The Electrolyte Is Solid Patents (Class 429/304)
  • Patent number: 9263763
    Abstract: The object of the present invention is to provide a sulfide solid electrolyte material with favorable ion conductivity. The present invention attains the object by providing a sulfide solid electrolyte material including an M1 element (such as a Li element), an M2 element (such as a Ge element and a P element), a S element and an O element, and having a peak at a position of 2?=29.58°±0.50° in an X-ray diffraction measurement using a CuK? ray, characterized in that when a diffraction intensity at the peak of 2?=29.58°±0.50° is regarded as IA and a diffraction intensity at a peak of 2?=27.33°±0.50° is regarded as IB, a value of IB/IA is less than 0.50.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 16, 2016
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Masaaki Hirayama, Ryoji Kanno, Yuki Kato, Koji Kawamoto, Takamasa Otomo
  • Patent number: 9263770
    Abstract: The present invention provides a method for providing electrical potential from a solid-state sodium-based secondary cell (or rechargeable battery). A secondary cell is provided that includes a solid sodium metal negative electrode that is disposed in a non-aqueous negative electrolyte solution that includes an ionic liquid. Additionally, the cell comprises a positive electrode that is disposed in a positive electrolyte solution. In order to separate the negative electrode and the negative electrolyte solution from the positive electrolyte solution, the cell includes a sodium ion conductive electrolyte membrane. The cell is maintained and operated at a temperature below the melting point of the negative electrode and is connected to an external circuit.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: February 16, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Chett Boxley, W Grover Coors, John Joseph Watkins
  • Patent number: 9263758
    Abstract: A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer (1) with a combined electrolyte and sealing layer on the porous metal containing layer (1); wherein the at least one porous metal containing layer (1) hosts an electrode; 2) a second component comprising at least one porous metal containing layer (1) with a combined interconnect and sealing layer on the porous metal containing layer; wherein the at least one porous metal containing layers hosts an electrode. Further provided is a method for preparing a reversible solid oxide fuel cell stack. The obtained solid oxide fuel cell stack has improved mechanical stability and high electrical performance, while the process for obtaining same is cost effective.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: February 16, 2016
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Anders Smith, Mogens Mogensen, Soeren Linderoth, Peter Vang Hendriksen
  • Patent number: 9246160
    Abstract: An anode, an anode current collector, an anode active material and a battery using the anode are provided. The anode includes the anode current collector and the anode active material. The anode current collector has a projection. The anode active material layer is formed via at least one of a vapor deposition method, a liquid-phase deposition method, a sintering method and the like.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 26, 2016
    Assignee: Sony Corporation
    Inventors: Kenichi Kawase, Tomoo Takada, Yukio Miyaki
  • Patent number: 9233177
    Abstract: Endohedral metallofullerene compounds, which in water has a relaxivity of about 30 mM?1 S?1 to about 300 mM?1 S?1 and forms a dispersion in water with entities having an average hydrodynamic radius of less than about 20 nm.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: January 12, 2016
    Assignee: Luna Innovations Incorporated
    Inventors: Darren K. Macfarland, Robert P. Lenk, Rajesh Shukla, Kenneth L. Walker, Stephen R. Wilson, Zhiguo Zhou
  • Patent number: 9216928
    Abstract: A refractory object can include a beta alumina. In an embodiment, the refractory object is capable of being used in a glass fusion process. In another embodiment, the refractory object can have a total Al2O3 content of at least 10% by weight. Additionally, a Mg—Al oxide may not form along a surface of the refractory object when the surface is exposed to a molten glass including an Al—Si—Mg oxide. In a particular embodiment, a refractory object can be in the form of a glass overflow forming block used to form a glass object that includes an Al—Si—Mg oxide. When forming the glass object, the glass material contacts the beta alumina, and during the flowing of the glass material, a Mg—Al oxide does not form along the beta alumina at the surface.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 22, 2015
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Olivier Citti
  • Patent number: 9190658
