing active material (A), carbon fibers (B) having a fiber diameter of not less than 50 nm and not more than 300 nm, carbon fibers (C) having a fiber diameter of not less than 5 nm and not more than 40 nm, carbon black (D) and a binder (E) by dry process to obtain a mixture; to the mixture, adding not less than 5/95 and not more than 20/80 of a liquid medium by mass relative to the total mass of the active material (A), the carbon fibers (B), the carbon fibers (C), carbon black (D) and the binder (E); performing kneading while applying shear stress; and shaping the kneaded material into a sheet form.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 21, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Takeshi NAKAMURA, Nobuaki ISHII, Yuta HIRANO
  • Patent number: 8802299
    Abstract: The present invention is made to improve charge-discharge cycle performances under high temperature environment in a non-aqueous electrolyte secondary battery using a negative electrode containing a negative electrode active material of particulate silicon and/or silicon alloy and a binding agent.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: August 12, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Hidekazu Yamamoto, Atsushi Fukui, Taizou Sunano, Maruo Kamino
  • Publication number: 20140212763
    Abstract: A composite electrode and a lithium-based battery are disclosed, wherein the composite electrode comprises: a substrate and a conductive layer formed on the substrate, wherein the conductive layer comprises graphite powders, Si-based powders, Ti-based powders, or a combination thereof embedded in a conductive matrix and coated with diamond films, and the diamond films are formed of diamond grains. The novel electrodes of the present invention when used in the Li-based battery can provide superior performance including excellent chemical inertness, physical integrity, and charge-discharge cycling life-time, and exhibit high electric conductivity and excellent lithium ion permeability.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 31, 2014
    Applicant: National Cheng Kung University
    Inventors: Yonhua TZENG, Orlando H AUCIELLO, Chuan-Pu LIU, Chi-Kai LIN, Yin-Wei CHENG
  • Patent number: 8785041
    Abstract: An electrode includes a collector formed with a conductive resin layer and an active material layer formed on the conductive resin layer. The active material layer comprises an active material and a binder polymer, and the conductive resin layer is bonded by thermal fusion bonding to the active material layer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 22, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shiho Inoue, Hideaki Horie, Kenji Hosaka, Osamu Shimamura, Shigeo Ibuka
  • Patent number: 8785044
    Abstract: The invention relates to primary electrochemical cells having a jellyroll electrode assembly that includes a lithium-based negative electrode, a positive electrode with a coating comprising iron disulfide deposited on a current collector and a polymeric separator. More particularly, the invention relates to a cell designs and cathode formulations incorporating specific types of conductors to improve cell performance.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 22, 2014
    Assignee: Eveready Battery Company, Inc.
    Inventors: Jack W Marple, Weiwei Huang, Michael W Wemple
  • Patent number: 8785049
    Abstract: A negative active material for a rechargeable lithium battery includes a core including crystalline carbon, a metal nano particle and a MOx nano particle (where x is from 0.5 to 1.5, and M is Si, Sn, In, Al, or a combination thereof) disposed on the core surface, and a coating layer including an amorphous carbon surrounding the core surface, the metal nano particle and the MOx nano particle. A lithium rechargeable battery includes the negative active material.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: July 22, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Bong-Chull Kim, Cheol-Hee Hwang, Dong-Yung Kim, Se-Ho Park, Hyun-Jun Choi, In-Ho Jung, Su-Ho Song
  • Patent number: 8785054
    Abstract: In a lithium ion battery, one or more chelating agents may be attached to a microporous polymer separator for placement between a negative electrode and a positive electrode or to a polymer binder material used to construct the negative electrode, the positive electrode, or both. The chelating agents may comprise, for example, at least one of a crown ether, a podand, a lariat ether, a calixarene, a calixcrown, or mixtures thereof. The chelating agents can help improve the useful life of the lithium ion battery by complexing with unwanted metal cations that may become present in the battery's electrolyte solution while, at the same time, not significantly interfering with the movement of lithium ions between the negative and positive electrodes.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Stephen J. Harris, Timothy J. Fuller
  • Patent number: 8785040
    Abstract: A positive electrode for a rechargeable lithium battery including a net-type current collector and a positive active material layer formed on both sides of the current collector and also including a positive active material and a binder and having a thickness of about 150 ?m or more, a method of manufacturing the same, and a rechargeable lithium battery including the same.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: July 22, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Nam-Soon Choi, Sae-Weon Roh, Yong-Chul Park, Sung-Soo Kim, So-Hyun Hur
  • Patent number: 8771873
    Abstract: A lithium secondary battery includes an electrode assembly having a positive electrode (1), a negative electrode (2) having a negative electrode current collector and a negative electrode active material layer formed on a surface of the negative electrode current collector and composed of a binder and negative electrode active material particles containing silicon and/or a silicon alloy, and a separator (3) interposed between the electrodes. The electrode assembly is impregnated with a non-aqueous electrolyte. The binder contains a polyimide resin represented by the following chemical formula (1): where R contains at least a benzene ring, and n is within the range of from 10 to 100,000, and the negative electrode active material particles have an average particle size of 5 ?m or greater.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 8, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Atsushi Fukui, Hiroshi Minami, Mariko Torimae, Yasuyuki Kusumoto
  • Patent number: 8771877
    Abstract: Disclosed is a positive electrode material for nonaqueous electrolyte secondary batteries, which comprises a porous body composed of a material containing a polyanion. Also disclosed is a method for producing such a positive electrode material for nonaqueous electrolyte secondary batteries. When a carbon coating is formed on the surface of a material containing a polyanion of lithium iron phosphate or the like by a conventional method, the capacity during low rate discharge is improved but the capacity is not sufficient. In the present invention, the positive electrode material for nonaqueous electrolyte secondary batteries, which comprises a porous body composed of a material containing a polyanion, has a structure wherein the inner walls of the pores of the porous body are provided with a layered carbon, for improving the discharge capacity.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 8, 2014
    Assignee: GS Yuasa International Ltd.