    Abstract: Disclosed are a lithium electrode for a lithium metal battery, which uses a solid high-ionic conductor having a three-dimensional (3D) porous structure, wherein a lithium metal or lithium alloy is filled into each pore and dispersed, and a method for manufacturing the lithium electrode. By applying a solid high-ionic conductor having a 3D porous structure, an ion conduction path is secured in the lithium electrode using the solid high-ionic conductor instead of a conventional liquid electrolyte, electrical-chemical reactivity in charging and discharging are further improved, and shelf life and high rate capability are enhanced.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: November 17, 2015
    Assignee: Hyundai Motor Company
    Inventors: Hee Yeon Ryu, Yoon Ji Lee, Hee Jin Woo, Jun Ki Rhee, Ki Chun Lee
  • Patent number: 9172114
    Abstract: The present invention provides an energy storage device comprising a cathode region or other element. The device has a major active region comprising a plurality of first active regions spatially disposed within the cathode region. The major active region expands or contracts from a first volume to a second volume during a period of a charge and discharge. The device has a catholyte material spatially confined within a spatial region of the cathode region and spatially disposed within spatial regions not occupied by the first active regions. The device has a protective material formed overlying exposed regions of the cathode material to substantially maintain the sulfur species within the catholyte material. Also included is a novel dopant configuration of the LiaMPbSc (LMPS) [M=Si, Ge, and/or Sn] containing material.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: October 27, 2015
    Assignee: QuantumScape Corporation
    Inventors: Cheng Chieh Chao, Zhebo Chen, Tim Holme, Marie A. Mayer, Gilbert N. Riley, Jr.
  • Patent number: 9136528
    Abstract: A magnesium secondary battery includes a positive electrode, a negative electrode, a separator membrane and an electrolytic solution. The electrolytic solution includes nitrogen-containing heterocyclic magnesium halide and an organic ether solvent.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 15, 2015
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Yanna Nuli, Qingsong Zhao, Jun Yang, Yongsheng Guo
  • Patent number: 9127344
    Abstract: A method for manufacturing a solid-state battery device. The method can include providing a substrate within a process region of an apparatus. A cathode source and an anode source can be subjected to one or more energy sources to transfer thermal energy into a portion of the source materials to evaporate into a vapor phase. An ionic species from an ion source can be introduced and a thickness of solid-state battery materials can be formed overlying the surface region by interacting the gaseous species derived from the plurality of electrons and the ionic species. During formation of the thickness of the solid-state battery materials, the surface region can be maintained in a vacuum environment from about 10-6 to 10-4 Torr. Active materials comprising cathode, electrolyte, and anode with non-reactive species can be deposited for the formation of modified modulus layers, such a void or voided porous like materials.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 8, 2015
    Assignee: SAKTI3, Inc.
    Inventors: Myoungdo Chung, Hyoncheol Kim, Ann Marie Sastry, Marc Langlois
  • Patent number: 9083049
    Abstract: A fuel cell comprising: a first layer comprising a first ionomer and an additive, the additive comprising a metal oxide comprising an oxide at least one of of Ce, Mn, V, Pt, Ru, Zr, Ni, Cr, W, Co, Mo, or Sn, and wherein the additive is present in at least 0.1 weight percent of the ionomer is disclosed as one embodiment of the invention, and performance and durability are advantaged wherein one or all of the metal oxide consists essentially nanoparticles.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: July 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Michael R. Schoeneweiss, Tao Xie, Frank Coms, Sean M. MacKinnon, Gerald W. Fly
  • Patent number: 9070941
    Abstract: [Object] The object is to provide a negative electrode material for a lithium secondary battery, wherein a sulfide-based negative electrode with water-resistant properties can exert excellent cycle characteristics and high output performance while maintaining a high discharge capacity and there is no precipitation of lithium dendrites during charge at low temperature. [Means for Solving Problems] A negative electrode material for a lithium secondary battery comprising sulfur and sulfide glass including the following components (i) and (ii): (i) at least one or more elements selected from a group consisting of Sb, As, Bi, Ge, Si, Cu, Zn, Pd, In and Zr; and (ii) at least one or more elements selected from a group consisting of Se, Te, Ga, Sn, Pb, Cd, Al, Fe, Mg, Ca, Co, Ag, Sr, P and Ba, wherein the ratio of the above components is sulfur: 40-80 mol %, (i): 1-50 mol % and (ii): 1-50 mol %, respectively.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 30, 2015
    Assignees: National Institute of Advanced Industrial Science and Technology, Isuzu Glass Company, Ltd.
    Inventors: Takashi Mukai, Taichi Sakamoto, Tetsuo Sakai, Kunihiko Tani, Naoto Yamashita, Koichiro Ikeda
  • Patent number: 9054391
    Abstract: Disclosed is a lithium ion secondary battery that has a simple structure, is easily produced, and wherein short circuits do not arise. The lithium ion secondary battery comprises an active material being contained in a matrix comprising a laminated body that includes a positive current collector and a negative current collector which are laminated on each other via a solid electrolyte layer, the solid electrolyte layer includes an active material in a matrix made of solid electrolyte, and a ratio of the volume of the solid electrolyte and the volume of the active material being 90:10-65:35. Also, the active material may also be contained in a matrix of a conductive substance of the positive current collector and/or the negative current collector.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: June 9, 2015
    Assignee: Namics Corporation
    Inventors: Hiroshi Sato, Hiroshi Sasagawa, Megumi Fujii, Rieko Kato, Takayuki Fujita
  • Publication number: 20150147659
    Abstract: An all-solid-state battery including a cathode layer, an anode layer, and an electrolyte layer arranged between the cathode layer and the anode layer, the electrolyte layer including a first solid electrolyte layer including a sulfide solid electrolyte, and a second solid electrolyte layer other than the first solid electrolyte layer, the electrolyte layer including the sulfide solid electrolyte. Also provided is a method for manufacturing an all-solid-state battery including the steps of (a) making a cathode layer, (b) making an anode layer, (c) making an electrolyte layer including a first solid electrolyte layer including a sulfide solid electrolyte and a second solid electrolyte including the sulfide solid electrolyte, and (d) layering the cathode layer, the electrolyte layer, and the anode layer, such that the electrolyte layer is arranged between the cathode layer and the anode layer.
    Type: Application
    Filed: July 11, 2012
    Publication date: May 28, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuhito Kato
  • Patent number: 9034522
    Abstract: A method of fabricating a solid polymeric electrolyte having a pattern includes mixing constituents including a liquid electrolyte, a photo-crosslinking agent, and inorganic particles to form an electrolyte paste; dispersing together the constituents of the electrolyte paste; coating the electrolyte paste on a substrate; pressing the electrolyte paste with a patterned mold having a shape to copy the shape of the patterned mold onto the electrolyte paste and provide said pattern; and illuminating an ultraviolet light onto the electrolyte paste to induce a photo-crosslinking reaction and cure the photo-crosslinking agent of the electrolyte paste, wherein said solid polymeric electrolyte includes a polymer matrix having a mesh structure, the polymer matrix being formed of the cured photo-crosslinking agent; inorganic particles distributed in the polymer matrix; and a lithium salt and an organic solvent impregnated between the polymer matrix and the inorganic particles.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 19, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young-Gi Lee, Kwang Man Kim, Dong Ok Shin, Kunyoung Kang, Sang-Young Lee, Eun-Hye Kil, Keunho Choi
  • Patent number: 9029023
    Abstract: Provided are a multi-layered structure electrolyte including a gel polymer electrolyte on opposite surfaces of a ceramic solid electrolyte, for a lithium ion secondary battery including positive and negative electrodes capable of intercalating/deintercalating lithium ions, and a lithium ion secondary battery including the electrode. The electrolyte includes a gel polymer electrolyte on opposite surfaces of a ceramic solid electrolyte.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 12, 2015
    Assignee: Samsung Fine Chemicals Co., Ltd
    Inventor: Shin Jung Choi
  • Patent number: 9023528
    Abstract: The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 5, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Jane Y. Howe
  • Publication number: 20150118574
    Abstract: A positive electrode for a lithium-ion secondary battery includes a positive electrode particle including a positive active material including a lithium salt, and a coating layer including an amorphous carbonaceous layer on a surface of the positive active material, and a sulfide solid electrolyte contacting the coating layer, wherein the sulfide solid electrolyte includes a solid sulfide.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 30, 2015