    Inventors: Yoshinobu Yasunaga, Akihiro Fujii, Tokuo Inamasu
  • Patent number: 8771878
    Abstract: A positive electrode for a rechargeable lithium battery including a current collector and a positive active material layer disposed on the current collector, a method of manufacturing the positive electrode, and a rechargeable lithium battery including the positive electrode. Here, the positive active material layer includes a positive active material and a coating layer on the surface of the positive active material, wherein the coating layer is formed of a coating layer composition including carbon nano particles, polyvinylpyrrolidone, and polyvinylidene fluoride.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: July 8, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Da-Woon Han, Kyeu-Yoon Sheem, Eui-Hwan Song
  • Patent number: 8758936
    Abstract: A thin film structure, method of producing it and the use thereof. The thin film structure comprises a substrate with a thin conductive layer containing an oxidizing enzyme mixed with an electron transfer mediator. The thin layer is protected against wetting to allow for its storage in dry conditions and further being sufficiently porous to allow for immediate activation of the oxidizing enzyme when contacted with an aqueous solution. The thin film can be used as a cathode in electrochemical fuel cells.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: June 24, 2014
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Matti Valkiainen, Harry Boer, Anu Koivula, Maria Smolander, Pia Qvintus-Leino, Kirsi Immonen, Liisa Viikari
  • Patent number: 8753780
    Abstract: Disclosed is an electrode (30) (for example, a positive electrode for a lithium ion battery), wherein an active material layer (35) mainly composed of an electrode active material is supported by a metal collector (32). A barrier layer (33) containing a conductive material (330) and a water-insoluble polymer material (334) are formed on the surface of the metal collector (32). The conductive material (330) contains at least a first conductive powder (331) having a certain average particle diameter, and a second conductive powder (332) having an average particle diameter larger than that of the first conductive powder. The ratio of the first conductive powder (331) contained in the barrier layer (33) is higher than that of the second conductive powder (332).
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: June 17, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Takahata
  • Publication number: 20140162131
    Abstract: A powder comprising pillared particles for use as an active component of a metal ion battery, the pillared particles comprising a particle core and a plurality of pillars extending from the particle core, wherein the pillared particles are formed from a starting material powder wherein at least 10% of the total volume of the starting material powder is made up of starting material particles having a particle size of no more than 10 microns.
    Type: Application
    Filed: June 22, 2012
    Publication date: June 12, 2014
    Applicant: Nexeon Limited
    Inventors: Chris Friend, William James Macklin, Yuxiong Jiang, Mamdouh Elsayed Abdelsalam, Fengming Liu, Phil Rayner
  • Publication number: 20140147743
    Abstract: The present invention relates to an electrode of an electrochemical cell, comprising at least a fibrous active electrode material, wherein the fibers of the active material are arranged to form a nonwoven or felt-like self-supporting structure. Moreover the invention relates to a respective electrochemical cell and to a method of making such an electrode.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 29, 2014
    Applicant: The Swatch Group Research and Development Ltd
    Inventors: Michael STALDER, Fredy ZUELLIG, Yoann METTAN
  • Patent number: 8734996
    Abstract: An anode of a lithium battery includes a supporting member and a carbon nanotube film disposed on a surface of the support member. The carbon nanotube film includes at least two overlapped and intercrossed layers of carbon nanotubes. Each layer includes a plurality of successive carbon nanotube bundles aligned in the same direction. A method for fabricating the anode of the lithium battery includes the steps of: (a) providing an array of carbon nanotubes; (b) pulling out, by using a tool, at least two carbon nanotube films from the array of carbon nanotubes; and (c) providing a supporting member and disposing the carbon nanotube films to the supporting member along different directions and overlapping with each other to achieving the anode of lithium battery.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 27, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen Feng, Kai-Li Jiang, Liang Liu, Xiao-Bo Zhang, Shou-Shan Fan
  • Patent number: 8734990
    Abstract: The present invention provides a positive electrode (30) for lithium secondary batteries, including: a barrier layer, having a conductive material and at least one type of water-insoluble polymer that is soluble in organic solvents but insoluble in water, as a binder; and a positive electrode active material layer, being a positive electrode active material layer (35) stacked on the barrier layer, and having a positive electrode active material and at least one type of aqueous polymer that is insoluble in organic solvents but soluble or dispersible in water, as a binder. A content of the water-insoluble polymer in the barrier layer is 55 to 85 mass % with respect to 100 mass % of a total amount of the conductive material plus the water-insoluble polymer.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takeshi Abe