    Inventors: Heidy Visbal, Yuichi Aihara
  • Patent number: 9017880
    Abstract: A magnesium battery 10 according to the present invention includes a positive electrode 12, a negative electrode 14 having a magnesium-containing negative electrode active material, and an inorganic magnesium solid electrolyte 16 that is interposed between the positive electrode 12 and the negative electrode 14, has a complex ion structure that contains magnesium and hydrogen, and conducts magnesium ions. The inorganic magnesium solid electrolyte 16 may contain a compound having at least one selected from boron and nitrogen. The inorganic magnesium solid electrolyte may be produced by a production method that includes a heat-treatment step of mixing and heating Mg(BH4)2 and Mg(NH2)2 to form a compound having a complex ion structure that contains magnesium and hydrogen.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: April 28, 2015
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Shougo Higashi, Masakazu Aoki
  • Patent number: 9017864
    Abstract: Provided is a secondary battery exhibiting excellent durability. Also disclosed is an electrolyte possessing a porous particle, an ionic liquid and a supporting electrolyte salt, wherein the electrolyte has a dynamic elastic modulus of at least 105 Pa.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 28, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Akiyoshi Kimura, Emiko Mikoshiba
  • Publication number: 20150111110
    Abstract: A solid electrolyte has a sheet shape, and is composed of an oxide sintered body. The solid electrolyte includes a layer-shaped dense portion whose sintered density is 90% or more, and a porous portion formed on a superficial side of the solid electrolyte so as to be continuous from at least one of opposite surfaces of the dense portion, and having a porosity of 50% or more. A secondary battery includes a positive electrode, and a negative electrode, the positive electrode and negative electrode arranged at opposite facing positions interposing the solid electrolyte.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 23, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Nagisa Watanabe, Kazuhito Kawasumi, Junichi Niwa, Masataka Nakanishi
  • Publication number: 20150093651
    Abstract: A lithium battery and a method of preparing the lithium battery, wherein the lithium battery includes: a cathode layer including a cathode active material including a core, and an ion conductive phosphate coating layer on a surface of the core; an anode layer; and a solid electrolyte layer that is disposed between the cathode layer and the anode layer, wherein the solid electrolyte layer includes a sulfide solid electrolyte.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Yuich AIHARA, Nobuya MACHIDA, Seitaro ITO
  • Publication number: 20150086874
    Abstract: An electrochemical device manufactured using an electrode layer in which severe increase of electrode resistance is prevented and/or a solid electrolyte layer in which severe decrease of ion conductivity of a solid electrolyte is prevented is provided. The electrochemical device includes a pair of electrode layers, and a solid electrolyte layer provided between the pair of electrode layers, wherein at least one layer of the electrode layers and the solid electrolyte layer is composed of first particles each providing a function of the at least one layer, second particles and a binder which is composed of an organic polymer and binds the first and second particles, and wherein the at least one layer is formed from a mixture material containing the first particles and binder particles, each of the binder particles including the second particle and the binder carried on at least a part of a surface thereof.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Inventors: Shigeo KONDO, Yasumasa TAKEUCHI, Yuji SHINOHARA, Takeo KAWASE
  • Publication number: 20150086875
    Abstract: [Problem] To provide an electrode for all-solid-state secondary batteries, which is capable of improving the high-temperature cycle characteristics of an all-solid-state secondary battery. [Solution] An electrode for all-solid-state secondary batteries of the present invention comprises a collector, a conductive adhesive layer and an electrode mixture layer. The electrode mixture layer contains a binder, an inorganic solid electrolyte that contains sulfur atoms, and an electrode active material. The conductive adhesive layer contains conductive particles and a binder for adhesive layers, said binder being composed of a diene polymer. The diene polymer contains 10-75% by mass of a diene monomer unit, and has an iodine number of 5-350 mg/100 mg. The sulfur atoms contained in the inorganic solid electrolyte and carbon-carbon double bonds of the diene polymer are crosslinked with each other.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 26, 2015
    Applicant: ZEON CORPORATION
    Inventor: Naoki Yoshida
  • Patent number: 8986894
    Abstract: A solid electrolyte including a layered metal oxide represented by the formula (1), (La1-xAx)(Sr1-yBy)3(Co1-zCz)3O10-???(1) [wherein A represents a rare earth element other than La; B represents Mg, Ca, or Ba; C represents Ti, V, Cr, or Mn; 0?x<1, 0?y<1, 0?z<1; and ? represents an oxygen deficiency amount].
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: March 24, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Hokkaido University
    Inventors: Haruyuki Nakanishi, Tatsuya Takeguchi, Hiroki Takahashi, Ayaka Nakamura, Saburo Hosokawa
  • Publication number: 20150064538
    Abstract: In various embodiments an improved binder composition, electrolyte composition and a separator film composition using discrete carbon nanotubes. Their methods of production and utility for energy storage and collection devices, like batteries, capacitors and photovoltaics, is described. The binder, electrolyte, or separator composition can further comprise polymers. The discrete carbon nanotubes further comprise at least a portion of the tubes being open ended and/or functionalized. The utility of the binder, electrolyte or separator film composition includes improved capacity, power or durability in energy storage and collection devices. The utility of the electrolyte and or separator film compositions includes improved ion transport in energy storage and collection devices.
    Type: Application
    Filed: June 21, 2013
    Publication date: March 5, 2015
    Inventors: Clive P. Bosnyak, Kurt W. Swogger, Milos Marinkovic
  • Patent number: 8968939
    Abstract: A solid electrolyte material that can react with an electrode active material to forms a high-resistance portion includes fluorine.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Tsuchida, Koji Kawamoto, Yukiyoshi Ueno, Shigenori Hama, Masato Kamiya, Hiroshi Nagase
  • Patent number: 8962193
    Abstract: A solid electrolyte is disclosed. The solid electrolyte includes a main portion that includes ?-alumina or ??-alumina, and an edge portion integrally provided with the main portion. The edge portion has a mixed portion that includes ?-alumina and includes ? alumina or ??-alumina. A concentration gradient of the ?-alumina in the edge portion decreases in a first direction from the edge portion to the main portion.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: February 24, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-Ki Park, Dong-Hee Han, Jeong-Doo Yi, Ju-Yong Kim
  • Publication number: 20150050537
    Abstract: In accordance with one embodiment, an electrochemical cell includes a first anode including a form of lithium a first cathode including an electrolyte, and a first composite electrolyte structure positioned between the first anode and the first cathode, the first composite electrolyte structure including (i) a first support layer adjacent the first anode and configured to mechanically suppress roughening of the form of lithium in the first anode, and (ii) a first protective layer positioned between the first support layer and the first cathode and configured to prevent oxidation of the first support layer by substances in the first cathode.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: John F. Christensen, Paul Albertus, Aleksandar Kojic, Timm Lohmann, Boris Kozinsky
  • Patent number: 8956761
    Abstract: The present invention provides an electrochemical cell comprising an anodic current collector in contact with an anode. A cathodic current collector is in contact with a cathode. A solid electrolyte thin-film separates the anode and the cathode.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Oerlikon Advanced Technologies AG
    Inventors: Glyn Jeremy Reynolds, Robert Mamazza, Jr.
  • Publication number: 20150037688
    Abstract: An all-solid-state cell contains at least a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, which are arranged in a stack. The positive electrode layer contains only a positive electrode active material, and a predetermined crystal plane of the positive electrode active material is oriented in a direction of lithium ion conduction. The negative electrode layer contains a carbonaceous material, and the volume ratio of the carbonaceous material to the negative electrode layer is 70% or greater.
    Type: Application
    Filed: July 25, 2014
    Publication date: February 5, 2015
    Applicant: NGK INSULATORS, LTD.
    Inventors: Haruo Otsuka, Naomi Hashimoto, Toshihiro Yoshida, Kenshin Kitoh
  • Publication number: 20150037686
    Abstract: Described are electrolyte compositions having at least one salt and at least one compound selected from the group consisting of: wherein “a” is from 1 to 3; “b” is 1 or 2; 4?“a”+“b”?2; X is a halogen; R can be alkoxy or substituted alkoxy, among other moieties, and R1 is alkyl, substituted alkyl, aryl, substituted aryl, alkoxy, or substituted alkoxy. Also described are electrochemical devices that use the electrolyte composition.
    Type: Application
    Filed: February 4, 2013
    Publication date: February 5, 2015
    Inventors: José Adrián Peña Hueso, Jian Dong, Michael L. Pollina, Monica L. Usrey, Robert J. Hamers, Robert C. West, David Osmalov
  • Patent number: 8945777
    Abstract: Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Sang-Young Lee, Byung-Hun Oh, Ki-Tae Kim, Hyo-Jeong Ha
  • Patent number: 8945779
    Abstract: A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Lix(La1-aM1a)y(Ti1-bM2b)zO?, characterized in that “x”, “y”, and “z” satisfy relations of x+y+z=1, 0.652?x/(x+y+z)?0.753, and 0.167?y/(y+z)?0.232; “a” is 0?a?1; “b” is 0?b?1; “?” is 0.8???1.2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Chihiro Yada, Hiroshi Suyama, Shoji Yokoishi, Brian Elliott Hayden, Thierry Le Gall, Duncan Clifford Alan Smith, Christopher Edward Lee
  • Patent number: 8940444
    Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: January 27, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Thomas Gennett, David S. Ginley, Wade Braunecker, Chunmei Ban, Zbyslaw Owczarczyk
  • Publication number: 20150024280
    Abstract: In a battery production process, a positive electrode active material having a reaction-suppressing layer that does not easily peel off formed on the surface thereof, and a positive electrode and an all-solid-state battery that use said material are provided. The present invention involves positive electrode active material particles for an all-solid-state battery containing sulfide-based solid electrolyte. The positive electrode active material particles are an aggregate containing two or more particles. The surface of the aggregate is coated with a reaction-suppressing layer for suppressing reactions with the sulfide-based solid electrolyte.
    Type: Application
    Filed: May 23, 2011
    Publication date: January 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takayuki Uchiyama
  • Publication number: 20150001436
    Abstract: An oxide represented by Formula 1: (Sr2-xAx)(M1-yQy)D2O7+d, ??Formula 1 wherein A is barium (Ba), M is at least one selected from magnesium (Mg) and calcium (Ca), Q is a Group 13 element, D is at least one selected from silicon (Si) and germanium (Ge), 0?x?2.0, 0<0?1.0, and d is a value which makes the oxide electrically neutral.
    Type: Application
    Filed: January 16, 2014
    Publication date: January 1, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hee-jung PARK, Chan KWAK, Tae-gon KIM, Sang-mock LEE, Doh-won JUNG
  • Publication number: 20140363745
    Abstract: The object of the present invention is to provide a sulfide solid electrolyte material with favorable ion conductivity. The present invention attains the object by providing a sulfide solid electrolyte material including an M1 element (such as a Li element), an M2 element (such as a Ge element and a P element), a S element and an O element, and having a peak at a position of 2?=29.58°±0.50° in an X-ray diffraction measurement using a CuK? ray, characterized in that when a diffraction intensity at the peak of 2?=29.58°±0.50° is regarded as IA and a diffraction intensity at a peak of 2?=27.33°±0.50° is regarded as IB, a value of IB/IA is less than 0.50.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 11, 2014
    Inventors: Masaaki Hirayama, Ryoji Kanno, Yuki Kato, Koji Kawamoto, Takamasa Otomo
  • Publication number: 20140363744
    Abstract: A solid-state battery cell includes an anode, a cathode, and a solid electrolyte matrix. At least the anode or the cathode may include an active electrode material having pores. Further, an inner surface of the pores may be coated with a first surface-ion diffusion enhancement coating. The solid electrolyte matrix may further include an electrically insulating matrix for a solid electrolyte. The electrically insulating matrix may have pores or passages and an inner surface of the pores or the passages may be coated with a second surface-ion diffusion enhancement coating.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Applicant: IMEC VZW
    Inventors: Philippe M. Vereecken, Cedric Huyghebaert
  • Publication number: 20140356731
    Abstract: In a secondary battery, a negative electrode, an electrolytic solution for negative electrode, a diaphragm, an electrolytic solution for positive electrode, and a positive electrode are disposed in order. The negative electrode includes a negative-electrode active material that has an element whose oxidation-reduction potential is more “base” by 1.5 V or more than an oxidation-reduction potential of hydrogen, and whose volume density is larger than that of lithium metal. The diaphragm includes a solid electrolyte transmitting ions of said element alone. A secondary battery with high volumetric density is provided.
    Type: Application
    Filed: September 21, 2012
    Publication date: December 4, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junichi Niwa, Masataka Nakanishi, Kazuhito Kawasumi, Masakazu Murase
  • Publication number: 20140356732
    Abstract: A LiBH4—C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 4, 2014
    Applicant: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Ragaiy ZIDAN, Joseph A. TEPROVICH, JR., Hector R COLON-MERCADO, Scott D GREENWAY
  • Patent number: 8895194
    Abstract: A solid electrolyte material of conducting a lithium ion comprises a sulfide-based lithium-ion conductor and ?-alumina. Such a solid electrolyte material exhibits superior lithium-ion conductivity. Further, a battery device provided with such a solid electrolyte material is also provided. Furthermore, an all-solid lithium-ion secondary battery provided with such a battery device is also provided.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 25, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Kondo Shigeo, Takeuchi Yasumasa, Yuji Shinohara, Takeo Kawase
  • Patent number: 8883347
    Abstract: This is to provide an all solid state secondary battery which can be produced by an industrially employable method capable of mass-production and has excellent secondary battery characteristics.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 11, 2014
    Assignee: Namics Corporation
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Hiroshi Sato, Hiroshi Sasagawa, Noriyuki Sakai, Takayuki Fujita
  • Patent number: 8883357
    Abstract: A ceramic material that can exhibit sufficient compactness and lithium (Li) conductivity to enable the use thereof as a solid electrolyte material for a lithium secondary battery and the like is provided. The ceramic material contains aluminum (Al) and has a garnet-type crystal structure or a garnet-like crystal structure containing lithium (Li), lanthanum (La), zirconium (Zr) and oxygen (O).
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 11, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshihiro Yoshida, Akihiko Honda, Yosuke Sato
  • Patent number: 8877388
    Abstract: The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La1/3-xLi3xTaO3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: November 4, 2014
    Assignee: Sandia Corporation
    Inventors: Jon Ihlefeld, Paul G. Clem, Cynthia Edney, David Ingersoll, Ganesan Nagasubramanian, Kyle Ross Fenton
  • Publication number: 20140315096
    Abstract: In some embodiments, the present disclosure pertains to energy storage compositions that comprise a clay and an ionic liquid. In some embodiments, the clay is a bentonite clay and the ionic liquid is a room temperature ionic liquid (RTIL). In some embodiments, the clay and the ionic liquid are present in the energy storage compositions of the present disclosure in a weight ratio of 1:1. In some embodiments, the ionic liquid further comprises a lithium-containing salt that is dissolved in the ionic liquid. In some embodiments, the energy storage compositions of the present disclosure further comprise a thermoplastic polymer, such as polyurethane. In some embodiments, the thermoplastic polymer constitutes about 10% by weight of the energy storage composition. In some embodiments, the energy storage compositions of the present disclosure are associated with components of energy storage devices, such as electrodes and separators.
    Type: Application
    Filed: February 26, 2014
    Publication date: October 23, 2014
    Applicants: Universidade Federal de Minas Gerais, William Marsh Rice University
    Inventors: Raquel Silveira Borges, Kaushik Kalaga, Marco Tulio Fonseca Rodrigues, Hemtej Gullapalli, Leela Mohana Reddy Arava, Kaushik Balakrishnan, Glaura Goulart Silva, Pulickel M. Ajayan
  • Publication number: 20140315099
    Abstract: Provide is a zinc secondary battery capable of preventing a short circuit between the positive and negative electrodes caused by zinc dendrites. The zinc secondary battery of the present invention comprises a positive electrode; a negative electrode containing zinc; an electrolytic solution in which the positive electrode and the negative electrode are immersed or with which the positive electrode and the negative electrode are in contact, wherein the electrolytic solution is an aqueous solution containing an alkali metal hydroxide; and a separator being placed between the positive electrode and the negative electrode and separating the positive electrode and the negative electrode from each other, wherein the separator comprises an inorganic solid electrolyte body having hydroxide ion conductivity.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventors: Naohito YAMADA, Kazuhiro YAMAMOTO, Takahiro TOMITA, Haruo OTSUKA
  • Publication number: 20140315098
    Abstract: A method for producing solid electrolyte microparticles includes steps of: a preparation step of preparing a solid electrolyte solution by dissolving a solid electrolyte material in a good solvent; and a precipitation step of precipitating solid electrolyte microparticles by mixing the solid electrolyte solution into a poor solvent whose solubility to the solid electrolyte material is lower than that of the good solvent, wherein in the precipitation step, the solid electrolyte solution is mixed into the poor solvent such that in the mass ratio m:n between the mass “m” of the solid electrolyte solution and the mass “n” of the poor solvent, the proportion of the mass “n” of the poor solvent is increased to adjust the mass ratio to be higher than or equal to the mass ratio at which the solid electrolyte microparticles are precipitated.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 23, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroyuki Inoue
  • Publication number: 20140315100
    Abstract: A rechargeable lithium-sulfur cell comprising an anode, a separator and/or electrolyte, a sulfur cathode, an optional anode current collector, and an optional cathode current collector, wherein the cathode comprises (a) exfoliated graphite worms that are interconnected to form a porous, conductive graphite flake network comprising pores having a size smaller than 100 nm; and (b) nano-scaled powder or coating of sulfur, sulfur compound, or lithium polysulfide disposed in the pores or coated on graphite flake surfaces wherein the powder or coating has a dimension less than 100 nm. The exfoliated graphite worm amount is in the range of 1% to 90% by weight and the amount of powder or coating is in the range of 99% to 10% by weight based on the total weight of exfoliated graphite worms and sulfur (sulfur compound or lithium polysulfide) combined. The cell exhibits an exceptionally high specific energy and a long cycle life.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu, Yi-jun Lin
  • Patent number: 8865354
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, B2O3, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 21, 2014
    Assignee: West Virginia University
    Inventors: Hui Zhang, Yinglu Jiang, Xingbo Liu